Project Description

Haptic rendering has been long considered as the process of estimating the force that stems from the interaction of a user and an object. Even if this approach follows the principles of natural haptic interaction, it places severe limitations in processing haptic media. This paper presents an information theoretic framework that aims to provide a new view of haptic rendering that can accommodate for open-loop synthetic haptic media, where interaction-based rendering is a special case. As a result, using the proposed information-theoretic approach, the haptic signal can be precomputed as a force field, stored and then filtered by taking into account device and perceptual capabilities of the receiver in order to lower the required bandwidth of the resulting stream, thus opening new possibilities for the representation and processing of haptic media.

K. Moustakas and A.S. Lalos, “An information-theoretic treatment of passive haptic media”, Multimedia Tools and Applications, vol. 76, no. 5, pp. 6189-6208, March 2017.