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presentation, however, we can compute the stiffness of any point on the model, thus a
more general term of ‘‘task” stiffness is adopted.
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This work presents a framework for computing the limbs’ stiffness using inverse methods that account
for the musculoskeletal redundancy effects. The musculoskeletal task, joint and muscle stiffness are reg-
ulated by the central nervous system towards improving stability and interaction with the environment
during movement. Many pathological conditions, such as Parkinson’s disease, result in increased rigidity
due to elevated muscle tone in antagonist muscle pairs, therefore the stiffness is an important quantity
that can provide valuable information during the analysis phase. Musculoskeletal redundancy poses sig-
nificant challenges in obtaining accurate stiffness results without introducing critical modeling assump-
tions. Currently, model-based estimation of stiffness relies on some objective criterion to deal with
muscle redundancy, which, however, cannot be assumed to hold in every context. To alleviate this source
of error, our approach explores the entire space of possible solutions that satisfy the action and the phys-
iological muscle constraints. Using the notion of null space, the proposed framework rigorously accounts
for the effect of muscle redundancy in the computation of the feasible stiffness characteristics. To confirm
this, comprehensive case studies on hand movement and gait are provided, where the feasible endpoint
and joint stiffness is evaluated. Notably, this process enables the estimation of stiffness distribution over
the range of motion and aids in further investigation of factors affecting the capacity of the system to
modulate its stiffness. Such knowledge can significantly improve modeling by providing a holistic over-
view of dynamic quantities related to the human musculoskeletal system, despite its inherent
redundancy.
� 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The regulation of the limbs’ stiffness by the Central Nervous
System (CNS) has been subject to many studies over the past dec-
ades (Hogan, 1981; Flash and Hogan, 1985; Flash, 1987; Flash and
Mussa-Ivaldi, 1990; Perreault et al., 2001; Babikian et al., 2015).
Intuitively, stiffness (or rigidity) is the extent to which the limbs
resist movement induced by external forces. In this work, task1

(e.g., endpoint stiffness), joint and muscle stiffness are distinguished
and their relationship is studied. Since muscles are the main actors
in musculoskeletal systems, their co-contraction affects the joint
and task stiffness (Kutch and Valero-Cuevas, 2011; Inouye and
Valero-Cuevas, 2016). Due to the redundancy of actuators, there
exist infinitely many solutions for muscle forces giving rise to the
same movement. It is thus important to consider not only the
motion of the limbs, but also the degrees of muscle co-contraction.
Musculoskeletal systems are intrinsically redundant
(Bernshtein, 1967), i.e., there are more Degrees of Freedom (DoFs)
than those required to perform certain tasks (kinematic redun-
dancy) and each DoF is actuated by multiple muscles (dynamic
redundancy). This poses numerous challenges in modeling and
simulation and as a result, it has been pointed out that many com-
mon approaches are oversimplified (Valero-Cuevas et al., 2009).
This, although deliberate since it simplifies the mathematical
implementation and analysis, may also negatively affect the valid-
ity of these models and the obtained results (Wesseling et al.,
2015) (e.g., estimation of muscle forces, joint reaction loads and
stiffness characteristics). Minimum effort solutions (e.g., activation
squared) tend to underestimate muscle co-contraction, since co-
contraction has by construction zero net joint effect, rendering it
unsuitable in applications where this assumption may not hold
(Pedotti et al., 1978; Prilutsky and Zatsiorsky, 2002; Koeppen
et al., 2017). Therefore, appropriate methods need to be developed
for finding the possible system realizations and further classifying
strategies available to the CNS.

Experimental methods for measuring the endpoint stiffness
have been proposed and used in conjunction with model-based

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiomech.2019.01.017&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jbiomech.2019.01.017
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:stanev@ece.upatras.gr
mailto:moustakas@upatras.gr
https://doi.org/10.1016/j.jbiomech.2019.01.017
http://www.sciencedirect.com/science/journal/00219290
http://www.elsevier.com/locate/jbiomech
http://www.elsevier.com/locate/jbiomech
http://www.JBiomech.com


102 D. Stanev, K. Moustakas / Journal of Biomechanics 85 (2019) 101–107
estimates in order to study the effect of muscle co-contraction on it
(Mussa-Ivaldi et al., 1985; Flash and Mussa-Ivaldi, 1990). Model-
based estimation of joint and task stiffness requires the assessment
of muscle forces, which can be obtained either from Electromyog-
raphy (EMG) recordings or by minimizing some objective criterion,
such as minimum effort. However, both approaches have their
drawbacks, namely not all muscles are easily accessible in practice
(e.g., deep muscles), transformation from EMG to muscle force is
inexact and optimization assumptions do not always hold. The
authors in (Hu et al., 2011) compared the experimentally measured
endpoint stiffness against the model-based estimates, concluding
that deviations from their predictions can be explained by muscle
redundancy. To overcome these limitations, a method for identify-
ing all possible solutions of muscle forces that satisfy the task as
well as physiological muscle constraints is proposed, in order to
evaluate their influence on the task and joint space stiffness.

The main contribution of this work is the calculation of the fea-
sible task and joint stiffness in the context of an arbitrary action, by
modeling musculoskeletal redundancy using the notion of null
space. In Section 2.1, the relationship between muscle, joint and
task space stiffness is presented, while in Section 2.2, a method
for describing the feasible muscle forces is introduced, enabling
the calculation of the feasible stiffness. The feasible endpoint stiff-
ness of a simplified arm model performing a hand movement and
the joint stiffness of a realistic gait model are studied in Sections
3.1 and 3.2, respectively. These case studies highlight the
assumption-free nature of the proposed framework, which there-
fore is able to recover the entire stiffness space.

2. Methods

2.1. Muscle, joint and task space stiffness

In this section, we will present a short overview of the mathe-
matical definitions for calculating the muscle, joint and task space
stiffness as outlined by previous studies (Hogan, 1981; Flash and
Hogan, 1985; Flash, 1987; Perreault et al., 2001; Inouye and
Valero-Cuevas, 2016), while a more detailed presentation can be
found in Supplementary materials. In the following section, we will
introduce a method for calculating the feasible muscle forces that
satisfy the motion and the physiological muscle constraints. As the
muscles are the main actors of the system, it is important to exam-
ine the effect of muscle redundancy on the calculation of limbs’
stiffness.

The muscle stiffness is defined as

Km ¼ @fm
@lm

; Km 2 Rm�m ð1Þ

where fm 2 Rm represents the muscle forces, lm 2 Rm the musculo-
tendon lengths and m the number of muscles. The joint stiffness is
defined as

K j ¼ @s
@q

; K j 2 Rn�n ð2Þ

where s 2 Rn; q 2 Rn are the generalized forces and coordinates,
respectively and n the DoFs of the system. Finally, the task stiffness
is defined as

K t ¼ @f t
@xt

; K t 2 Rd�d ð3Þ

where f t 2 Rd denotes the forces, xt 2 Rd the positions and d the
DoFs of the task.

The derivation starts with a model for computing the muscle
stiffness matrix Km. The twomost adopted approaches are to either
use the force-length characteristics of the muscle model or to
approximate it using the definition of the short range stiffness,
where the latter is shown to explain most of the variance in
the experimental measurements (Hu et al., 2011). The short
range stiffness is proportional to the force developed by the muscle
(f m)

ks ¼ c
f m
lom

ð4Þ

where c ¼ 23:4 is an experimentally determined constant (Cui et al.,
2008) and lom the optimal muscle length. This definition will be used
to populate the diagonal elements of the muscle stiffness matrix,
whereas inter-muscle coupling (non-diagonal elements) will be
assumed zero since it is difficult to measure and model in practice.

The joint stiffness is related to the muscle stiffness through the
following relationship

K j ¼ � @RT

@q
�2fm � RTKmR ð5Þ

where the first term captures the varying effect of the muscle
moment arm (R 2 Rm�n), while the second term maps the muscle
space stiffness to joint space. The notation �2 (Supplementary mate-

rials) denotes a product of a rank-3 tensor (@R
T

@q 2 Rn�m�n, a 3D

matrix) and a rank-1 tensor (fm 2 Rm, a vector), where the index
2 specifies that the tensor dimensional reduction (by summation)
is performed across the second dimension, resulting in a reduced
rank-2 tensor of dimensions n� n (Kolda and Bader, 2009).

In a similar manner, the task stiffness is related to the muscle
stiffness through the following relationship

K t ¼ �JþT
t

@JTt
@q

�2f t þ @RT

@q
�2fm þ RTKmR

 !
Jþt ð6Þ

where the task Jacobian matrix (Jt 2 Rd�n) describes the mapping
from joint to task space (Rn ! Rd), þ stands for the Moore-
Penrose pseudoinverse and þT the transposed pseudoinverse
operator.

2.2. The influence of musculoskeletal redundancy

In this section, we propose a method for identifying the feasible
muscle forces that satisfy the movement and the physiological
muscle constraints. This method does not assume minimization
of some objective criterion, but relies solely on the movement con-
text, the muscle model (e.g., linear/nonlinear muscle model and
synergy encoding) and the anatomical properties of the muscle
routing (the muscle moment arm and its null space). The family
of solutions is guaranteed to preserve the system’s kinematic
behavior, i.e., produce the same movement, corresponding to dif-
ferent levels of muscle co-activation.

In a typical experimental setup the motion and externally
applied forces are recorded. Given these recordings, Inverse Kine-
matics (IK) and Inverse Dynamics (ID) are performed in order to
assess the model kinematics and kinetics that satisfy the experi-
mental measurements (Erdemir et al., 2007). Instead of estimating
the muscle forces using Static Optimization (SO) or some other
method (Anderson and Pandy, 2001; Thelen and Anderson,
2006), we can solve s ¼ �RT fm for fm accounting for the null space
muscle forces, which are present only when projecting from low-
to high-dimensional space. More formally, the muscle forces fm
can be expressed as the sum of two mutually orthogonal subspaces
(Stanev and Moustakas, 2019), spanning the column ( )
and null space ( ), respectively

fm ¼ f km þ f ?m ¼ �RþTsþ NTR fm0; NTR ¼ I � RRþ ð7Þ



Fig. 1. Diagram of the simplified arm model with three DoFs and nine muscles,
some of them being bi-articular. The muscle origins are labeled as ai and the muscle
insertions as bi . li stands for muscle length, Lci for center of mass and Ji for joint
center.
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where NTR 2 Rm�m is the moment arm null space projection opera-
tor and fm0 2 Rm a vector of arbitrarily selected null space muscle
forces. Note that this definition spans the entire Rm for some arbi-
trary value of s, whereas in reality muscle forces are strictly positive
(contraction) and bounded (limited force). Therefore, in general,
this solution may not be physiologically correct (namely

9i : f im > f imax or f
i
m < 0). However, the null space term f ?m can pro-

vide a suitable correction in order to satisfy the physiological con-
straints of the muscles. In this study, we will assume a linear
muscle model, such as that the force is proportional to the strength
and activation level of the muscle

fm ¼ fmax � am; 0 � am � 1 ð8Þ
where am 2 Rm represents a vector of muscle activations, fmax 2 Rm

a vector specifying the maximum muscle force and � the Hadamard
(elementwise) product2. We can impose bounds on the possible
solutions of fm0 in the form of linear inequalities, by noting that
Eqs. (7) and (8) must be equal

ð9Þ

An important advantage of this formulation is that different
muscle models can be included in the derivation of the feasible
inequality. For example, we can incorporate muscle synergies
(Steele et al., 2015) by substituting am ¼ Wc in Eq. (9). Term
W 2 Rm�s represents the muscle synergy matrix and c 2 Rs the
synergy activations. Moreover, Eq. (9) defines a closed and convex
space for fm0 (Supplementary materials), which can therefore be
sampled using vector enumeration techniques (Avis and Fukuda,
1992; Vempala, 2005). Finally, the feasible muscle force set is com-
puted as the sum of the particular solution and the null space
forces that satisfy Eq. (9)

f �m ¼ f km þ NTR f
i
m0; 8i

� �
: ð10Þ

In order to compute the feasible muscle force set f �m, the phys-
iological null space muscle forces fm0 must be obtained by sam-
pling the space defined by a set of linear inequalities (Eq. (9)).
The linear inequalities define a closed polytope (a convex polyhe-
dron) as an intersection of a finite number of half-spaces
(hyperplane- or H-representation). The conversion from H-
representation to V-representation is called vertex enumeration
and can be achieved by using either a deterministic or randomized
approach. From an arrangement of n hyperplanes in Rd; v vertices
are determined in Oðn2dvÞ time. We used the lrs library (Avis and
Fukuda, 1992), which provides a self-contained ANSI C implemen-
tation of the reverse search algorithm for vertex enumeration.
After obtaining the extreme points of the polytope, additional solu-
tions are generated by interpolating (w ¼ kxþ ð1� kÞy) between
vertices. This process generates samples spanning the entire poly-
tope due to its convexity.

3. Results

We will present two case studies, where the influence of mus-
culoskeletal redundancy on the feasible task and joint stiffness will
be evaluated. In the first case, a simplified planar arm model
2 Elementwise multiplication is preferred in comparison to the traditional matrix
vector approach (e.g, fm ¼ Fmaxam) to explore the fact that Fmax is a diagonal matrix.
(Fig. 1), having three DoFs and nine muscles, is appropriately con-
structed to demonstrate both kinematic and dynamic redundancy
(i.e., d < n < m). The movement will be planned in task space by
controlling the position of the hand using task space projection
(Stanev and Moustakas, 2018). In the second experiment, the
feasible joint stiffness of the hip, knee and ankle joints during
walking will be assessed using the OpenSim (Delp et al., 2007) gait
model that has ten DoFs and eighteen muscles (Millard et al.,
2013). These models were constructed with an emphasis on clarity,
simultaneously preserving a degree of anatomic realism.

3.1. Variability in the arm endpoint stiffness

In this experiment, the feasible task and joint stiffness of a sim-
plified arm model will be evaluated. More specifically, Eqs. (5) and
(6) will be used to compute the stiffness at each time step of the
simulation. Since stiffness depends on the muscle forces and the
model is redundant, there are infinitely many solutions that satisfy
the reaching task. To account for this, the space defined by Eq. (9)
will be sampled in order to compute the feasible muscle forces (Eq.
(10)), assuming a linear muscle model. Consequently, these solu-
tions will be used to obtain the feasible stiffness values.

Since task forces f t are required in the calculation of Eq. (9), the
planning can be encoded using task space projection (Khatib et al.,
2009; Stanev and Moustakas, 2018), by tracking the desired posi-
tion of the end effector. Essentially, a mixed dynamics scheme is
adopted, where the task space ID model-based controller accepts
the desired task goal and returns the generalized forces s. These
forces are applied to the model in a Forward Dynamics (FD) man-
ner and the resulting movement is thus simulated. Furthermore,
the generalized forces are used to evaluate the particular solution

f km (Eq. (7)), required in the calculation of the feasible muscle
forces. A Proportional Derivative (PD) tracking scheme is adopted

€xt ¼ €xd þ kpðxd � xtÞ þ kdð _xd � xtÞ ð11Þ
where xd; _xd; €xd are the desired position, velocity and acceleration
of the task and kp ¼ 50; kd ¼ 5 the tracking gains. The desired task
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goal is derived from a smooth sigmoid function that produces bell-
shaped velocity profiles in any direction around the initial position
of the end effector

xdðtÞ ¼ xtð0Þ þ a
2 tanhðbðt � t0ÞÞ þ 1ð Þ; ytð0Þ

� �T
_xdðtÞ ¼ dxdðtÞ

dt ; €xdðtÞ ¼ d _xdðtÞ
dt

x0d ¼ HzðcÞxd; _x0d ¼ HzðcÞ _xd; €x0
d ¼ HzðcÞ€xd

ð12Þ

where xt ; yt represent the 2D components of xt ; a ¼ 0:3, b ¼ 4 and
t0 ¼ 1. Different directions of movement are achieved by transform-
ing the goals with HzðcÞ, which defines a rotation around the z-axis
of an angle c.

Fig. 2 collects three instances of the simulatedmovement (along
the �x direction, c ¼ p). The left diagram shows the feasible major
and minor axes of the endpoint stiffness using scaled
(scaling ¼ 0:0006) ellipses (ellipses are omitted for visibility rea-
sons). The ellipse is a common way to visualize the task stiffness
(Flash and Mussa-Ivaldi, 1990; Cui et al., 2008), where the major
axis (red) of the ellipse is oriented along the maximum stiffness
and the area is proportional to the determinant of K t , conveying
the stiffness amplitude. The stiffness capacity (area) is increased
in the last pose, since the arm has already reached its final position
and muscle forces are not needed for it to execute any further
motion. The second diagram (middle) depicts the distribution of
ellipse parameters (area and orientation /). Finally, the rightmost
box plot shows the feasible joint stiffness distribution at three dis-
tinct time instants. Experimental measurements (Perreault et al.,
2001) have showed that the orientation of stiffness ellipses varies
in a range of about 30�. While our simulation results confirm this,
they also reveal a tendency of fixation towards specific directions
for higher stiffness amplitudes. The large variation of feasible stiff-
ness verifies that this type of analysis conveys important findings
that complement experimental observations.

3.2. Calculation of the feasible joint stiffness during walking

This experiment involves a model available in the OpenSim

repository, used to estimate the joint stiffness during walking.
The model has ten DoFs and a reduced set of eighteen Hill-type
muscles (Millard et al., 2013) that are important for gait. The model
was first scaled using a static pose in order to match the subject-
specific anthropometrics. Afterwards, IK and ID were performed
to obtain the kinematics and kinetics required to track the experi-
mental marker trajectories and match the ground reaction forces.
Fig. 2. Collected results of the simulated armmovement (along the �x direction, c ¼ p) a
ellipses (scaling ¼ 0:0006), where the red and green lines denote the major and minor ax
and orientation /). The box plot on the right depicts the feasible joint stiffness distribut
referred to the web version of this article.)
Recall that in the definition of joint stiffness (Eq. (5)) the muscle
moment arm must be differentiated with respect to the general-
ized coordinates. Unfortunately, OpenSim lacks the analytical
means for evaluating higher order derivatives, as it computes the
muscle moment arm numerically from the input joint configura-
tion. In order to derive a symbolic representation, multivariate
polynomial fitting (van den Bogert et al., 2011) was performed
on samples of the muscle moment arm at different configurations.
To reduce the complexity and improve the robustness of the fit, we
determined the coordinates affecting each element in the moment
arm matrix, by identifying the DoFs spanned by each muscle. Fig. 3
compares the sampled and symbolically obtained moment arm of
the vastus intermedius (a mono-articular muscle) at the knee joint
as a function of the knee flexion angle and the moment arm of the
hamstring muscle at the knee joint as a function of the hip and
knee flexion angles.

The feasible muscle force set was computed at each time step of
the analysis, using Eqs. (9) and (10), assuming a linear muscle
model. The short range stiffness (Eq. (4)) was used to form the
muscle stiffness diagonal matrix Km.

Fig. 4 depicts the feasible joint stiffness of the hip, knee and
ankle joints during walking with the heel strike and toe-off events
annotated accordingly. These results confirm experimental mea-
surements (Shamaei et al., 2015) and furthermore present similar-
ities in the outline of the minimum stiffness predicted by our
method. Notably, the hip stiffness range is gradually decreasing
between heel strike and toe-off, because the flexor muscles are
preparing for the swing phase and the capacity to increase the joint
stiffness reaches its lowest value before the toe-off event. A similar
pattern is observed at the knee joint, which undergoes a flexion
and a subsequent extension during the swing phase. We observe
that the capacity of the muscles to modulate the ankle stiffness
is not decreased and the range is gradually shifted upwards in
the region between the heel strike and toe-off events. The increase
in the minimum possible values of the ankle stiffness is attributed
to the counterbalance of the ground reaction forces by the ankle
plantar flexion muscles. As muscle effort is spent by these muscles,
one would expect a lower maximum bound, which is not the case
here. This could be contributed to the fact that the musculoskeletal
system is asymmetric, i.e., the plantar flexion muscles can induce
larger magnitudes of moment at the ankle joint in comparison to
the dorsiflexion muscles. We can conclude that the contribution
of the ground reaction forces results in an increase of the ankle
stiffness.
t three time instants. Left diagram shows the feasible endpoint stiffness using scaled
es, respectively. The middle plot illustrates the ellipse parameter distribution (area
ion. (For interpretation of the references to color in this figure legend, the reader is



Fig. 3. Comparison between the sampled and symbolically obtained moment arm of the vastus intermedius muscle at the knee joint as a function of the knee flexion angle
(left). Likewise, the moment arm of the hamstring muscle at the knee joint as a function of the hip and knee flexion angles (right).

Fig. 4. The feasible joint stiffness of the hip, knee and ankle joints during walking with the heel strike (HS) and toe-off (TO) events annotated accordingly.
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4. Discussion

The evaluation of task and joint stiffness is important because
the CNS does not coordinate the motion of the limbs alone, but also
regulates the overall stability, impedance and admittance of the
musculoskeletal system. As musculoskeletal systems are intrinsi-
cally redundant, it is very difficult to interpret the hierarchical
muscle activation patterns, especially when different muscle
groups are co-activated. Considering these facts, we show that glo-
bal stiffness evaluation is possible, hence this metric can be used to
characterize various actions and complement traditional analyses.
The calculation of the feasible stiffness can aid in finding patterns
of low stiffness capacity in order to improve the design of products
and interventions that target these aspects of movement (e.g.,
exoskeleton design, interaction with the environment, ergonomics,
etc.). Moreover, this kind of analysis can be used in combination
with the single solution methods in order to evaluate the uncer-
tainty in the estimated quantities due to redundancy.

An accurate estimation of muscle forces is necessary for the
assessment of the stiffness. Since measuring muscle activity poses
many challenges and model-based estimation relies on assump-
tions that may not hold, a more holistic approach was adopted in
this study. Feasibility studies have been successfully translated
into clinical practice (Valero-Cuevas, 2009; Kutch and Valero-
Cuevas, 2011; Valero-Cuevas et al., 2015) and their potential was
explored here in the context of the feasible stiffness computation.
The main advantage of the proposed approach is that the feasible
muscle forces are action-specific, accounting for the dynamic evo-
lution of the motion, while also satisfying the physiological con-
straints of the muscles, outlining the various factors that affect
the solution space. Another important advantage of this formula-
tion is that different muscle models, including nonlinear
Hill-type and muscle synergies, can be used in the derivation of
the feasible inequality. The bottleneck of this method lies in the
time complexity of the vertex enumeration algorithm, used for
sampling the feasible space satisfying the constraints presented
as linear inequalities. Given that the space defined by the inequal-
ity in Eq. (9) is convex and bounded (Supplementary materials),
the complexity is cubic (Oðm3Þ) with respect to the number of
muscles. In highly complicated musculoskeletal models with a
large number of muscles, the aforementioned deterministic
approach becomes computationally intractable due to the cubic
time complexity growth. In such cases, randomized algorithms
have to be employed to provide a representative sampling of the
high-dimensional polytope (Vempala, 2005).

While task and joint stiffness can be measured experimentally
using specialized equipment, one cannot estimate the muscle stiff-
ness from those measurements alone, because the mapping from
low- (task or joint) to high-dimensional muscle stiffness is not
unique. Therefore, accurate estimation of muscle stiffness from
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task or joint stiffness is in general not possible, whereas validation
would require direct measurement. Consequently, identification of
the feasible solution space, as outlined in this work, can help to
properly interpret results obtained from the redundant muscu-
loskeletal systems.

The presented studies demonstrate the application of the pro-
posed methodology in the context of real-world tasks. The first
used a simplified model to study the arm endpoint stiffness, while
the second used a more realistic OpenSim gait model to examine
the joint stiffness during walking. The main weakness of the pro-
posed method is that the accuracy in the predicted quantities
depends on the quality of the musculoskeletal model that is being
used, thus it is important to examine the sensitivity of the feasible
stiffness with respect to the uncertainties in the model parameters.
Nevertheless, the obtained results confirm previous findings and
outline the feasible solution space, emphasizing that misinterpre-
tation due to large variability is possible if the null space solutions
are ignored. The analysis provides useful conclusions and insights,
such as the balance between stiffness capacity and task require-
ments, indicating that higher task requirements reduce the ability
for stiffness modulation.

5. Conclusion

In this study, we presented a method to determine the feasible
task and joint stiffness of the musculoskeletal system for any
movement. Undoubtedly, this is crucial for understanding the
muscle coordination mechanisms and the various strategies avail-
able to the CNS, aiding in the development of effective evaluation
and treatment of disorders such as Parkinson’s disease. Practical
and experimental limitations severely hinder the in vivo measure-
ment of stiffness, while model-based estimation suffers from the
musculoskeletal redundancy. To overcome the latter limitation,
we choose to model the muscle redundancy using the notion of
null space and identify the possible solutions that satisfy the task
and muscle constraints. Results show that the musculoskeletal sys-
tem is capable of achieving a highly variable stiffness using muscle
co-contraction, highlighting the importance of performing feasibil-
ity studies.
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