
0018-9294 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2017.2764630, IEEE
Transactions on Biomedical Engineering

TBME-00899-2017-R1 1

Simulation of Constrained Musculoskeletal Systems
in Task Space

Dimitar Stanev, and Konstantinos Moustakas, Senior Member, IEEE

Abstract—Objective: This work proposes an operational task
space formalization of constrained musculoskeletal systems, mo-
tivated by its promising results in the field of robotics. Methods:
The change of representation requires different algorithms for
solving the inverse and forward dynamics simulation in the task
space domain. We propose an extension to the Direct Marker
Control and an adaptation of the Computed Muscle Control
algorithms for solving the inverse kinematics and muscle redun-
dancy problems respectively. Results: Experimental evaluation
demonstrates that this framework is not only successful in dealing
with the inverse dynamics problem, but also provides an intuitive
way of studying and designing simulations, facilitating assessment
prior to any experimental data collection. Significance: The in-
corporation of constraints in the derivation unveils an important
extension of this framework towards addressing systems that use
absolute coordinates and topologies that contain closed kinematic
chains. Task space projection reveals a more intuitive encoding of
the motion planning problem, allows for better correspondence
between observed and estimated variables, provides the means
to effectively study the role of kinematic redundancy and, most
importantly, offers an abstract point of view and control, which
can be advantageous towards further integration with high
level models of the precommand level. Conclusion: Task-based
approaches could be adopted in the design of simulation related
to the study of constrained musculoskeletal systems.

Index Terms—task space, musculoskeletal system, inverse dy-
namics, forward dynamics, constrained mechanics.

I. INTRODUCTION

THE human coordination problem combines many levels
of hierarchical organization that are performed in our

body [1], [2]. One way to model the complexity of controlling
the musculoskeletal system [3] is to partition the problem into
layers of abstraction and to encode the physiological factors
that describe their functionality, providing the necessary details
for the particular problem. Frequently, we find it difficult
to express an abstract idea that encapsulates a problem and
relate it to the underlying mathematical model. This has
partly contributed to the fact that most of the algorithms are
expressed in joint space, which may not always be the optimal
representation.

As a matter of fact, many applications require a change
of representation to solve a particular problem. Relevant
examples include: the study of the mechanical capabilities
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of the human limbs [4], where fundamental questions on the
interaction of the nervous system with the physical world are
addressed; the role of muscle synergies, their relation to the
execution of a task [5] and the influence they have in shaping
the end point stiffness [6]; predictive simulation of closed-
chain systems during execution of a crank-rotation task [7].
In this context, researchers are interested in relating the mean-
ingful, observable quantities (e.g. position, orientation, force,
end point stiffness, etc.) exerted by a segment (typically end-
effector) to the muscle recruitment distribution. To account for
this, we seek to establish the equations that dictate the task
characteristics and muscle excitation patterns.

The main goal of this work is to provide a transparent,
bidirectional link between the task and the corresponding
muscle coordination patterns. The concept of a task has an
abstract meaning and can be interpreted as a high level
command that encapsulates the characteristics of a movement
similar to the planning occurring in the brain [8]. The present
study focuses mainly on motion primitive tasks (e.g. position
and orientation), without necessarily restricting applications
to those alone (e.g. force or impedance control [9] could
also be addressed). The operational task space formalization
[10] provides the mathematical tools to map the Equations of
Motion (EoM) of the underlying system to the space of the
task and control the movement in this domain.

The proposed algorithms and controllers are designed so as
to handle constrained multibody systems. This is of significant
importance since many biological models (e.g. anatomical
joints [11]) or experimental setups (e.g. crank-rotation tasks
[7]) are modeled through constraints. Consequently, the pre-
sented framework can address models that use absolute (Carte-
sian) coordinates [12] instead of generalized coordinates (Sub-
section S-D1) or systems that contain closed kinematic chains
[13] (Subsection S-E). The effect of different joint topologies
(e.g. closed kinematic chains) and the influence of constraint
modeling on the required muscle forces remains a subject open
to study. Results show that constraint modeling can alter the
required generalized motion forces and consequently affect the
muscle forces (Subsection III-A).

Although task space formalization has been proposed for the
study of musculoskeletal systems [14], there is a lack of tools
suitable for solving the inverse and forward dynamics prob-
lems [15]. Considering this, we present an implementation of
a dynamically-based Inverse Kinematics (IK) algorithm (Task
Space Dynamic Inverse Kinematics (TSDIK) Subsection II-G)
for solving the IK problem. We show that this algorithm is
capable of tracking the recorded movement (Subsection III-B),

1The “S-” prefix denotes a reference to a supplementary material.
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while satisfying the imposed constraints due to its dynamic
nature. Moreover, we present an algorithm (Task Space Com-
puted Muscle Control (TSCMC) Subsection II-H) for perform-
ing muscle driven dynamics simulations that closely reproduce
experimental measurements of kinematics and ground reaction
forces, similar to the Computed Muscle Control (CMC) algo-
rithm [16]. The latter is used to perform Forward Dynamics
(FD) simulations by encoding the movement behavior from
a set of abstract task goals, thus enabling model assessment
prior to any experimental data collection. The performance of
the two algorithms has been evaluated for a gait movement
against the current available state of the art schemes.

We employed and extended the open source tool OpenSim
[17] for modeling and simulation of the human movement.
OpenSim represents the open science movement, algorithm
sharing and reproducibility of scientific results [18]. Currently,
OpenSim does not provide an integrated support for handling
operational task space formulation and projection of the EoM
(Subsection S-A).

A. Related Work

Operational task space [10], [19] control has been suc-
cessfully applied by the robotics community yielding novel
control schemes, intuitive design, implementation and practical
applications. Multibody theory is the basis for studying the
kinematics and dynamics of the skeletal system. The under-
lying EoM have been extended, so as to describe the human
muscle complexity [20], [21]. Consequently, this can be used
to evaluate the cause of an orchestrated muscle command
to the observable movement. Simulation of human move-
ment has been successfully translated in clinical treatment
of cerebral palsy, lower extremity amputees and osteoarthritis
[22]. As well as, basic science related to the understanding
of movement progression and control during dynamic tasks,
contributing to the perception of important neurodegenerative
diseases [17], [23], [24]. Pioneer work in the combination
of the above mentioned fields has been presented in [14],
stressing how these concepts can be applied to study the
musculoskeletal complex in the task space. The results have
meaningful biological interpretations and are not a product of
systems engineering.

In clinical practice, there are two main approaches for
computing the internal state of the musculoskeletal composite
from the available measurements [15]. During Inverse Dy-
namics (ID), the analysis starts from the effect (resultant
movement) and propagates all the way up in the hierarchy
to the cause (muscle excitation signals) [25]. On the other
hand, during FD a synchronous command triggers the muscles,
whereas the resulting movement is estimated and observed.
Different combinations of these schemes can be found in the
literature [26], [27], building upon the problem’s complexity,
the available measurements and the assessment requirements.
Commonly observable variables are the movement of the
segments recorded by a Motion Capture (MoCap) system,
the external forces that act on the system (e.g. ground reac-
tion during walking) [28] and the Electromyography (EMG)
recordings of muscle activity [29], [30]. These measurements

are used to estimate the internal state of the model (joint space
generalized forces, muscle forces, etc.) and further restrict the
possible solutions of the redundant system, both in terms of
kinematic and dynamic redundancy.

Many biological models require adequate constraint mod-
eling, so that the underlying model approximates the realistic
movement behavior accurately [11]. The knee and shoulder
complex are representative examples of such models [13],
[31], [32]. The incorporation of constraints introduces many
technical and scientific challenges when solving the forward
and inverse dynamics problem [33]–[35]. Some of them are
finding a solution existence of the system configuration under
constraints and difficulties in solving the Ordinary Differential
Equations (ODE) [36]. As an example, numerical drifts can
still result in constraint violation [36], [37] and the intro-
duction of constraints can result in Differential Algebraic
Equations (DAE) of index-3 that are hard to solve [36].
Although constraints are an inseparable part of the model, their
influence on the muscle recruitment problem is not thoroughly
studied, even if any underlying simulation scheme should be
able to handle these types of systems.

The proposed framework fits well into the wide spectrum
of the current biomedical literature extending the task-based
approach towards applications in musculoskeletal simulation.
The developed algorithms solve the motion planning problem
intuitively with direct translation in clinical practice. Extension
towards constrained multibody systems facilitates the model-
ing of the broader type of problems found in many biological
systems.

II. METHODS

A. Preliminaries - Notation

Uppercase letters will be used to denote matrix quantities
with specific dimensions (e.g. C ∈ <n×n). Vector quantities
will be expressed by lowercase letters (e.g. c ∈ <m).

Linear projection operators are used extensively, deeming
the introduction of relevant notation necessary. For a given
linear transformation

Ax = b, x ∈ <n, b ∈ <m

A =

a11 · · · a1n

...
. . .

...
am1 · · · amn

 =

 | |
c1 · · · cn
| |

 =

− rT1 −
...

− rTm −


(1)

the matrix A defines a mapping A : <n → <m. The column
space (image or range) of A is a space spanned by its n m-D
column vectors

C(A) = span(c1, · · · , cn) ⊆ <m (2)

which is a r-D (r ≤ n independent columns) subspace of <m
composed of all possible linear combinations of its n column
vectors. The row space of A is a space spanned by its m n-D
row vectors

R(A) = span(r1, · · · , rm) ⊆ <n (3)

which is a r-D subspace of <n composed of all possible linear
combinations of its m row vectors. The left null space of
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A (N (A)), is the set of all x that satisfy the homogeneous
equation

N (A) = {x ∈ <n : Ax = 0} ⊆ <n (4)

and similarly the right null space of A (N (AT )) is the set of
all b that satisfy the following relation

N (AT ) = {b ∈ <m : AT b = 0} ⊆ <m (5)

The following properties between the various subspaces
hold for an operator A (⊥ stands for orthogonal complement
and the symbol ⊕ denotes the direct sum)

R(A) = C(AT ), C(A) = R(AT )

R(A) ∩N (A) = ∅, R(A) ⊥ N (A), R(A)⊕N (A) = <n

C(A) ∩N (AT ) = ∅, C(A) ⊥ N (AT ), C(A)⊕N (AT ) = <m
(6)

The general solution of Eq. (1) in the underdetermined case
(n > m), since this is how redundancy is presented, is of the
form

x = x‖ + x⊥ (7)

where x‖ ∈ R(A) is a particular solution and x⊥ ∈ N (A) is
an arbitrary vector that lies in the direction of the null space
of A (Ax⊥ = 0).

A projection operator P is a linear transformation from
a vector space to itself (P 2 = P ) and the operator is
termed orthogonal if P = PT [38]. Note that the term
“orthogonal projection” is a projection for which the range
and the null space are orthogonal subspaces. There are two
projection matrices associated with each vector space defined
in Eq. (1), that can divide a vector into two perpendicular
components. Namely the projection of x onto the column
space of AT , C(AT ), the projection of x onto the null space of
A,N (A), the projection of b onto the column space of A, C(A)
and the projection of b onto the null space of AT ,N (AT ) such
that they span the entire space.

B. Equations of Motion of the Plant

In the derivation of the EoM, we will address systems with
holonomic constraints as we can’t ignore their importance in
modeling a complex system. The fundamental equations of
differential variational principles for a constrained mechanical
system leads to the following DAE of index-3 [36]

Mq̈ + f = τ − τc
f = g + h+ fo

(8)

φ(q) = 0 (9)

where M ∈ <n×n is the symmetric, positive definite joint
space inertia mass matrix, n are the number of Degrees of
Freedom (DoFs) of the model and q, q̇, q̈ ∈ <n are the
joint space generalized coordinates and their derivatives with
respect to time. The term f ∈ <n is the sum of all joint
space forces, g ∈ <n is the gravity, h ∈ <n the Coriolis
and centrifugal and fo ∈ <n other generalized forces2. Term

2Most of the quantities in the equations are a function of the generalized
coordinates q and their derivatives (e.g. M(q), f(q, q̇)). This dependency will
be omitted for simplicity.

τ ∈ <n is a vector of applied generalized forces that actuate
the model and τc ∈ <n represents the generalized forces
induced by constraints. Eq. (9) corresponds to a set of c
constraint algebraic equations which can be differentiated
twice with respect to time (the dot notation depicts a derivative
with respect to time)

Jcq̇ = 0, Jc =
∂φ

∂q
(10)

Jcq̈ = −J̇cq̇ = b (11)

where the term Jc ∈ <c×n defines the constraint Jacobian.
At this point it is worth considering the effect of equations

(9), (10) and (11) on the permissible configuration solutions
(Eq. (8)). The algebraic constraint equations (Eq. (9)) imply
that any admissible configuration q ∈ <n should lie on the
constraint manifold [13], [33]. The first derivative of the
constraints (Eq. (10)) suggests that q̇ ∈ N (Jc), following the
definition of null space (Eq. (4)). As a consequence of the
D’Alembert’s principle, constraint forces do no work under
any virtual displacement that satisfy them (τcδq = 0,∀δq ∈
N (Jc) which is equivalent to τc ⊥ δq,∀δq ∈ N (Jc)). In turn,
this implies that τc ∈ N(Jc)

⊥ = C(JTc ). Thus, the generalized
constraint forces can be represented as a linear combination
of columns of JTc

τc = JTc λ (12)

where λ ∈ <c stands for the vector of Lagrange multipliers.
While q̇‖ = 0, where q̇‖ = {q̇ : q̇ ∈ N (Jc)

⊥}, the same does
not always hold for the acceleration (q̈‖ 6= 0) by inspecting
the second derivative of the constraints (Eq. (11)).

Eq. (8) can be solved in a FD manner for the unknowns q̈, λ,
through the complement of equations (9), (10) and (11). The
constraint derivatives can reduce the DAE to index-1, making
the system solvable by an ODE solver. However, numerical
integration inevitably leads to drifts that eventually result
in constraint violation (φ(q(t)) 6= 0). Coordinate projection
[36] or Baumgarte’s stabilization [37] can be introduced to
ensure exponential elimination of the constraint error, given
the appropriate initial conditions.

C. Inverse Dynamics Controller

Before presenting the Inverse Task Space Controller (ITSC)
we will first elaborate on alternative implementations of
the constrained ID model that can significantly impact the
derivation of the required generalized forces. A consequence
of incorporating constrains is that if the system is overcon-
strained, different sets of applied forces can generate the same
movement behavior [34]. In the following, we will present two
types of controllers, that project the underlying EoM into the
constraint manifold by two different projection operators. The
derivation begins with the following model

Mq̈ + f + JTc λ = τ (13)

Jcq̈ = b (14)
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Both controllers aim to decouple the constraint and applied
forces. The first approach [13] eliminates the constraints by
solving equations (13) and (14) for λ

JcM
−1Mq̈︸ ︷︷ ︸
b

+JcM
−1f + JcM

−1JTc︸ ︷︷ ︸
Λ−1

c

λ = JcM
−1τ

λ = ΛcJcM
−1︸ ︷︷ ︸

J̄T
c

(τ − f)− Λcb
(15)

where Λc ∈ <c×c is the constraint compliant inertia mass
matrix and J̄c ∈ <n×c is the generalized inertia weighted
inverse of the constraint Jacobian (Jc). We can substitute the
solution obtained from Eq. (15) into Eq. (13) (Model-A):

Mq̈ + f⊥ + bc = τ⊥

f⊥ = NT
c f, τ⊥ = NT

c τ

NT
c = I − JTc J̄Tc
bc = −JTc Λcb

(16)

where Nc ∈ <n×n is the constraint null space matrix
(C(Nc) = N (Jc)) and bc ∈ <n is a force vector induced
by the constraint acceleration bias term (Eq. (14)). Here, the
symbol ⊥ denotes that the projected quantities lie in the
null space of the constraints. This signifies that only the null
space component of the generalized forces contributes to the
motion of a constrained mechanical system, while the residual
forces ((I −NT

c )(τ − f)) are compensated by the constraints.
Moreover, Nc is a projection operator (N2

c = Nc), which is
not necessarily orthogonal (Nc 6= NT

c ) and JcNc = 0 holds
by virtue of the relation between the null and range space (Eq.
(6)).

In contrast to Model-A, Aghili [33] proposed a more general
derivation of the constrained ID model. The EoM can be
projected into the null space of the constraints, eliminating the
constraint forces through an orthogonal projection operator N

′

c

(N
′2
c = N

′

c, N
′

c = N
′T
c ), where JcN

′

c = 0 and N
′

c = I−J+
c Jc

(+ indicates the Moore-Penrose pseudoinverse). In comparison
with the projection operator Nc, that depends on the inertia
mass matrix, N

′

c is easier to compute in practice [34], being
purely kinematic dependent. Equations (13) and (14) can be
expressed as follows

N
′

cMq̈ +N
′

cf = N
′

cτ (17)

q̈‖ = (I −N
′

c)q̈ = J+
c b (18)

Typically N
′

c is rank deficient, thus N
′

cM is not invertible.
However, since the system is constrained and equations (17)
and (18) lie in mutually orthogonal spaces (they cannot cancel
each other out), they can be added (Model-B):

M
′
q̈ + f⊥ + b

′

c = τ⊥

M
′

= M +N
′

cM − (N
′

cM)T

f⊥ = N
′

cf, τ⊥ = N
′

cτ

b
′

c = −MJ+
c b

(19)

where the choice of M
′

is not unique, as there are many ways
that equations (17) and (18) can be combined. In the derivation
of Eq. (19) they choose to premultiply Eq. (18) by M before

adding to Eq. (17). It can be shown that M
′

is invertible as
long as M is invertible [33]. It is evident that the choice of
b
′

c depends on the choice of M
′
.

The constraint generalized forces (τc) can be derived by first
projecting Eq. (13) with (I−N ′c) and combine the result from
Eq. (19)

(I −N
′

c)Mq̈ + (I −N
′

c)(f + τc) = (I −N
′

c)τ

(I −N
′

c)MM
′−1(τ⊥ − f⊥ − b

′

c) + f‖ + τc = τ‖

τc = τ‖ − f‖ − µ(τ⊥ − f⊥ − b
′

c)

(20)

where µ = (I−N ′c)MM
′−1 and τ‖, f‖ represent the contribu-

tion of these forces in the constraint subspace. Eq. (20) implies
that the constraint generalized forces (τc) can be obtained
uniquely, whereas the derivation of the Lagrange multipliers
(λ) is not unique, since Jc can be rank deficient.

D. Inverse Task Space Controller for Single Task

In this section we will describe the process of projecting
the EoM derived previously into the space of the task. In this
derivation we will not consider any prior choice of M, bc, Nc.

Each task is associated with a task Jacobian matrix Jt ∈
<d×n, where d is the dimension of the task (e.g. three for
position task, three for orientation task and six for spatial
task, which is the combination of the first two)3. For a fixed
joint space configuration, Jt is a linear mapping from joint
velocities q̇ to task velocities ẋt

ẋt = Jtq̇ (21)

ẍt = J̇tq̇ + Jtq̈ (22)

In turn, the transpose of a task Jacobian maps from task space
forces ft ∈ <d to joint space generalized forces τ ∈ <n

τ = JTt ft (23)

For a given configuration, there is an infinite number of
elementary displacements that could take place without al-
tering the configuration of the effector [10], because d < n
in general. Those displacements correspond to motion in the
null space associated with the generalized inverse of the
Jacobian matrix. With the addition of the null space forces, the
relationship between task forces and manipulator joint space
generalized forces takes the following general form

τ = JTt ft +NT
t τ0, N

T
t = (I − JTt J̄Tt ) (24)

where Nt ∈ <n×n is the null space of Jt (JtNJt = 0), τ0 ∈
<n is a vector of arbitrary selected generalized forces, which
will be projected in the null space direction of Jt and J̄t ∈
<n×d is the generalized inverse of Jt.

Khatib [10] showed that the generalized inverse for a single
task and an unconstrained system exists and is uniquely
defined as follows

J̄Tt = ΛtJtM
−1 (25)

3Note that the dimension of the task can be 1 ≤ d ≤ 6, since in general
we can choose which DoFs to utilize. A task that does not have DoFs (d = 0)
is a constraint.
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Λt = (JtM
−1JTt )−1 (26)

where Λt ∈ <d×d is the task compliant inertia mass matrix.
The dynamically consistent generalized inverse (J̄t) is the only
generalized inverse that results in zero task acceleration for any
τ0. In the presence of a single task the control law has the form
of Eq. (24). We can apply this control law to the constrained
equations of the previous section and solve for the task forces

JtM
−1Mq̈︸ ︷︷ ︸

ẍt−J̇tq̇

+JtM
−1(f⊥ + bc) = JtM

−1NT
c J

T
t︸ ︷︷ ︸

Λ−1
t|c

ft

Λt|c(ẍt + bt) + J̄Tt|c(f⊥ + bc) = ft

JtM
−1NT

c (I − JTt J̄Tt )τ0
!
= 0

(27)

where Λt|c ∈ <d×d is the constrained task compliance inertia
mass matrix, bt = −J̇ q̇ is the task acceleration bias term and
J̄Tt|c = Λt|cJtM

−1 is the constrained task Jacobian generalized
inverse. The symbol t|c denotes that the task t quantity is
“filtered out” (prioritized) by the null space of the constraints
c. Note that we required that the null space forces τ0 should
not interfere with the task acceleration. To achieve this for any
τ0 6= 0 we must solve equation JtM

−1NT
c (I − JTt J̄Tt ) = 0

for J̄Tt
J̄Tt = J̄

′T
t|c = Λt|cJtM

−1NT
c 6= J̄Tt|c (28)

where, in turn the total residual null space of the task subject
to the constraints is given by

NT
t|c = NT

c (I − JTt J̄
′T
t|c) = (I − JTt|cJ̄

T
t|c)N

T
c (29)

where JTt|c = NT
c J

T
t . Finally, the computed generalized forces

for a given desired command ẍt are

τ⊥ = JTt|cft +NT
t|cτ0 (30)

E. Inverse Task Space Controller for Multiple Tasks

An important aspect of working in the task space is that in
the presence of multiple tasks [39], we can further assign a
priority level for each task. Consequently, lower level tasks
will not produce acceleration that will interfere with the
performance of higher priority tasks. This is achieved by
projecting the individual task into the null space of the higher
priority tasks through the null space matrix. This is very
important for two reasons: 1) helps to assign an importance
factor in the execution of tasks and 2) helps to further partition
and decompose the control into individual tasks that do not
interfere with higher priority ones. The following control
scheme is adopted

τ =

g∑
i=1

JTi|i−1∗fi︸ ︷︷ ︸
task forces

+ NT
g∗τ0︸ ︷︷ ︸

null space forces

(31)

There are g tasks in total and each task force (fi) is projected
onto the aggregate null space (Ji|i−1∗ = JiNi−1∗) of the
higher priority tasks with respect to i (i∗ denotes an aggre-
gation). For the purpose of controlling the musculoskeletal
system we partition the applied generalized forces (τ ), into
those that are responsible for driving the task goals and those

that operate in the aggregate null space of all tasks (NT
g∗).

This notation is very similar to the posture control separation
proposed in [39], but we can choose to utilize the kinematic
redundancy in a different manner. More specifically, the term
τ0 can be appropriately selected to compensate for any residual
force in the null space (e.g. τ0 = f⊥ + bc). Alternatively, this
redundancy can be exploited to solve the case of underactuated
systems [33], [35]. Let’s apply Eq. (31) to the ID model and
solve for any arbitrary task force fk, 1 ≤ k ≤ g

JkM
−1Mq̈ + JkM

−1(f⊥ + bc) = JkM
−1JTk|k−1∗︸ ︷︷ ︸

Λ−1
k|k−1∗

fk

+JkM
−1

g∑
i6=k

JTi|i−1∗fi +
���

���
�:0

JkM
−1NT

g∗τ0

Λk|k−1∗(ẍk + bk) + Λk|k−1∗JkM
−1(f⊥ + bc) = fk

+Λk|k−1∗JkM
−1

k−1∑
i=1

JTi|i−1∗fi

fk = Λk|k−1∗(ẍk + bk) + J̄Tk|k−1∗(f⊥ + bc − τk−1∗)

(32)

where τk−1∗ is the contribution of the higher priority tasks.
Note that the summation term, which represents the force
contribution of each task, stops at index k−1 (not g) because
all lower priority tasks (i > k) will yield zero interference,
complying with our requirement. The same applies to the null
space term JkM

−1NT
g∗τ0 = 0. It can be shown that the null

space of task k, subject to the higher priority tasks, is defined
in a similar manner to the single task case.

NT
k∗ = NT

k−1∗(I − JTk J̄
′T
k|k−1∗) = (I − JTk|k−1∗J̄

T
k|k−1∗)N

T
k−1∗

J̄
′T
k|k−1∗ = Λk|k−1∗JkM

−1NT
k−1∗

(33)

F. Implementation

Previously (Subsection II-C) we decoupled the motion and
constraint forces. For the rest of this study, we will focus on
motion-based control schemes.

By working in task space, the input to the controller is a
set of desired task goals. For a given set of goals, we can
compute the task forces and map them to joint space forces
through Eq. (31). The iteration starts with the higher priority
task and propagates through the task priority graph G, that is
a priority ordered set (Algorithm 1) [13].

G. Task Space Dynamic Inverse Kinematics

There are a couple of ways to perform IK given a set of
experimental recordings. The first is to use an optimization-
based approach that minimizes an objective function. On the
other hand, dynamics (Eq. (23)) can be utilized by computing a
set of joint space forces that drive the model, which is subse-
quently integrated numerically. Optimization-based solutions
can achieve better tracking in terms of the Root Mean Square
(RMS) marker error. In contrast, the dynamic solutions can
take advantage of the structure of the model, e.g. by addressing
different types of constraints that are commonly handled at a
dynamic level.
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Fig. 1: Architecture diagram of the TSDIK method. The input to the system is a set of marker trajectories or other types of
measurements (e.g. Inertial Measurement Unit (IMU)). Markers are grouped based on their attachment location on the body and
a set of task goals is extracted from the recorded motion. A tracking scheme is used to track the task goals (e.g. Proportional
Derivative (PD) controller) and the desired goals are transformed into generalized forces by the ITSC. Finally, these forces
actuate the model in a FD manner. The product of this algorithm is both a set of task goals and the simulated motion that
reproduces the observations.

Algorithm 1 Computes the driving torques for a set of goals.

Input: ẍt,∀t ∈ G
Output: τ, τc

1: Choose M, bc, Nc model
2: N0∗ = Nc
3: τ0 = 0
4: for i ∈ G do
5: Compute fi from Eq. (32)
6: τi = τi−1∗ + JTi|i−1∗fi
7: Update Ni∗ from Eq. (33)
8: end for
9: τ = τg +NT

g∗τ0
10: Compute τc from equations (12) and (15) or (20)
11: return τ, τc

Recently, different types of MoCap systems have been
employed to record the movement of the subject. In this
derivation, it is possible to combine marker-based and IMU
(Inertial Measurement Unit) based MoCap systems to record
the spatial properties of body segments. The following im-
plementation, inspired by the approach suggested by [14]
(Direct Marker Control (DMC)), is enriched with some ma-
jor improvements/modifications in order to accommodate for
applications on more demanding movements (e.g. walking).

As presented in Fig. 1, the input is the trajectory of the
markers and/or spatial motion of the body segments in the
case of an IMU based system. The task decomposition and
generation module is responsible for constructing the desired
task goals based on one or more marker per body, or to
prescribe the movement of the segment if IMU measurements
are available. The desired tasks are used by the ITSC to
compute the generalized forces that actuate the model. For
a given actuation, the plant is numerically integrated and
advanced in time. The resulting simulated tasks are compared
with the measured ones and corrections are performed by the
tracking controller.

In case of a marker based system, the marker trajectories are
recorded and the corresponding virtual markers are attached
to the body segments, each containing zero or more markers.
We denote the position of the markers attached to a body b

and measured in the ground frame G at time t as
Gpb: (t) = {Gpb1(t), . . . ,G pbmb

(t)}
Gpbi (t) ∈ <3

(34)

In order to generate a set of task goals, the markers are
grouped per body segment and a tracking task is assigned.
Some segments don’t contain any marker, while others can
have less than three markers. To define the 6D motion of
a segment in space, at least three markers per body are
required. Fortunately, since some segments are constrained
with respect to their position in the body tree kinematic chain,
their configuration can be determined even with less markers.

If a body contains a single marker, then a position type
task is assigned (x(t) = {p(t)} ∈ <3). If a segment can only
rotate relative to its parent body, then an orientation type task is
assigned (x(t) = {θ(t)} ∈ <3). When a segment is permitted
to move freely (e.g. the floating base of the model) a spatial
type task is assigned (x(t) = {θ(t), p(t)} ∈ <6). As shown in
Fig. 2, which depicts two frames of gait, a 6D spatial task is
assigned to the pelvis and a 3D orientation task is assigned to
the femur and the tibia.

Regardless of the task type, the final goal is a desired
acceleration that the task should achieve. In order to compute
the desired goal a PD tracking controller is adopted

a(t) = ad(t) + kp(xd(t)− x(t)) + kd(vd(t)− v(t)) (35)

where a(t) is the task goal acceleration, xd(t), vd(t), ad(t) are
the desired position, velocity and acceleration that are derived
from the experimental marker trajectories, x(t), v(t) are the
current position and velocity of the task and kp, kd are the
tracking gains.

In order to track the goal effectively, the first (Gvbi (t)) and
the second (Gabi (t)) derivatives of the marker position have
to be evaluated (e.g. by fitting smooth splines to the recorded
trajectories).

Estimating the orientation of the segment and the higher
order derivatives from the marker positions requires a different
strategy. We seek to find a transition, transformation matrix
that maps a set of marker positions on frame n to a set of
positions on the next frame (n + 1). The optimal rotation
and translation between the corresponding 3D points can be
obtained from the Kabsch algorithm [40] (Algorithm S-2).
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Fig. 2: This figure presents two frames of recorded gait.
An ellipse is placed to denote the grouping of the markers,
where the color defines the type of the task assigned to
each group as an example. The transition, transformation
(T (n, n + 1)) between the two frames for the foot segment
has been annotated.

By precomputing the transition, transformation matrix
GT b(n, n + 1) and for a given initial pose GT b(0, 1), the
transformation of frame k with respect to the ground frame
can be evaluated.

GT b(k) = GT b(k − 1, k) · ... · GT b(0, 1) (36)

Unfortunately, the quantities of interest are the angular
velocity Gωb(t) and angular acceleration Gαb(t) of the frame.
Quaternion representation is used, so that interpolation be-
tween consequent frames is more natural. For the interpolation
a smooth curve should be always situated on the unit quater-
nion hypersphere ||q|| = 1, q ∈ <4 (here q is a quaternion).
By constructing quaternion splines that are twice differentiable
in C2 [41], the higher order derivatives of the orientation
q(t), q̇(t), q̈(t) can be computed. Then the physical quantities
of the rotational motion are deduced

ω = 2q̇q∗ (37)

α = 2(q̈q∗ − (q̇q∗)2) (38)

where q∗ = q0 − q1î− q2ĵ − q3k̂ is the quaternion conjugate.
In Eq. (38) the power property of a quaternion is used

to compute the term (q̇q∗)2 (quaternions are closed over the
product operator)

q = |q|eûθ

qp = |q|p(eûθ)p = |q|p(cos(pθ) + ûsin(pθ))
(39)

where û depicts a direction. After the task goals are precom-
puted, the ITSC (Subsection II-F) can be used to derive the
necessary joint space.

H. Task Space Computed Muscle Control

As illustrated in Fig. 3 the algorithm can handle a set of
desired task goals. These goals may originate from a high
level controller that encapsulates the logic of producing a
synchronous movement. Alternatively, the goals computed by
TSDIK can be used as input. The output of the algorithm
consists of the observable variables, such as factors related to
the tasks (task Jacobian, task compliant inertia mass matrix,
task forces, etc.), joint space forces, muscle forces, excitation
patterns and the simulated movement. The flow begins with the
task goals, which are compared against the actual (simulated)
goals and a corrective action is issued to the ITSC. In turn,
the ITSC computes the joint space forces, accounting for
any prioritization scheme between the individual tasks. These
forces are projected onto muscle excitation patterns through
an optimization procedure (Subsection II-I). Finally, the plant
is numerically integrated and advanced in time for the given
command and initial states.

In contrast to the proposed algorithm, the CMC [16] accepts
joint trajectories. The controller computes a set of muscle
excitation patterns through Static Optimization (SO) [42] and
drives the FD plant simulating a movement (joint space).
In turn, the simulated trajectories are compared against the
desired ones by a PD control law. In a very similar manner,
instead of tracking trajectories, the TSCMC algorithm tracks
task goals.

I. Muscle Effort Assessment

Typically, more than one muscles span a single DoF. Thus a
unique mapping between muscle and joint space forces cannot
be strictly defined. Formally, the relationship is given by

τ = Rmfm (40)

where Rm ∈ <n×m is the moment arm fat matrix [43], [44],
that maps from muscle space to joint space and fm ∈ <m is
a vector of muscle forces with m the number of muscles. In
terms of solution existence, m > n, thus there is an infinite
number of solutions of muscle forces that can produce the
required generalized forces

fm = R+
mτ + (I −R+

mRm)fo (41)

where f0 ∈ <m is an arbitrary force projected in the null
space of Rm. In this study, we address the muscle redundancy
(dynamic redundancy) problem through optimization.

The Hill type muscle model has been widely adopted by the
biomechanics community [20], [21], [45] mainly for efficient
simulation and reliable parameter estimation. The muscle force
is governed by its activation and contraction dynamics

ȧm = g(um, am; τa, τd)

l̇mt = h(q; θ0)

fm = d(am, lmt, l̇mt; θ1)

(42)

where am is the muscle activation, which is a function of
the excitation um, τa, τd are the activation and deactivation
time constants respectively. The musculotendon length lmt
and velocity l̇mt are related to the generalized coordinates (q),
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Fig. 3: Architecture diagram of the TSCMC. The input can be the task goals originating from the TSDIK or a set of goals from
a different objective controller. The goals are tracked by an internal tracking scheme (e.g. PD controller), while the desired
goals are used by ITSC to derive the required generalized forces. These forces are then mapped to muscle excitation patterns
through an optimization procedure and the model is numerically integrated for the given muscle activation patterns.

while θ0 stands for a multitude of parameters (e.g. pennation
angle, maximum velocity and muscle routing). The muscle
force fm depends on these quantities, whereas θ1 denotes
another set of parameters such as maximum isometric force
(the capacity of a muscle to produce force).

For a given set of desired goals that are produced by the
ITSC, the muscles must equilibrate the required generalized
forces (τ ). Static optimization is a common technique for
solving the muscle redundancy problem [24]. Unfortunately,
models are imperfect and common modeling choices may
introduce simulation instabilities. For a stable simulation the
equality τ = Rmfm(a) should hold true, but the muscles may
not be actually able to produce the right amount of force,
due to low strengths (maximum isometric force parameter).
To avoid problems of this kind, a set of reserve actuators
is introduced to compensate for this defect. Furthermore,
their contribution is adjusted using a penalty factor, so as to
minimize their use with respect to muscles

min
a(j),β(j)

1

m

m∑
i

a2
i (j) + γ

1

n

n∑
i

(
βi(j)

βmaxi

)2

subject to τ(j) = Rmfm(a(j)) + β(j),

0 ≤ ai(j) ≤ 1, ∀i ∈ [1, . . . ,m]

−βmaxi ≤ βi(j) ≤ βmaxi , ∀i ∈ [1, . . . , n]

(43)

where β ∈ <n are the complementary residual activations, γ
is the penalty constant and βmaxi is the maximum allowed
value for the residual force i. Although the introduction of
residuals does not have a direct physiological counterpart, their
use allows for investigation of model weaknesses. The process
of choosing γ and βmax is as follows: 1) assign high values
to βmax, γ = 1 and perform a first pass simulation, 2) update
βmaxi = max(βi(t = start : end))∀i and 3) experimentally
sample γ ∈ [0,∞) in order to assess whether residual forces
are further reduced. We adopt an interior point method [46]
with constraint and convergence tolerance of 10−5. A final
note is that the dynamic redundancy is handled in a forward
manner [26] (e.g. the muscles are activated and the developed
forces are compared against the required generalized forces).

III. RESULTS

In Subsection III-A we present a comparison between the
two alternative constrained models (A and B) derived in
Subsection II-C. More specifically, we show that the choice

Fig. 4: This figure depicts the time instances of a customly
planned trajectory. The upper extremity model [47] is com-
prised of seven DoFs and forty seven muscles. The model
defines a set of constraint equations that regulate the movement
of the shoulder complex.

of the constrained model can alter the required generalized
forces without altering the motion, in the sense that the
constraints can be used to reduce the command applied by the
controller. Moreover, we demonstrate how to plan a movement
behavior in task space and perform assessments without any
experimental measurements.

For this particular experiment the upper extremity model
[47] is used (Fig. 4). It consists of seven DoFs, including
shoulder rotation and elevation (thoracohumeral angle), wrist
flexion, wrist deviation, elbow flexion, elevation plane of the
shoulder and forearm rotation. There are forty seven muscles
(Schutte muscle model [48]) spanning these joints. More
importantly, it defines the movement of the shoulder complex
through a set of constraints, making it a good candidate to
evaluate the constrained models.

Next, we demonstrate that the two presented algorithms can
be employed to solve the ID problem. A complex behavior of
a gait movement along with the ground reaction forces record-
ings is used as a benchmark. For the IK problem, the marker
error metric is adopted as a baseline for comparison, where
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we show that despite the nature of the proposed algorithm
(TSDIK), its tracking error is relatively low compared to the
optimization-based approach (Subsection III-B). Finally, we
estimate the required muscle patterns through TSCMC and
compare the results against CMC algorithm (Subsection III-C).

The gait2354 model (Fig. 2 shown without muscles), which
has twenty three DoFs and fifty four muscles (Thelen muscle
model [20]), is used for the second experiment. The model
features lower extremity joint definitions adapted from [49],
low back joint and anthropometry from [50] and a planar knee
model from [51].

A. Comparison of the Constrained Models

We define the following trajectory to demonstrate the task
space planning mechanism

θ = πt, r = Asin(2θ)

x(t) = x(0), y(t) = y(0) + rsin(θ), z(t) = z(0) + rcos(θ)
(44)

which generates the 3D movement presented in Fig. 4. We can
assign a position task on the hand and prescribe the desired
trajectory following Eq. (44). The muscle excitation patterns
and other variables of interest can be assessed utilizing the
TSCMC algorithm. Here we compare the two constrained
models from equations (16) and (19) with respect to the
simulated generalized forces.

The simulated trajectory and generalized coordinates are
shown in Fig. 5 and Fig. S-8, respectively. It is evident
by these figures that the same movement is generated by
the two models, both in terms of goal trajectory and model
coordinates, something that is in good agreement with the
motion-constraint separation principle (Subsection II-C).

It is worth noting that the two models define different
projection operators, meaning they issue different joint space
forces despite resulting in identical movement behaviors. From
the derivation, the total generalized forces is the sum of the
motion related component (task and null space forces Eq.
(31)). Fig. 6 depicts the magnitude (||τ ||) of each component
for the two alternative models. Model-A requires larger motion
forces compared to Model-B, although Model-A generates
smaller constraint forces. This suggests that Model-B utilized
the constraint forces more rigorously, minimizing the required
motion forces (τT τ ), while Model-A minimizes the inertia
weighted command (τTM−1τ ) [34]. Conclusively, the inverse
model can impact the required generalized forces for tracking
a movement behavior and consequently the muscle effort.

The fact that the two models produce different forces, but
generate identical movement implies that this particular model
is overconstrained. Let’s assume that a model contains n
unconstrained DoFs, c constraint algebraic equations and na
active DoFs. Then the actual DoFs of the constrained model
are of dimension nc = n− c. We can distinguish three cases
([34]):

1) nc > na, the system is underactuated. There is at most
one solution to the ID problem.

2) nc = na, the system is fully actuated. There is a unique
solution.

3) nc < na, the system is overconstrained. There are an
infinite number of solutions (τ ) that will achieve the
desired goals (this is the case here).

time (s)

0 0.5 1 1.5 2

p
o

s
it
io

n
 (

m
)

0

0.1

0.2

0.3

0.4

position_x

time (s)

0 0.5 1 1.5 2

p
o

s
it
io

n
 (

m
)

0

0.1

0.2

0.3

0.4

position_y

time (s)

0 0.5 1 1.5 2

p
o

s
it
io

n
 (

m
)

0

0.1

0.2

0.3

0.4

position_z

y (m)

0.05 0.1 0.15 0.2

z
 (

m
)

0.25

0.3

0.35

0.4
y-z

Fig. 5: The simulated task trajectory of the upper limb model
for the finger point task. The y− z plane defines the resulting
pattern. The trajectories of Model-A (Eq. (16)) are drawn
with red dotted lines, while the blue dashed lines denote
the trajectories of Model-B (Eq. (19)). Both models result in
identical motion.
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Fig. 6: The computed forces that drive the model to perform
the required movement. These forces are decoupled into mo-
tion related forces (task and null space forces) and constraint
forces. A comparison of the magnitude values for the two
models is presented. The trajectories of Model-A (Eq. (16))
are drawn with red dotted lines, while the blue dashed lines
denote the trajectories of Model-B (Eq. (19)). Model-A results
in larger motion forces command compared to Model-B, while
Model-B results in larger constraint forces than Model-A.

B. Inverse Kinematics on Gait
The evaluation of the IK algorithm is presented for a single

gait cycle. A comparison between the available optimization-
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based algorithm (OpenSim) and the TSDIK is shown in
Fig. 7, in terms of the total marker RMS, min and max
error. In general, the optimization-based algorithm behaves
better in terms of tracking. Despite the nature of the presented
algorithm (TSDIK), its tracking error is relatively low and
acceptable (< 2cm total RMS).

Fig. 7: Comparison of the total RMS, min and max error
between the TSDIK and the optimization-based IK algorithms
for a single gait cycle. The shaded area encloses the min and
max marker error as its upper and lower bound respectively.

As far as simulation performance is concerned our approach
is limited by its dynamic nature. More specifically, the explicit
numerical integration scheme and the large accelerations re-
quired to track the movement takes up about 95% of the total
execution time, as indicated by profiling (Subsection S-F).
Implicit integration schemes are not available in the current
version of OpenSim, nevertheless it has been shown that they
can improve the execution time dramatically [52].

In the case of the optimization-based algorithms the weight
of each error term contributed by each marker can be con-
trolled separately, while the proposed algorithm relies on
the task prioritization. The priority graph used for the gait
movement follows the tree structure of the multibody system
(high priority for the proximal segments and lower priority for
the distal). It can be argued that this kind of priority structure
is dependent on the type of movement that is analyzed, as
well as the presence of uncertainty in the measurements. For
example, in gait related movements the floating base should
have a higher priority, as was observed during simulation.
Otherwise, in the case of a reach movement the hand tracking
should be prioritized higher than the more proximal segments.
Therefore, the user has to decide on the priority graph with
respect to the movement under study.

C. Inverse Muscle Driven Simulation on Gait

A comparison of the TSCMC with the CMC method for the
same gait movement was performed. The task goals generated
by the TSDIK algorithm were supplied to the TSCMC method
and similarly the output movement of the optimization-based
IK was used by CMC. Fig. S-9 depicts the computed controls

of the two algorithms. The estimated muscle patterns show
very good agreement between the two methods, despite their
different internal implementations. The execution time per-
formance of the two algorithms was approximately the same
(differences 0.006%± 0.001%).

The residual forces/torques as computed by the two algo-
rithms are shown in Fig. S-10. The goal is to keep these
residual as low as possible. Major differences are present in
the residual forces, where for some coordinates the proposed
algorithm performs better and vice versa. The Residual Reduc-
tion Algorithm (RRA) [17], [53] method has not been applied
to reduce the residuals prior to the simulation, since we didn’t
want to bias the comparison between the two methods. We can
conclude that the proposed method is generally equivalent to
CMC in terms of assessing the muscle effort distribution.

IV. DISCUSSION

Although joint space representation is the de facto standard
for formulating the underlying EoM and dynamics simulation
methods, it may be suboptimal for a certain range of problems.
Common movement behaviors can be described through a
well defined set of interrelating task goals, which is especially
evident in the process of planning a movement in the task
space. Projecting the EoM in the domain of the task provides
a straightforward mechanism to translate a movement behavior
to the biomechanical counterpart. The underlying complexity
of mapping the abstract task primitive to a movement is
effectively handled by the underlying controllers. This work
mainly focuses on motion primitive tasks, without necessarily
restricting applications to those alone [39]. Extension to other
types of tasks can shed some light towards understanding
the complex interactions between the nervous system and the
execution of multiple task goals.

The underlying controller (ITSC) was designed to han-
dle constrained multibody systems, facilitating the study of
broader types of problems. It is straightforward to verify that
constrained task space projection is coordinate invariant, in
the sense that the provided algorithms can address systems that
use absolute coordinates [12]. This is true since the underlying
projection operators are formed from the fundamental system
quantities (e.g. the inertial mass matrix, the constraint and
task Jacobian) that can be derived under any coordinate
system. Another virtue of constraint modeling is that the
presented controllers can address systems of closed kinematic
chains, since they are commonly modeled by constraints as
a consequence of the virtual kinematic chain principle [54],
[55]. It is important to note that closed kinematic chains
are found to be the rule in many biological systems rather
than the exception [56]. As constraints can be used to model
biological systems more closely, results demonstrate that they
can alter the required muscle forces. Consequently, the effect
of constraint modeling on the assessment of muscle forces
remains a subject open to study.

As a proof of concept we showed that task-based schemes
can be used to solve the IK problem. Experimental evaluation
indicates an acceptably low tracking error for a complex gait
movement. The execution time of the algorithm is inferior
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as compared to the optimization-based approach, due to a
combination of an explicit numerical integration scheme and
the high acceleration goals required to track the movement.
The authors of [52] suggested that implicit numerical inte-
gration can dramatically improve the execution time of the
FD methods. Dynamics-based IK approaches can be of great
interest, since constraints are primarily resolved at a dynamic
level as opposed to kinematic methods, they can be paired
with temporal filtering techniques for reducing marker error
artifacts ([57]) and allow for a combination of different types
of input (e.g. IMU and marker recordings).

We showed that the TSCMC algorithm is able to establish
a bilateral link between the task(s) goals and muscle exci-
tation patterns. Moreover, we compared its performance to
the CMC algorithm and demonstrated negligible differences.
The algorithm can be used in combination with a high level
controller that generates a set of abstract task goals in order to
perform simulation prior to any experimental data collection.
This is of great importance, since simulations can be arranged
effortlessly and intuitively. Of equal importance is the fact that
our method allows to deduce important variables that can be
used to improve the underlying model and the experimental
setup a priori. Conclusively, it offers a novel, abstract point of
view and control, which can prove to be advantageous towards
further integration with high level models of the precommand
level [1], [58].

V. CONCLUSION

We presented a set of algorithms for solving the inverse
and forward dynamics problem in task space for constrained
musculoskeletal systems. Task space projection provides an
alternative representation over joint space coordinates, leading
to more intuitive and straightforward motion action planning.
The evaluation of the proposed algorithms shows good overall
performance compared to the state of the art methods. Detailed
derivations were presented in order to provide the reader
with the appropriate background so as to understand the
implications of constraint modeling and task space projection.
After highlighting some important implications and limitations
of this work, we conclude that the task-based approach could
be adopted in the design of simulations related to the study
of constrained musculoskeletal systems, especially towards
higher level integration with brain models.
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SUPPLEMENTARY MATERIAL

A. SimTK Project

The source code along with any related material for this publication can be found at the following SimTK project:
https://simtk.org/projects/task-space.

B. Kabsch Algorithm

Algorithm S-2 Kabsch algorithm for finding the optimal rotation and translation between two corresponding 3D point clouds.

Input: Gpb: (n),G pb: (n+ 1)
Output: GT b(n, n+ 1) = {R, t}, R ∈ <3×3, t ∈ <3

1: Find centroid of each point set cA, cB
c = 1

N

∑N
i=1

Gpbi
2: Compute the cross covariance matrix
H =

∑N
i=1(Gpbi (n)− cA)(Gpbi (n+ 1)− cB)T

3: Perform singular value decomposition on H
[U, S, V ] = svd(H)

4: Compute the rotation matrix
R = V UT

Handle reflexion case
5: if (def(R) < 0) then
6: multiply 3rd column of R by -1
7: end if
8: Find the translation
t = −R · cA + cB

9: return {R, t}

C. Results
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Fig. S-8: The simulated generalized coordinates (q) of the upper limb model as a result for the defined custom trajectory.
The trajectories of Model-A (Eq. (16)) are drawn with red dotted lines, while the blue dashed lines denote the trajectories of
Model-B (Eq. (19)). Both models result in identical motion (residuals are zero).
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Fig. S-9: This figure presents the muscles excitations for a single gait cycle in comparison between CMC (red solid line) method
and the proposed TSCMC (blue dashed line). There are some minor differences, as the two methods have their implementation
specifics, but in general they agree.
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Fig. S-10: This figure presents the residual forces/torques for a single gait cycle in comparison between CMC (red solid line)
method and the proposed TSCMC (blue dashed line).
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D. Absolute (Cartesian) Coordinates

(a) The unconstrained model is composed of two bodies and two
pin joints (1 and 2). A pin joint permits a rotational movement
around an axis (in this case is the z-axis).

(b) The free body model is composed of two bodies that are
permitted to move freely with respect to the ground frame
(absolute coordinates are used). To enforce similar functional
behavior with respect to the model on the left, the bodies are
further constrained at the joint level by a point constraint and
two constant angle constraints (for each joint).

Fig. S-11: Left: an unconstrained model (generalized coordinates) with two DoFs. Right: constrained model that uses absolute
coordinates twelve DoFs and ten constraint algebraic equations.
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Fig. S-12: Body kinematics analysis of the two DoF (generalized coordinates) (blue) and the model that uses absolute coordinate
(red). XY Z quantities correspond to the translational components, while Oxyz quantities represent the orientation of the bodies.
The task goal is a sinusoidal movement of the tip of the second body in the y direction. The two models produce identical
movements (residuals are zero).
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In order to evaluate whether this framework can be used to simulate models that use absolute (Cartesian) coordinates, we
introduce two identically functional models Fig. S-11. The model on the left (Fig. S-11a) consists of two bodies and two DoFs
(generalized coordinates are used). The first and second bodies are permitted to rotate around the z-axis by a pin joint (one
rotation DoF). The model on the right (Fig. S-11b) treats each body as a free body that is permitted to move freely with respect
to the ground frame. Furthermore, the first body is constrained to the ground by a point constraint, which restricts relative
translation of a point on the two bodies (three algebraic equations), and two constant angle constraints for restricting rotation
around x and y axis (two algebraic equations). Similarly, the second body is constrained with respect to the first body. This
model contains twelve DoFs and ten constraint algebraic equations. In terms of permissible movements behaves identically to
the first model.

The goal is to use the task driven controller (ITSC) to drive the tip of second body in performing a sinusoidal movement
in the y direction

xd(t) = [xx(0), xy(0) +Asin(2πt), xz(0)]T (S-45)

where xd(t) is the desired position at time t and A = 0.2m.
Results show that the ITSC is able to handle systems that use absolute coordinates. Fig. S-12 demonstrates that the two

models (Fig. S-11) produce identical movement. We conclude that the presented task space controller is coordinate invariant
as long as the fundamental quantities of the model (e.g. inertia mass matrix, Coriolis and centrifugal forces, gravity forces,
constraint Jacobian, body Jacobian, etc.) are available.

E. Simulation of Closed Kinematic Chains

Fig. S-13: A model of a closed kinematic chain topology. The first body (left) is permitted to rotate around the z-axis with
respect to the ground frame. The second body (right) is connected to the ground by an offset of the length of the third body
(top) and it is also permitted to rotate around the z-axis. The third body is connected with the first and second bodies by two
pin joints.

Closed kinematic chains are commonly handled [55] by cutting the kinematic chain and introducing a constraint that connects
the two (the virtual kinematic chain principle [54]). When generalized coordinates are used the closed chain can be separated
by cutting a body instead of a joint, so that the original coordinates of the model are preserved. When absolute coordinates
are used the closed chain can be segmented at the joint level. By doing so instead of having a closed chain two separate open
chains are constructed, that are appropriately constrained. As a consequence, a controller that accounts for the constraint forces
can handle closed kinematic chains.

As presented in Fig. S-13 the model consist of three bodies that are permitted to rotate around the z-axis. The top most body
is connected by two joints with the two supporting bodies (left, right). The underlying multibody dynamics engine (Simbody)
implicitly transforms closed kinematic chains by cutting a body rather than a joint. Mass properties are divided between the
two halves. Then a weld constraint (six algebraic equations) is used to reattach the two halves.

To prove that the proposed controller (ITSC) is capable of controlling this system an orientation task is assigned to the
leftmost body (body 1)

θd(t) = [θx(0), θy(0), θz(0) +
π

2
sin(2πt)]T (S-46)

where θd(t) is the desired orientation at time t. Fig. S-14 depicts the simulated body orientations, which validate the correct
behavior of the controller. Therefore the proposed controller is capable of addressing topologies that contain closed kinematic
chains.
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Fig. S-14: Body kinematics analysis of the two models Model-A (blue), Model-B (red) on a closed kinematic chain model.
XY Z quantities correspond to the translational components, while Oxyz quantities represent the orientation of the bodies. The
goal is to rotate body 1 along the z-axis. Since body 2 is connected to body 1 by body 3 (top) their orientation is identical.
Furthermore, because of the structure we expect that body 3 do not rotate at all for this particular experiment. The two models
produce identical movements (residuals are zero).

F. Algorithm Performance Analysis

The following analysis was performed on Windows 10, Intel Core i7-4771, 3.5GHz, 8GB RAM, SanDisk SSD disk device.
Table S-1 presents the execution time of the proposed TSDIK and the optimization-based IK algorithms. The latter clearly
outperforms the dynamics-based algorithm. We investigated the cause of this difference and found that 95% of the execution
time (Fig. S-15) is spent on integrating the system. Good tracking requires large task accelerations that consequently enforce
the integrator in taking smaller time steps. To validate this we changed the PD control law of the tracking controller

a(t) = ad(t) + 200(xd(t)− x(t)) + 20(ud(t)− u(t)) (S-47)

a(t) = 0 · ad(t) + 200(xd(t)− x(t)) + 20(ud(t)− u(t)) (S-48)

In the first experiment we used all available information (Table S-1, TSDIK-1) and for the second we ignored the acceleration
term (Table S-1, TSDIK-2). The tracking error of the second experiment was worse (max RMS 0.046m compared to 0.005m),
since the acceleration information was not used (similar remarks, e.g. between velocity and acceleration-based approaches
were mentioned in [59]). The authors of [52] claim that implicit numerical integration can improve the execution time.
Unfortunately, our implementation platform (OpenSim/Simbody) does not provide support for implicit integration. Please note
that the proposed algorithms have not been optimized for speed, where the interior point method [46] used in OpenSim/Simbody
is well implemented and properly optimized for performance.

TABLE S-1: Execution time of the IK and TSDIK methods as a function of the number of bodies. TSDIK-1 uses the acceleration
information in the PD controller, while TSDIK-2 does not.

Bodies (#) IK (sec.) TSDIK-1 (sec.) TSDIK-2 (sec.)

1 0.013 0.57 0.22
2 0.023 1.14 0.53
3 0.041 1.70 0.62
4 0.069 3.10 1.14
12 0.24 15.744 5.10
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Comparison between CMC and TSCMC did not show any significant differences in the execution time. This was expected
as the two approaches are very similar, e.g. both use tracking controllers in combination with an optimization scheme in a
FD manner. Furthermore, if ideal muscles are used the execution times reduces dramatically (from approximately 50min to
3min). This suggests that muscle dynamics make the system stiff. On the other hand SO is significantly faster compared to
both algorithms [42], since it is a static method that does not use numerical integration.

Fig. S-15: Profiling results of TSDIK algorithm. Results show that 95% of the execution time is spent on integrating the
system.

G. Evaluation of Motion and Reaction Forces

For evaluating the motion and reaction forces, we will use the previous two body model (Fig. S-11), so that the results can
be easily interpreted. We will compare the motion forces of Model-A and Model-B against the generalized forces computed
by the ID algorithm (ID). In addition, we will compare the Lagrange multipliers computed from the two models against the
joint reaction forces produced by the Joint Reaction Analysis (JRA) (OpenSim). The same sinusoidal movement (Eq. (S-45))
will be used as a benchmark.

Please note that the ID algorithm of OpenSim is not designed to handle constrained dynamics. The reason is that a particular,
recorded movement may not satisfy the constraints (e.g. φ(q) 6= 0). In order to compare the validity of the proposed controllers
the unconstrained model (Fig. S-11a, with two DoFs) was used in combination with the ID algorithm, while the functionally
identical constrained model (Fig. S-11b, with twelve DoFs) was used by the task space controllers (Model-A and Model-B).

Furthermore, a selection matrix has been introduced so that the two models (Fig. S-11) use the same coordinates for actuation.
Note that the free body model (Fig. S-11b) contains twelve DoFs that can be used for actuation compared to the two DoFs of
the unconstrained model (Fig. S-11a). The active coordinates (actuators) of the model can be selected as follows

τ = Bτ (S-49)

where B ∈ <n×n is a diagonal matrix containing “1” for the coordinates that are used for actuation (active coordinates) and
“0” otherwise (passive coordinates). The incorporation of the selection matrix for handling passive coordinates requires further
adaptation of the control law that was used in this work. After some derivations (please refer to [35] for more details), it can
be shown that in the presence of passive coordinates the control law has the following form

τ = (I −NT
g∗[(I −B)NT

g∗]
+)(

g∑
i=1

JTi|i−1∗fi +NT
g∗τ0) (S-50)

A comparison between the motion forces is shown in Fig. S-16, with a good agreement against the ID algorithm. Please note
the restriction imposed by the selection matrix on the passive coordinates. Fig. S-17 presents a comparison of the joint reaction
forces, that are applied at the joints as measured in the ground frame, with a good agreement between Model-A Model-B and
JRA. We didn’t observe similarities between the motion and reaction forces in the case of full actuation (B = I), despite that
the generated motion is the same.
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Fig. S-16: Comparison of the motion forces required by Model-A (blue), Model-B (red) and ID (green) for the model presented
(Subsection S-D). Each row depicts the 6D spacial forces ([τx, τy, τz, fx, fy, fz]T ) applied to a body as required to track the
specified motion. The third column compares the torques (z-axis) generated by the two models with the corresponding torques
computed by the ID algorithm. Note that ID was applied on the unconstrained model since OpenSim ignores constraint forces
in its computation.

A final note on the role of the selection matrix and the differences between Model-A and Model-B. Let’s assume that
a model contains n unconstrained DoFs, c constraint algebraic equations and p passive DoFs. Then the actual DoFs of the
constrained model are of dimension nc = n− c, while the active DoFs are of dimension na = n− p. We can distinguish three
cases [34]:

1) nc > na, the system is underactuated. There is at most one solution to the ID problem.
2) nc = na, the system is fully actuated. There is a unique solution.
3) nc < na, the system is overconstrained. There are an infinite number of solutions (τ ) that can achieve the desired

movement behavior.
Following this, we conclude that both controllers (Model-A and Model-B) generate identical movement and require the same

motion and reaction forces when the system is fully actuated. If the system is overconstrained, then the two controllers will
produce different motion and constraint forces, where the former minimizes the inertial weighted command τM−1τ , while the
latter minimizes the required command τT τ [34].
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Fig. S-17: Comparison of the joint reaction forces computed by Model-A (blue), Model-B (red) and JRA (green) the model
presented (Subsection S-D).


