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ABSTRACT Asthma and chronic obstructive pulmonary disease are obstructive respiratory diseases that
affect negatively the quality of life for patients and their families worldwide. Despite the significance of these
diseases, their management has been considered suboptimal around the world, whereas the improper inhaler
use has been underlined as one of the main causes. Toward this direction, this paper presents an integrated
mHealth system that provides real-time personalized feedback to patients for assessing the proper medication
use and educating them and helping them avoid common mistakes. The identification of proper inhaler use
is based on conventional and data-driven feature extraction and classification methods employed for the
identification of four events (inhaler actuation, inhalation, exhalation, and background noise). The proposed
scheme reaches 98% classification accuracy significantly outperforming recent and relevant state-of-the-art
approaches. Finally, intuitive feedback interfaces were implemented in the form of a virtual guidance agent
integrated with the mobile application, which can help patients follow their action plan and assess their
inhaler technique in a more engaging manner. Extensive simulation studies, carried out using 12 subjects,
demonstrated the efficiency of the proposed approaches in both indoor and outdoor environments.

INDEX TERMS Asthma, COPD, mHealth, medication adherence, pMDI correct usage, Gaussian mixture

models, time-frequency analysis, classification.

I. INTRODUCTION

Asthma and COPD (Chronic Obstructive Pulmonary Dis-
ease) are chronic inflammatory conditions of the airways
affecting over 235 million people worldwide [1] with more
than 30 million living in Europe [2]. Inflammatory lung dis-
eases significantly deteriorate the quality of life for patients
and their families while affecting the overall efficiency of the
healthcare system [3]. The diversity of obstructive respiratory
diseases [4] reveals the importance for new and innovative
approaches that can help patients cope with their condition
and avoid dangerous exacerbation events [5].

The adherence of patients to their medication, both in terms
of following the doctor prescription and using the inhaler
device correctly, is one of the most important factors for the
effective management of their condition. Reduced medication
adherence has been already associated with asthma attack
incidents and patient hospitalizations [6]. It is important to

underline that 24% of asthma exacerbation and 60% of hospi-
talizations are related to poor medication adherence [7]. Fur-
thermore, a recent comprehensive review of modern inhaler
devices has underlined important monitoring features that are
expected to enhance the experience of patients with obstruc-
tive respiratory diseases and help them manage their con-
dition more effectively, indicating the assessment of inhaler
technique as one of the most promising fields for further
study [8]. Figure 1 demonstrates the correct usage of a pres-
surized Metered Dose Inhalers (pMDI) according to clini-
cal practice and forms the basis for the separation of the
four classes of events that are assessed in the current study,
namely: pMDI inhaler actuations, inhalation sounds, exhala-
tion sounds, and background/environmental sounds.

More specifically, proper inhaler use includes the follow-
ing steps [9]: a) Remove the cap b) Breathe out, away from
your inhaler ¢) Bring the inhaler to your mouth. Place the
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FIGURE 1. pMDI Usage described in [24]. 1) Shake the pMDI 2) Remove
the cap 3) Exhale 4) Place the pMDI inside your mouth 5) While inhaling
press the pMDI drug actuation button 6) Hold your breath for 10 seconds
and breath out.

inhaler in your mouth between your teeth and close your
mouth around it. d) Start to breathe in slowly. Press the top of
you inhaler once and keep breathing in slowly until you have
taken a full breath. ) Remove the inhaler from your mouth,
and hold your breath for about 10 seconds, then breathe out.
According to [10], 77.3% of patients performs at least one
step of the inhalation technique incorrectly.

Recently, there has been increasing interest from
researchers, system designers, and application develop-
ers on wearable and remote health monitoring approaches
[11]-[19]. Several of these works are related to personalized
management services for obstructive respiratory diseases
aiming to provide methodologies for medication adherence
monitoring. Specifically, these studies either focus on device
integrated solutions, using pressure activated switches [17],
[20], [21] or on ambient sound analysis approaches [18],
[19], [22]. Despite their inherent differences, both approaches
allow the detection of drug actuations, while the latter could
be also employed for identifying inhalation or exhalation
events.! Moreover, it is worth mentioning that none of the
studies achieves classification accuracy higher than 94%,
being incapable of differentiating accurately inhalation and
exhalation sounds. Finally and more importantly, none of
them provide an integrated application that can transform the
mobile phone into a personalized agent which will help the
patient to follow the prescribed action plan and use the inhaler
correctly.

In this paper, motivated by the aforementioned open issues,
we introduce a novel approach for identifying and evaluating
the proper use of pMDIs. The process exploits the high sepa-
rability of the Cepstrogram based features and achieves very
high classification accuracy, reaching 98.7%, with the utiliza-
tion of Gaussian Mixture Models. Additionally, the proposed
processing pipeline demonstrates higher noise robustness
that other approaches presented in this study. The dataset
consists of 495 audio recordings per class, generated using
12 subjects.

The exploitation of a relevance feedback scheme allows the
adaptation of the trained models to the user, aiming towards
the improvement of the classification accuracy on a patient-
specific basis.

LN preliminary version of this work has been reported in [23].
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Moreover, the aforementioned approaches are imple-
mented on a system comprised of a sensor device, a mobile
application, and a cloud server. The user has access to the
aforementioned functionalities and to statistics related to self-
management of asthma and COPD through a graphical user
interface (UI). The UI offers different information visualiza-
tion approaches so as to present the information in a user-
friendly manner in both patients and researchers.

A vocal oriented virtual guidance agent has been imple-
mented in order to allow the support of patients during the
use of the inhaler. Furthermore, the proposed guidance func-
tionalities have been integrated with electronic calendar and
action plan functionalities that allow the real time monitor-
ing of medication adherence of patients by their responsible
doctor and the easy change of the medication plan when con-
sidered necessary without the need for time and costly visits
and the requirement of subjective patient feedback related to
medication adherence.

The contributions of the proposed methods compared to
current state of the art approaches can be summarized in the
following points.

1) We propose a novel content based audio classification
approach for monitoring pMDI medication adherence,
which exploits the separability of the Cepstrogram fea-
tures using a GMM classifier.

2) We propose the utilization of a relevance feedback
scheme enabling the patient or the researcher to cor-
rect misclassified results and resubmit them allow-
ing the personalization of the trained model in a
user-oriented manner, thus increasing accuracy and
personalization.

3) We propose the enhancement of the inhaler usage expe-
rience through intuitive interfaces of patient guidance
including a virtual agent providing significant advice
to the users regarding their medication.

Finally, extensive simulation studies with indoor and outdoor
measurements, demonstrate that the proposed approach iden-
tifies correctly the four different events and the improved
management of the obstructive respiratory diseases by pro-
viding user-friendly tools to increase the awareness of the
effectiveness of medical treatment.

The rest of the paper is organized as follows: Section II pro-
vides an insight of the related work. The overall architecture
of the system, the information visualization and the patient
support interfaces are described in Section III. The proposed
methods feature extraction and classification methods are
analyzed in Section IV. The results and the system evaluation
is presented in Section V. Finally, findings and contributions
are concluded in Section VI.

Il. RELATED WORK

The efficient and effective management of asthma and COPD
is strongly connected with the patient adherence to the pre-
scribed action plan and the correct use of the inhaler. It is
worth mentioning that reduced adherence has been linked
with significant indicators of health degradation [6], e.g.,
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24% of asthma exacerbation and 60% of hospitalizations
are attributed to poor adherence [7]. Towards this direc-
tion, mHealth monitoring systems can provide personalized
guidance to patients allowing them to manage their own
health.

Within this scope, the recent related studies can be catego-
rized into the following groups: 1) works that focus on clinical
outcomes of suboptimal medication adherence, 2) studies that
present medication adherence monitoring devices, 3) energy-
efficiency approaches, that focus on minimizing the process-
ing and the power consumption either on the sensor or on the
mobile device side of the mHealth system, 4) feature extrac-
tion and classification based approaches, 5) virtual agents for
patient guidance.

A. CLINICAL OUTCOMES OF SUBOPTIMAL
MEDICATION ADHERENCE
This is a group of studies, that outlines the importance of
following a personalized action plan and a prescribed medi-
cation. D’ Arcy et al. [25] validated that the inhaler technique
errors have an impact on the clinical outcomes of asthma
management. Pritchard and Nicholls [26] emphasized in the
clinical terms of ‘“adherence”, “inhaler competence” and
“true adherence” and aimed to define how non-adherence to
medication affects patients.

Finally, Van Boven et al [27] focused on the optimization
of adherence and on the management of non-adherence in
Asthma.

B. MEDICATION ADHERENCE MONITORING DEVICES
Howard et al. [17] performed a review of electromechanical
and electronic devices based on pressure activated switches.
These approaches are capable of identifying inhaler actua-
tion, while they completely ignore actions related to inhala-
tions and exhalations. Furthermore, a recent comprehen-
sive review of inhaler-based monitoring devices has under-
lined the clinical importance of accurate assessment of
inhaler technique and provides a comparative analysis of
the very few research and commercial attempts towards this
direction [8].

C. ENERGY-EFFICIENCY MONITORING OF

MEDICATION ADHERENCE

Provided that the monitoring system is mostly based on wear-
able devices and smartphones, the energy efficiency of the
proposed processing, transmission and decision making tasks
is of crucial importance. Lalos et al. [28] investigated efficient
monitoring of pMDIs enhancing the benefits of conventional
compressed sensing (CS) schemes taking into account spe-
cific characteristics of the audio features, using as recovery
algorithm DG LASSO and integrated it with state of the art
classifiers allowing high levels of accuracy (98%). Moreover,
Oletic et al. [29] and Oletic and Bilas [30] employed CS
framework in the context of a medical system for monitoring
the respiratory system, consisting of a body-worn acoustic
sensor and a smart-phone.
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D. FEATURE EXTRACTION AND CLASSIFICATION
APPROACHES

Taylor et al. [18] used the continuous wavelet transform to
detect pMDI actuations, in order to perform a quantitative
assessment of patients inhaler technique, focusing only on
the detection of inhaler actuation sounds. Holmes et al. [19],
[22] employed mean power spectral density to detect inhaler
actuations, while for breath detection and for the separation
of exhalation and inhalation sounds they defined decision
rules employing an approach based on Mel-Frequency Cep-
stral Coefficients (MFCC) and zero-cross rate (ZCR). For
each sound category, they used a predefined threshold and
achieved a classification accuracy ranging from 91.7% for
inhalations up to 93.7% for exhalations. However, even if
the aforementioned studies aim towards audio content based
medication adherence, they achieve classification accuracy
up to 94% without taking into account noisy environments.

E. VIRTUAL GUIDANCE AGENTS

Fields of medical research, such as psychology, have devoted
significant efforts to the development of conversational
agents, that can support patients and accurately assess their
condition [31]. This progress has paved the way for the
utilization of such technologies in many areas of medical
support [32] including some recent applications in the field
of respiratory conditions [33].

To the best of our knowledge, this is the first work that
provides an integrated mHealth solution, that utilizes com-
mercially available BT microphones integrated with novel
prediction models. This system aims to provide real-time per-
sonalized feedback to patients, to educate them and promptly
to intervene with advices. Ultimately, this work aims to
prevent common mistakes, leading to potential upcoming
dangerous events, such as exacerbations and hospitalizations.

Ill. DESIGN AND DEVELOPMENT

This section consists of two parts. The first is dedicated to
the presentation of the overall system architecture, while the
latter presents the user interface and visual features part of the
mobile application.

A. SYSTEM ARCHITECTURE

Figure 3 presents a diagram of the overall architecture. The
system consists of three parts: 1) The monitoring device
consists of a commercial Bluetooth microphone attached in
a 3D printed inhaler case, as shown in Figure 2. The micro-
phone’s sensitivity and frequency response range are 105dB-
SPL and 20Hz - 20kHz respectively. 2) The smartphone
application part and 3) The cloud processing server part.
The smartphone application receives audio samples from the
audio sensor and performs a feature extraction process. Then
the extracted audio samples are uploaded to a cloud server
for classification, based on a pre-annotated dataset stored in
a database. The result is downloaded to the mobile device
for visualization and user interaction. Moreover, a relevance
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FIGURE 2. a) Experimental setup of the pMDLI. The Bluetooth microphone
is firmly locked on the device. b) Inhaler prototype without casing. The
PMDI is placed within a cavity. c) Inhaler prototype with casing.

feedback functionality, described in subsection IV-C, allows
the user to evaluate and correct the inhaler usage results
and, thus, to improve the system towards a patient-specific
perspective.

1) PROCESSING TASKS EXECUTED AT THE MOBILE DEVICE
The smartphone application has the following major objec-
tives: a) Communicates with the inhaler device. b) Extracts
features from the received audio samples c) Provides the
interface to the user and d) serves as a data manager. e) More-
over, the application introduces a set of options to the user,
allowing the modification of the feature extraction process
by employing different type of window, different feature
extraction algorithm or different classifier. f) Uploads the
extracted audio features to the cloud server for processing.
g) On completion, the classification result is downloaded
and visualized to the user through intuitive visualizations.
The application provides a relevance feedback feature, where
the user corrects his/her inhaler usage results allowing the
personalization of the trained models.

2) PROCESSING TASKS EXECUTED AT THE SERVER SIDE
Motivated from [28] and in order to optimize the energy
efficiency of the mobile application, the classification of the
uploaded audio features is performed on the cloud. Figure 3
shows the processing pipeline. The uploaded features and
the stored training dataset are fed into the classifier. The
response containing the classification result is downloaded to
the smartphone application for visualization purposes.

B. USER INTERFACE, VISUALIZATION, AND

PATIENT SUPPORT

The user interface consists of a detailed advanced view,
to be used by researchers, and a simplified view, to be
used by patients. In the researcher oriented view, the inhaler
usage result is visualized with colored rectangles placed
one next to another (Figure 8). Each rectangle corresponds
to a window with a duration of 0.5 seconds. Afterwards,
the relevance feedback capability is activated. The patient
can click on any rectangle assumed be a misclassified entry,
activating a selection menu. After the correct class is cho-
sen, the result can be resubmitted to the cloud so as to be
stored in a separate database table reserved for user-defined
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FIGURE 3. Overview of system architecture. The mobile application and
submits the extracted features and the user options to the cloud server
and receives the response.

entries. Figure 9 shows the relevance feedback user inter-
face. Figure 4a illustrates the dashboard of patient support
view containing information about the average adherence
score of the user along with the number of doses currently
remaining in the inhaler. The Virtual Guidance Agent on
the bottom of the screen is activated when the patient uses
the inhaler in order to collect real time feedback and notify
the responsible health care professional when appropriate.
Furthermore, the dashboard screen combines environmental
measurements collected from the EU Copernicus system [34]
for the calculation of the Common Air Quality Index [35] in
the location of the patient, which are then visualized on a map
for a complete support of the patient. Figure 4b illustrates
the implementation of asthma diary, as integrated into the
same mobile application, and provides an overview of the
patient’s respiratory health and medication uses comprising
from asthma related questionnaires (e.g. ACD, ACQ) and the
integration of commercial sensors (e.g. smart health watch,
sensors of fractional exhaled nitric oxide).

IV. CONTENT BASED AUDIO CLASSIFICATION
APPROACH

This section describes the audio feature extraction approach,
the classification algorithm used for medication adherence
assessment and the relevance feedback functionality.

A. AUDIO FEATURE EXTRACTION
There are several feature extraction methods based either on
well-known classical approaches or on latest sophisticated
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FIGURE 4. Mobile Application for the support of patients. a) Main
dashboard. b) Patient calendar.
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FIGURE 5. Dimensionality reduction and visualization for cepstrogram
based feature extraction. The colors correspond to: Yellow for drug

actuation, magenta for exhalations, cyan for inhalations and red for other
types of noise. (a) PCA based. (b) MDS based.

data-driven methods. The first include methods such as the
MEFECC feature extraction method, the Spectrogram and Cep-
strogram approaches, while the latter include Fisher Ker-
nels [36], and Fisher Kernel Learning (FKL) [37] methods.
In order to examine the feature separability for the afore-
mentioned approaches, we visualize the feature space by
employing two separate methods: a) principal component
analysis (PCA) method and b) multi-dimensional scaling
(MDS) [38]. Figures 5 to 7 depict the visualization of the
feature vectors in the three dimensional feature space for
each of the dimensionality reduction methods. As it can
be observed, the Cepstrogram based features demonstrate
higher separability than the other approaches, which is later
verified by the classification accuracy results presented in
subsection V-B.
The Cepstrogram C(m, k) is formulated as

2
N—1
2
Clm, k)= log|X(m, n)* cos(~—k 1
(m, k) = | D logIX o, m)|* cos(~-kn) ey
n=0
where X(m, n) is the short time Fourier transform, m

denotes the m — th temporal component and k the k — th
cepstral coefficient and n the n — th frequency component.
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FIGURE 6. Dimensionality reduction and visualization for Mel-frequency
cepstral coefficients based feature extraction. The colors correspond to:
Yellow for drug actuation, magenta for exhalations, cyan for inhalations
and red for other types of noise. (a) PCA based. (b) MDS based.
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FIGURE 7. Dimensionality reduction and visualization for spectrogram
based feature extraction. The colors correspond to: Yellow for drug
actuation, magenta for exhalations, cyan for inhalations and red for other
types of noise. (a) PCA based. (b) MDS based

The audio feature vector v. = [v{ v v3...vi] is derived
by summing up the quefrency magnitude for every temporal
window for each quefrency component.

M
v = Z C(m, k) 2)

m=1

The feature vector v is then sub-sampled to 40 features.

B. FEATURE CLASSIFICATION FOR MEDICATION
ADHERENCE WITH GAUSSIAN MIXTURE MODELS
Following feature extraction, classification is performed in
order to differentiate the sound samples into the four afore-
mentioned classes. GMMs are statistical models used in many
pattern recognition applications. They can be employed to
approximate any probability density function (pdf) given a
number of components. Moreover, they have demonstrated
to yield sufficiently good results in audio processing [39].
Our aim is to employ the GMM approach for feature classi-
fication [40]. Thus, for each class a separate model is trained
by fitting the corresponding feature vectors to a GMM with
parameters {a;, u;, C;}, i € K, where K is the number of
components, g; is the mixture weight of component i, w;
is the d-dimensional vector, containing the mean values for
each feature, and C is the covariance matrix. The Gaussian
mixture density p(v|A,) is modeled as a linear combination
of multivariate Gaussian PDFs, where v is a feature vector
and A, is the GMM corresponding to class n. In order to
classify a test feature vector, we derive the P(v|A,) for each
class. The test feature vector is assigned to the class n with the
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D Actuation

FIGURE 8. Classification result. The red color corresponds to drug
actuation, the green color corresponds to inhalations, the blue color
corresponds to exhalations and the gray to other sounds. Each colored
area of the classification result corresponds to a segment of the
spectrogram right below.

greatest likelihood P(v|A,). An expectation maximization
(EM) approach is utilized to derive the parameters K,
{a;, i, Ci}, for the GMM A, corresponding to class n that
best fit the input data. The Gaussian mixture density of each
feature vector v is modeled as a linear combination of multi-
variate Gaussian PDFs with the general form:

VIO = d—e[—%(v—mfci*l(v—u,-)] 3)
2m)2|Gi|?
where: 6; = (uj, Cj), v is the d-dimensional feature vector,
u is the d-dimensional vector, containing the mean values for
each feature, C is the dxd covariance matrix and |C]| is the
determinant. The complete set of parameters for a mixture

model with K components is ® = {ay,--- ,ag, 61, -, 0k}
Each GMM model 1, for class n is parameterized as follows:
wherek=1,--- | K

At this point we analyze the expectation-maximization
(EM) algorithm [41] employed to compute the GMM param-
eters in eq.(4). The membership weight of data point v in
component k given parameter ® is defined as:

Pk(Vi, Ok) - ak
Wi = — )
Zm:l Pm(VilOm) - am
for all components k, | < k < K and all data samples i,
1 < i < N.Ineachiteration of the EM algorithm for Gaussian
Mixtures we deploy an E-step and an M-step.

1) E-STEP
We compute wj;, presented in eq.(5) for all feature vectors v;
and all mixture components k

2) M-STEP
We calculate the new parameters. Given Ny = Zivz | Wik the
sum of membership weights for the k — th component we get
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the mixture weights:

N
agfw_ﬁ", 1<k<K (6)
The updated mean:
| N
W=D wikevie 1<k<K ™
Ne i3
and the updated covariance:
| X
G =3 D wilv — )" (v — ) ®)
i=1

3) TERMINATION CRITERIA
The termination criteria for the EM is the following:

logl(®)141 — log[(®), < € &)

where the log-likelihood, defined as log/(®) =
ny:l log p(v;|®) and € is a small user-defined scalar value.

In order to find the best fit for the data, we compute the
GMM for 1 to d = 40 components iterating over full and
diagonal covariance matrices, where d is the size of each fea-
ture vector v. With the generation of each model we estimate
the Bayesian Information Criteria(BIC) [42]. The model with
the lowest BIC best fits the input data.

After the optimal parameters for the GMMs have been
computed and given d the number of features, K the number
of components of the i feature vector v;, A, the GMM of
class n we get:

K
P(Vilkn) = Y dlp}(v) (10)

i=1
where a are the mixture weights to satisfy the constraint:

M
Za;lz 1,d' >0 a1
i=1

Finally, and after the P(v|A,) for the test feature vector v
and for each class n is estimated, the test feature vector is
assigned to the class n with the greatest likelihood.

C. RELEVANCE FEEDBACK

This section describes the proposed relevance feedback
approach for personalization of the trained models. The
importance of the relevance feedback mechanism lies in the
assumption that the initial dataset was compiled by a small
group of people. This means that it may not contain the
unique frequency patterns, related to the way that different
end-users exhale, inhale or activate the drug. Thus, a rele-
vance feedback mechanism should allow the personalization
of the trained models and the compilation of patient-specific
datasets. Initially, it is assumed that the patient has submitted
a set of personal feature vectors annotated to the correspond-
ing class using the relevance feedback functionality depicted
in Figure 9. Each complete user submission includes N = 24
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FIGURE 9. a) Relevance feedback functionality selection menu. The user
taps a classification result and activates the selection Ul. b) After the
result is corrected, it can be resubmitted.

feature vectors corresponding to 12-seconds of audio record-
ing. The dataset used to train the models consists of M =
1980 feature vectors, with 495 feature vectors per class.

Given the set of feature vectors F we perform kNN search
with k = 1 in the dataset D for each feature vector vg,,. The
result is denoted as Dr,,. The new personalized dataset Dp is
the union of F with each Dr,,. At this point, it is important to
remove all the duplicate vectors. Algorithm 1 presents a more
detailed overview of the procedure.

Algorithm 1 Relevance Feedback Algorithm
Require:

1: User defined entries F = {vpy, -, VFy,, -+
2: Dataset D = {vp(, - , VD> " » VDM }
3: Initialize: Personalized dataset Dy = {} as an empty set
4: for each vp, € F do
5
6
7

,VEN}

Dr, < k nearest neighbors of vg,, using D
Dr = Drp UDpF,
: end for
8: D =Dr UF
Ensure: Each element of D is unique.

V. EVALUATION

This section focuses on the overall system evaluation method-
ology. More specifically, the following subsections describe
the data collection and annotation approaches, present the
classification accuracy results and provide a more detailed
insight via the confusion matrices.

A. DATA COLLECTION AND ANNOTATION

We recorded several sound signals in indoor and outdoor
environments. The sounds were categorized into inhaler actu-
ations, exhalations, inhalations, and noise referring to envi-
ronmental or other sounds. Twelve healthy subjects used the
same inhaler device depicted in Figure 2 loaded with full

VOLUME 6, 2018
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FIGURE 10. Annotation toolkit Ul. The user inspects the audio graph,
selects a segment corresponding to a certain class, and attaches the
proper annotation.

TABLE 1. Classification accuracy (%) for the 4-class problem.

MFCC Spectrogram Cepstogram
SVM 97.026 86.615 98.718
RF 96.205 97.282 97.744
ADA 96.205 98 98
GMM | 96.718 94.769 98.513
MFCC FKL SPECT FKL CEPST FKL
SVM 93.128 86.308 95.744
RF 92.41 97.179 94.615
ADA 92.821 97.333 96
MFCC GMM FKL | SPECT GMM FKL | CEPST GMM FKL
SVM 96.718 94.821 98.513
RF 96.308 95.026 98.513
ADA 95.487 95.333 98.205

placebo canisters. For each subject a different canister was
used. They recorded 495 sounds per class reaching the total
of 1980 sounds. Each sound sample has a total duration
of 0.5 seconds, sampled with 8 kHz sampling rate and 16-bit
depth. To compile the initial training dataset, an annotation
toolkit was employed. A user interface visualizes the audio
samples while the user selects parts of the audio files and
assigns a class. The annotated part is stored in a separate
audio file. Figure 10 shows the user interface of the annotation
toolkit.

B. ADHERENCE MONITORING ACCURACY

This section presents the adherence monitoring accuracy
results for the Cepstogram feature extraction method com-
pared to classical approaches, namely Spectrogram and
MEFCC based features and data-driven approaches, namely
FK [36] and FKL [37]. Regarding the feature classification
scheme, we compare GMMs with well-established classifi-
cation algorithms, namely SVMs [43], Random Forests [44],
ADABoost [45]. The classification results are presented
in Table 1 and in Figure 11. 10-fold cross validation for
evaluation of the classifiers has been employed.

In order to compare the proposed method with FKL
approach we utilized the publicly available implementation
of [37]. FKL receives time series as input and generates
as output new vectors. Thus, we utilize two approaches: In
the first approach, we use the extracted features of MFCC,
Spectrogram and Cepstrogram as input time series. This way
the FKL is used as preprocessing step. The results of this
approach are presented in the blocks named MFCC FKL,
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lo GMM
lo SVM
0o Random Forest
0o ADABoost

e

| D.9T 0.97 0,66 0,56 65 0.4970.9

0,00 0,99 .98 0,05

Classification accuracy

MFCC Spectrogram Cepstogram

FIGURE 11. Classification accuracy for the 4-class problem. Three feature
extraction algorithms are compared: i) MFCC ii) Spectrogram iii)
Cepstogram.

SPECT FKL, CEPST FKL in Table 1. In the second approach,
we use the output of the GMM probability function as input
time series. The results are presented in the blocks named
MFCC GMM FKL, SPECT GMM FKL, CEPST GMM FKL
blocks of Table 1. As it can be observed, the classification
accuracy reaches 97% for all feature extraction methods.

Furthermore, to provide a comparison with Continuous
Wavelet Transform (CWT) based approaches we utilized the
CWT with Morlet wavelet as a feature extraction method
[18]. Table 4 presents the confusion matrices for SVM, Ran-
dom Forest and AdaBoost classifiers for the 4-class problem
and for the Drug vs other sounds 2-class problem. Our results
agree with the results provided in [18] yielding a 99.18%
sensitivity, 99.73% specificity and 99.45% accuracy in the
identification of drug actuation sounds.

Finally, as it can be observed in Table 1 GMM yields
the best results reaching 98% in the case of Cepstogram
features, while SVM seems to be a good classifier for
MFCC and for Cepstogram but not for Spectrogram fea-
tures. Considering the MFCC based feature extraction, GMM
reaches 96%, SVM reaches 97%, Random Forest reaches
96%, and ADABoost 96%. For the spectrogram-based feature
extraction method, the classification accuracy is 94.7% for
GMM, 86% for SVM, 97% for Random Forest, and 98% for
ADABoost. Finally, for the Cepstrogram, the classification
accuracy reaches 98% in the case of GMM classifier, 98%
in the case of SVM classifier, 97% for the Random Forest
approach, and 97% for ADABoost. The utilization of the FKL
preprocessing step does not provide better results than the
corresponding features used as input time series. e.g. CEPST
FKL with RF has yielded worse results than CEPST RF.

C. NOISE ROBUSTNESS ASSESSMENT

To assess the robustness to noise and other sounds, assuming
that the initial dataset was created under ideal conditions,
we compiled noisy datasets by adding background and envi-
ronmental sounds [46], collected from freesound.org [47],
by superposing dataset audio segments x and noise n in the
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TABLE 2. Classification accuracy (%) vs added noise factor.

Added noise and envir ds factor
; 010 ] 020 050
GMM | 96.718 | 93.13 | 87.778 | 79.899
MFCC SVM 0702 | 9339 | 870202 | 79444
RF 96305 10323 | 862626 | 78353
ADA 96205 [ 9293 859097 72
GMM | 94.768 | 92.83 | 83384 | 78.485
SVM 86615 [ 8535 | 832325 | 78.65657
SPECT RF 97387 10566 | OT8182 | 8328253
ADA 0% 9515 92.0000 | ST7T7T7
GMM | 93513 | 9647 | 96414 | 82870
SVM 98,718 [ 95817 | 919192 | 8393939
CEPST RF 97738 0307 | 027778 | 838580
ADA 0% 9611 916667 | 819697
MFCC GMM FKL | ADA | 96.718 | 91.364 | 87.172 | 78.131
SPECT GMM FKL | ADA | 94.821 | 93384 | 87.727 | 77.121
CEPSTGMM FKL | ADA | 08513 | 94242 | 94444 | 81162

following manner:
X =x+kxn (12)

The classification accuracy for different values of factor k
is shown in table 2.

As it is made obvious, the classification accuracy of each
method drops below 85% as added noise factor reaches 0.5.
Table 2 demonstrates that in noisy conditions, Cepstrogram
based GMM approach yields the best results.

D. CONFUSION MATRICES

Table 3 presents the confusion matrices of each feature
extraction method, for all classification algorithms performed
in the current study. As it can be observed, the classification
accuracy reaches 99% is some cases but, it is as low as
58% in the case of support vector machines when accessing
exhalations in spectrogram-based feature extraction. Finally,
an important observation is that the Cepstrogram feature
based extraction method demonstrates the lowest misclassifi-
cation rate in comparison to other approaches, which supports
our initial assumption that this feature extraction approach
yields the most separable feature representation.

E. EMPLOYING RELEVANCE FEEDBACK TO IMPROVE
CLASSIFICATION ACCURACY

In order to validate the relevance feedback functionality,
we employed the relevance feedback of a second group con-
sisting of five subjects. It is important to note that subjects
of the first group,that provided the audio samples, were not
included in the second group. Each person provided 20 sets
of annotated submissions with each submission to contain
24 annotated feature vectors. In the validation, process we
assume that one of the 20 sets is not annotated and derive
the classification accuracy for this set by employing the fol-
lowing cross-validation approach: At first, we include only
two annotated sets for the compilation of the relevant dataset,
performed using the process described in subsection IV-C,
and derive the classification accuracy. Then, in each iteration,
one more set is included, the relevant dataset is recompiled
and the classification accuracy is recalculated. The process
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TABLE 3. Normalized % confusion matrix for MFCC, spectrogram and cepstrogram feature extraction approaches.

Reference
MFCC SPECT CEPST
Drug | Exhale | Inhale | Noise | Drug | kxhale | Inhale | Noise | Drug | kExhale | Inhale | Noise
Drug 97.54 0.00 0.21 021 = 97.54 0.00 0.00 0.00 99.38 0.41 0.00 0.41
SVM Exhale 0.41 96.14 1.23 2.89 2.46 58.94 1.43 3.73 0.41 98.16 1.43 0.41
Inhale 0.00 0.00 97.74 0.20 0.00 0.41 94.88 0.83 0.00 0.20 98.57 0.41
Other 2.05 3.86 0.82  96.70 0.00 40.65 3.69 9544 0.21 1.23 0.00  98.77
Drug 97.13 0.20 0.21 0.00 97.74 0.20 0.00 0.00 = 98.97 0.41 0.00 0.62
RF Exhale 1.44 95.93 2.26 4.33 0.00 96.95 2.05 2.69 0.82 97.35 1.64 1.65
g Inhale 0.41 0.00 96.71 0.62 0.62 0.61 97.95 0.83 0.00 0.61 98.16 1.24
:‘g Other 1.02 3.87 0.82  95.05 1.64 2.24 0.00  96.48 0.21 1.63 020  96.49
3 Drug 97.54 0.00 0.00 041 = 98.77 0.41 0.00 0.00 99.18 0.20 0.20 0.21
& ADA Exhale 1.03 96.75 1.65 4.95 0.41 96.95 1.43 1.45 0.62 97.35 1.84 1.03
Inhale 0.00 0.20 96.91 1.03 0.00 0.20 98.36 0.62 0.00 0.61 97.54 0.82
Other 1.43 3.05 144 93.61 0.82 2.44 021  97.93 0.20 1.84 042 9794
Drug 96.71 0.00 0.00 0.00 99.18 0.41 0.00 2.69  99.38 0.00 0.00 0.62
GMM Exhale 0.82 96.14 1.23 2.68 0.62 93.29 1.64 6.00 0.41 99.18 1.43 227
Inhale 0.21 0.00 97.74 1.03 0.20 3.46 98.16 2.90 0.00 0.41 98.57 0.21
Other 2.26 3.86 1.03  96.29 0.00 2.84 020  88.41 0.21 0.41 0.00  96.90
- ; TABLE 4. Normalized % confusion matrix for continuous wavelet
082} % i transform.
o8t T o e oy o BT T 7 | T
ool Pt v 3 eediq 3 Reference
2 CWT
gﬂ-w-ﬂ Q ﬁ ﬁ ﬁ ﬂ H ﬁ ﬁ ﬁ Drug Exhale Inhale Noise
E 088 = | y Drug 97.11 0.20 0.20 0.00
% owrh | il - B R SVM Fxhale | 144  98.16 2772 85.66
= o+ 1+ L 41 41 1 1 4 1 L 1 Inhale 1.03 0.82 71.66 6.56
3 ‘9N Other | 042 082 042 778
085 g Drug 98.97 0.40 0.20 0.20
- ‘{': RF Exhale 0.00 94.10 1.64 8.60
L < Inhale 1.03 0.81 95.70 2.67
R e & Other 0.00 4.69 246 88.53
Usir sUbRission: Drug 99.18 0.00 0.41 0.41
ADA Exhale 0.00 95.91 1.64 6.56
(a) Inhale 0.20 0.61 96.31 1.64
Other 0.62 3.48 1.64 9139
Drug Other
B i T R O S o ZA-lélltnss Drug 99.18 0.27
. - Other 0.82 99.73

R
I b bk -

| ' I
' ' ' '
| ' ' '
' ] ' '
xS = B T e S ]

Classification accuracy

o4 BT OB 8 1 Ot ow oW oM s

User submissions

(b)
FIGURE 12. Relevance feedback of Cepstrogram based features.
(a) Classification accuracy box plot as a function of included user
submissions for the CEPST-GMM approach. (b) Classification accuracy
box plot as a function of included user submissions for the CEPST-SVM
approach.

is repeated until all remaining 19 sets are included. The pro-
cess evaluates the improvement of the classification accuracy
score relatively to the number of user submissions.

The results of the evaluation process are presented
in Figure 12. The first column represents the classification
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accuracy result without relevance feedback, while the next
columns represent the classification accuracy for the corre-
sponding number of user submissions. CEPST-GMM shows
the slowest improvement rate but appears to be more robust,
since the first column that represents the classification results
without relevance feedback are concentrated around 89%.
CEPST-SVM shows low classification accuracy without rel-
evance feedback but appears to have great improvement as
user submissions increase.

VI. DISCUSSION AND CONCLUSION

In this work, we have implemented and presented a novel
mHealth system for monitoring medication adherence in
obstructive respiratory diseases. The proposed system consist
of a BT acoustic sensor, a mobile application and a cloud pro-
cessing module. The smartphone application receives audio
samples from the audio sensor and extracts Cepstogram fea-
tures. The extracted features are then uploaded to a cloud
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server, where GMM classifiers are executed for identify-
ing exhalation, inhalation drug usage and ambient sound
events. The smartphone application, enhances the inhaler
usage experience through intuitive interfaces of patient guid-
ance including a virtual agent, which can help patients follow
their action plan and assess their inhaler technique in a more
engaging manner. The extensive performance assessment has
revealed the efficiency of the proposed approaches in both
indoor and outdoor environments, significantly outperform-
ing other state of the art approaches. Furthermore, the pro-
posed relevance feedback scheme enables the patient or the
researcher to correct misclassified results and resubmit them
allowing the personalization of the trained model in a user-
oriented manner, thus increasing even more the accuracy and
personalization of the system. As a future step, a number of
feedback sessions will be organized with the participation
of the MyAirCoach Advisory Patient Forum, in order to
evaluate the usefulness of the implemented functionalities,
suggest future extensions and optimize the implemented user
interfaces on the basis of actual patient needs.
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