
Computers & Graphics 91 (2020) 199–218 

Contents lists available at ScienceDirect 

Computers & Graphics 

journal homepage: www.elsevier.com/locate/cag 

Special Section on 3DOR 2020 

SHREC 2020: Retrieval of digital surfaces with similar geometric reliefs 

Elia Moscoso Thompson 

a , 1 , ∗, Silvia Biasotti a , 1 , Andrea Giachetti b , 1 , Claudio Tortorici j , 
Naoufel Werghi k , Ahmad Shaker Obeid 

k , Stefano Berretti l , Hoang-Phuc Nguyen-Dinh 

c , n , 
Minh-Quan Le 

c , n , Hai-Dang Nguyen 

c , n , Minh-Triet Tran 

c , n , Leonardo Gigli d , 
Santiago Velasco-Forero 

d , Beatriz Marcotegui d , Ivan Sipiran 

e , Benjamin Bustos f , 
Ioannis Romanelis g , Vlassis Fotis g , Gerasimos Arvanitis g , Konstantinos Moustakas g , 
Ekpo Otu 

h , Reyer Zwiggelaar h , David Hunter h , Yonghuai Liu 

i , Yoko Arteaga m , p , 
Ramamoorthy Luxman 

o 

a Istituto di Matematica Applicata e Tecnologie Informatiche ‘E. Magenes’ - CNR Italy 
b Department of Computer Science, University of Verona Italy 
c University of Science, Ho Chi Minh city, Vietnam 

d Center for Mathematical Morphology - Mines ParisTech - PSL France 
e Department of Engineering, Pontifical Catholic University of Peru, PUCP Peru 
f Millennium Institute Foundational Research on Data, Department of Computer Science, University of Chile, Chile 
g Electrical and Computer Engineering Department, University of Patras, Rion-Patras, Greece 
h Department of Computer Science Aberystwyth University, Aberystwyth, SY23 3DB, UK 
i Department of Computer Science Edge Hill University, Ormskirk, L39 4QP, UK 
j Technology Innovation Institute, Abu Dhabi, UAE 
k KUCARS, Department of Electrical Engineering and Computer Sciences, Khalifa University, UAE 
l University of Florence, Florence, Italy 
m Centre de Recherche et Restauration des Musees de France, Paris, France 
n Vietnam National University, Ho Chi Minh city, Vietnam 

o Université Bourgogne Franche-Comté, Dijon, France 
p Norwegian University of Science and Technology, Gjovik, Norway 

a r t i c l e i n f o 

Article history: 

Received 8 May 2020 

Revised 17 July 2020 

Accepted 27 July 2020 

Available online 1 August 2020 

Keywords: 

Contest 

3D Models 

Reliefs retrieval 

a b s t r a c t 

This paper presents the methods that have participated in the SHREC’20 contest on retrieval of surface 

patches with similar geometric reliefs and the analysis of their performance over the benchmark created 

for this challenge. The goal of the context is to verify the possibility of retrieving 3D models only based on 

the reliefs that are present on their surface and to compare methods that are suitable for this task. This 

problem is related to many real world applications, such as the classification of cultural heritage goods 

or the analysis of different materials. To address this challenge, it is necessary to characterize the local 

”geometric pattern” information, possibly forgetting model size and bending. Seven groups participated 

in this contest and twenty runs were submitted for evaluation. The performances of the methods reveal 

that good results are achieved with a number of techniques that use different approaches. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

Geometric reliefs are a significant component for the local char- 

acterization of a surface, which are independent of its overall 

∗ Corresponding author. 

E-mail addresses: elia.moscoso@ge.imati.cnr.it (E. Moscoso Thompson), 

silvia.biasotti@ge.imati.cnr.it (S. Biasotti). 
1 Track organizer 

shape and spatial embedding. Being able to characterize different 

repeated relief patterns on a surface is a key issue for several tasks, 

such as the analysis and detection of molding marks, composite 

materials and ornamental decorations on an object surface. The 

characterization of this local surface property is an open problem 

that is gaining more and more interest over the years. 

Several methods have been introduced for the characteriza- 

tion of local, repeated, geometric variations on a surface, showing 

this is a vivid research field. In the set of methods that face this 

https://doi.org/10.1016/j.cag.2020.07.011 

0097-8493/© 2020 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.cag.2020.07.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2020.07.011&domain=pdf
mailto:elia.moscoso@ge.imati.cnr.it
mailto:silvia.biasotti@ge.imati.cnr.it
https://doi.org/10.1016/j.cag.2020.07.011


200 E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 

Fig. 1. A visual representation of the challenge proposed in this contest. A query model Q with a bark-like relief impressed on its surface is selected. In the ideal case, 

models with a bark-like relief are retrieved before than models with different reliefs, independently of the global geometry of the models. The “check” and “cross” marks 

highlight models that are relevant or non-relevant to the query. 

problem, we distinguish two main strategies: i) to (fully or par- 

tially) project a 3D model into an image or a set of images and 

then apply a texture image retrieval method; ii) to extend the im- 

age texture characterization directly to 3D model representations. 

Examples of methods that face this problem as an image texture 

retrieval problem have been proposed for the classification of trees 

based on their bark reliefs [1] or the classification of engraved rock 

artifacts based on their height-fields [2] . In this trend, the combi- 

nation of the SIFT descriptor with the Fisher Vector, which gave 

very good performances for image texture retrieval [3] , has shown 

very good performances also for the retrieval of relief patterns [4] : 

in this case, representative surface images were obtained by pro- 

jecting the mean curvature of the neighborhood of the center of 

the model. Methods that directly use 3D representations are gen- 

erally designed for triangle meshes or point clouds, because these 

representations allow a precise and locally adaptive representation 

of the surface that is less accessible with grids (e.g., voxels). This 

class of methods includes the numerous extensions of the Local Bi- 

nary Pattern (LBP) [5] proposed in recent years. The first of these 

extensions was the meshLBP [6,7] , followed by the edgeLBP [8–

12] and the mpLBP [13,14] . Besides the different strategies to en- 

code the neighbour of a vertex, the main idea behind these LBP- 

based 3D characterizations is to replace the gray-scale value in the 

pixels of an image with geometric or colorimetric properties (e.g., 

curvatures or color channels) defined on the faces or the vertices 

of the model. Recently, also the multi-scale properties of the Lapla- 

cian operator have been used in [15] to obtain a scale-aware sur- 

face description. In this case, the parts of interest are obtained by 

analyzing the difference between a surface and its counterpart ob- 

tained by smoothing. 

Based on the increasing number of methods for 3D pattern re- 

trieval made available in recent years, we think it is now impor- 

tant to understand how much existing methods are suitable to ad- 

dress realistic applications. The aim of this SHREC 2020 track is 

to provide a new benchmark for geometric pattern retrieval and 

to evaluate methods for assessing the similarity between two ob- 

jects, only on the basis of the local, geometric variations of their 

surfaces, without considering their global shape. Our new collec- 

tion of 3D models is characterized by different classes of reliefs on 

the models surface. A visual representation of the task addressed 

in this contest is shown in Fig. 1 . 

These reliefs represent different kinds of materials, like bark 

wood or rocks, and structures, like bricks. The peculiarity of the 

models proposed in this contest is that a realistic geometric pat- 

tern (derived from real texture images) is applied to a number of 

base models, some of those have a non-trivial topology (with han- 

dles, tunnels, boundaries, etc.). 

The remainder of the paper is organized as follows. 

Section 2 briefly overviews existing datasets and benchmarks 

that address the geometric pattern retrieval or strictly related 

tasks. Section 3 describes the 3D models used in this challenge 

and details how they have been generated from a base model 

and a set of real textures. Section 4 details the eight meth- 

ods submitted to this contest, while Section 5 introduces the 

methodology and the measures used to evaluate the different 

runs. Section 6 presents the settings of the runs submitted to this 

contest and their retrieval and classification performances. Finally, 

discussions and concluding remarks are in Section 7 . 

2. Related benchmarks 

The interest for geometric pattern analysis has been borrowed 

from image texture analysis, which is a typical problem of Com- 

puter Vision. To the best of our knowledge, the first dataset ex- 

plicitly delivered for 3D texture analysis was the ”MIT CSAIL Tex- 

tured Models Database” [16] . During years, several factors have 

concurred to the increase of collections of 3D models equipped 

with textures; for instance, the improvement of the spatial data ac- 

quisition systems that also allow the representation of the surface 

details; the increase of applications interested in the comparison 

of 3D models on the basis of their texture or material and, even, 

the success of benchmarks and methods for image texture retrieval 

[3] . 

Without aiming to list all the existing general purpose data col- 

lections that contain some model equipped with a 3D texture (e.g., 

Skechfab [17] or Turbosquid [18] ), we focus on benchmarks for 

similarity evaluation that provides also a ground truth and a num- 

ber of evaluation measures. Several previous SHape REtrieval Con- 

test (SHREC) tracks are somehow related to our challenge. The first 

SHREC track that partially faced the problem of local surface char- 

acterization is the SHREC’13 track on retrieval and classification of 

3D textured models [19] , extended the SHREC’14 track [20] with 

the same task but a larger dataset. A complete analysis of the 

methods tested on those contests was published in [21] . Differ- 

ently from this contest that only focuses on local, geometric sur- 

face variations, there, the task was to group models based on their 

overall shape and their colorimetric texture. In other words, mod- 

els that were globally similar but with different textures were less 

similar than those with the same shape and texture. While in the 

SHREC’13 and SHREC’14 tracks, texture analysis was colorimetric 

and only marginal, here it is geometric and the only aspect that 

drives the similarity among models. 

The interest on geometric reliefs shaped into the SHREC’17 track 

on the retrieval of reliefs [11] . There, fabrics with different patterns 

were acquired with photogrammetry and used to create a bench- 

mark for the pattern retrieval task. That benchmark entirely fo- 

cused on the local characterization of surfaces based on patterns 

and it is currently used as the reference benchmark by many of 

the works on this topic. The high number of subscribers to that 

track, but the quite limited number of effective runs submitted to 

the track revealed the high interest in the subject and the difficulty 

in facing that task. Aside from some highlights, the methods sub- 

mitted to the original contest showed quite limited performances, 

later on the research on this topic progressed, several methods 

have been proposed and successfully tackled such a benchmark. On 

a similar note, the SHREC’18 track on gray patterns [12] proposed 



E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 201 

a retrieval task on a dataset of models characterized by gray-scale 

patterns. Interestingly, all the participants proposed feature-vector 

based methods. 

It is also worth mentioning the SHREC’18 track on geometric 

pattern recognition [22] that differs from the previous benchmarks 

on 3D pattern retrieval because the participants were asked to lo- 

cate a query relief sample in a set of 3D models. The challenge 

was to recognize if a type of geometric pattern is contained or not 

in another model and, eventually, to identify it on the model. The 

challenge launched in that task is still an open problem and that 

track report can be considered as a position paper on 3D pattern 

recognition. 

Based on the progresses made in recent years, it is now im- 

portant to analyse how much the performance of the various ap- 

proaches has improved compared to the methods presented in the 

SHREC’17 track [11] , while bearing in mind that the more general 

issue of 3D pattern recognition presented in the SHREC’18 track 

[22] is still open. 

3. The dataset 

The dataset proposed for this challenge consists of 220 trian- 

gulated surfaces. Each one of them is characterized by one of 11 

different geometric reliefs. 

To create the models, we selected the 20 base models already 

used in [12] . These models represent pots, goblets and mugs. The 

surfaces of these models are properly oriented and they are made 

of a single connected component. The topology of some models is 

non trivial (they may contain handles or tunnels) and may present 

a boundary, depending on the object represented. Then, a set of 

11 textures is selected from the free dataset of textures available 

online from the site Texture Haven [23] that contains a set of nat- 

ural, high quality texture images made from scanned maps. Most 

of these textures represent real bricks, floors, roofs surfaces and 

rock or wood materials. 

Given the nature of the textures selected, on the one hand, 

models of buildings or their agglomerates would be the most re- 

alistic; on the other hand, we think that in 3D pattern retrieval 

the most challenging issue is to deal with free-form models, pos- 

sibly with more complex bendings and non trivial topology. Given 

the heterogeneity of the textures selected and the geometry of the 

base models, methods that perform well in this contest have a high 

chance of being equally valid in other contexts, with little to no 

changes. 

We transform each texture in height values suitable to create a 

geometric relief by converting each texture into a gray-scale image. 

The brightness and the contrast values of each image were tuned 

for each image, based on the values that better enhance the details 

of the respective color texture. The obtained height field map is ap- 

plied to the models: initially, the texture is projected onto the tar- 

get model. Depending on the surface bending, this procedure de- 

forms the texture. To limit this effect, each model is fixed by hand, 

in particular, in correspondence of significant distortions and parts 

of the surface with complex geometry (like tight handles). Finally, 

we rise the vertices of the triangle mesh based on the gray-scale 

value of the previously processed image along the normal vectors 

of the models. The same process is repeated for all the textures. 

A couple of examples of the conversion of a texture into a height 

map are depicted in Fig. 2 . 

Finally, the models are slightly smoothed to minimize the per- 

turbations in the color derived from the gray-scale conversion of 

the textures and the models are sampled with 50,0 0 0 vertices. 

Base models, height fields and examples of the final 3D models 

are shown in Fig. 3 . 

Fig. 2. An example of the transformation process from texture to height map. On 

the left, the original textures are shown. On the right, the final height-map obtained 

with the process explained in Section 3 . This process can end with a binary image 

(just black and white, as in the example at the Top) or a gray-scale one (like that 

at the Bottom). 

The Ground Truth 

The challenge proposed in this contest is to group the models 

only according to the geometric reliefs impressed on them, rather 

than their shape. In other words, a perfect score is obtained if a 

method is able to define 11 groups of 20 models each, each group 

with the models characterized by one of the 11 different geometric 

reliefs. 

4. The participants and the proposed methods 

Seven groups subscribed to this track. All of them submitted 

at least one method; one group submitted two methods; over- 

all, eight methods and twenty runs were submitted to evaluation. 

The participants are anonymous for review for and their proposed 

method(s) are summarized in the following. 

4.1. Augmented point pair feature descriptor aggregation with fisher 

kernel (APPFD-FK) by Ekpo Otu, Reyer Zwiggelaar, David Hunter, 

Yonghuai Liu 

The Augmented Point Pair Feature Descriptor (APPFD) is a 3D 

object descriptor made of local features that capture the geomet- 

ric characteristics or properties of a set of surface patches, each 

centred at a point (i.e. a keypoint ) p k i = [ x, y, z] , which incorpo- 

rates the geometrical relation between p k i and its r -nearest neigh- 

bors (i.e. the surface patch around p k i ). The APPFD algorithm con- 

sists of the following stages: point cloud sampling, surface normals 

estimation, keypoints determination, local surface patch (LSP) se- 

lection, Augmented Point-pair Features (APPF) extraction and key- 

points descriptor (APPFD) computation for LSPs. While the APPF 

extraction and APPFD algorithms are described in detail here, the 

reader is referred to the literature in [24] for more details on the 

other stages. Finally, the Fisher Kernel approach to local descrip- 

tor aggregation with Gaussian Mixture Model (GMM) [25,26] is ap- 

plied to the local APPFD to derive a single signature, APPFD-FK, for 



202 E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 

Fig. 3. (Left): the 20 base models on which the reliefs are applied. (Center): the 11 transformed textures used as height-fields on the base models (the brighter the color, 

the higher is the value of the field in that point). (Right): a sample of the final models of the dataset of the contest. 

Fig. 4. Local Surface Patch (LSP), P i with pairwise points ( p i , p j ) as part of a surflet- 

pair relation for ( p i , n i ) and ( p j , n j ), with p i being the origin. θ and φ are the an- 

gles of vectors projection about the origin, p i . θ is the projection angle from vector 

〈 p i − p j 〉 to vector 〈 p i − p c 〉 while φ is the projection angle from vector 〈 p i − p j 〉 to 
vector 〈 p i − l〉 . The LSP centre is given by p c , keypoint is given as p k i where i = 2 . 

Finally, l is the vector position of p k i − p c . 

each 3D shape. Fig. 5 shows the processing pipeline of the APPFD- 

FK algorithm. The three main steps of the algorithm are outlined 

in the following: 

1. Augmented Point Pair Feature Descriptor (APPFD): The APPFD is 

derived by three sub-steps: i) For each LSP extracting four- 

dimensional local Point-Pair Feature (PPF), f 1 = (α, β, γ , δ) as 

in [27] , ii) Augmenting f 1 to a six-dimensional feature - the 

Augmented PPF, using additional two-dimensional local angu- 

lar feature, f 2 = (θ, φ) , depicted in Fig. 4 , and iii) Discretizing 

the six-dimensional augmented feature f 3 = (α, β, γ , δ, θ, φ) 

into one or multi-dimensional histograms to yield the final lo- 

cal APPFD. Firstly, extracting PPF involves two sets of oriented 

points, p i , p j = [(p i , n i ) , (p j , n j )] , used to encode the underlying 

surface geometry for their patch on a 3D surface. For every pos- 

sible combination q of p i , p j in LSP (i.e. r -neighbourhood of p k i ), 

where p i is the source point w.r.t. the constraint in (1) holding 

TRUE, where i � = j , then a transformation independent Darboux 

frame, D f = U, V, W is defined as: U = n i , V = U × ((p j − p i ) /δ) , 

W = U ×V . 

| n i · (p j − p i ) | ≤ | n j · (p j − p i ) | (1) 

Alternatively, p j becomes the source point (i.e. point with the 

larger angle between its associated normal and the line con- 

necting the two points) if the constraint in (1) is FALSE, and 

the variables in (1) are reversed. f 1 (p i , p j ) = (α, β, γ , δ) is then 

derived for the source point as follows: 

α = arctan (W · n j , U · n j ) , α ∈ 

[ 
−π

2 
, 
π

2 

] 
(2) 

β = V · n j , β ∈ (−1 , 1) (3) 

γ = U · p j − p i 

‖ p j − p i ‖ 

, γ ∈ (−1 , 1) (4) 

δ = ‖ p j − p i ‖ . (5) 

Secondly, f 2 (p i , p j ) = (θ, φ) is extracted for every possible 

combination of point-pair, p i , p j in the LSP, because f 1 is not ro- 

bust enough to capture the entire geometric information for a 

given surface region or LSP. In addition, the PPF approach opens 

up possibilities for additional feature space. Therefore, as illus- 

trated in Fig. 4 , θ is geometrically the angle of the projection 

of the vector, 
−→ 

S onto the unit vector 
−→ 

V 1 , and φ is the angle of 

the projection of the vector 
−→ 

S onto the unit vector 
−→ 

V 2 , where −→ 

V 1 = p i − p c , 
−→ 

V 2 = p i − l, and 
−→ 

S = p i − p j , with p c = 

1 
n i 

∑ n i 
i =1 

p k i 
(i.e. LSP centroid), and l = (p j − p c ) , the vector location of p k i 
w.r.t. its LSP. Note that p i , p j , p c , and l are all points in R 

3 space, 

although l is a vector. 

Basically, α, β , γ are the angular variations between ( n i , n j ), 

while δ is the spatial distance between p i and p j . In Euclidean 

geometry, each of the projections φ and θ can be interpreted 

as an angle between two vectors. For example ∠ 1 〈 −→ 

S , 
−→ 

V 1 〉 and 
∠ 2 〈 −→ 

S , 
−→ 

V 2 〉 are equivalent to θ and φ respectively. These angles 

are derived by taking the scalar products of ( 
−→ 

S · −→ 

V 1 ) for � 1 , 



E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 203 

Fig. 5. Overview of the APPFD-FK framework, which computes a global Fisher Vector (FV) for each 3D shape. 

and ( 
−→ 

S · −→ 

V 2 ) for � 2 about a point p i in a given LSP. Mathe- 

matically, scalar products defined in this manner are homoge- 

neous (i.e. invariant) under scaling [28] and rotation [29] . For 

this reason, our two-dimensional local geometric features, θ , φ
are rotation and scale invariant for 3D shapes under rigid and 

non-rigid affine transformations. Moreover, notice that since ge- 

ometric information are embodied by these variations and pro- 

jections, the global shape of the 3D shape is not considered at 

all. 

Lastly, for each LSP or keypoint, p k i with q combinations, q (q −
1) / 2 six-dimensional APPF: f 3 = ( f 1 + f 2 ) is obtained thus: 

f 3 (p i , p j ) = ( f 1 (p i , p j ) , f 2 (p i , p j )) = (α, β, γ , δ, φ, θ ) and des- 

critized into histograms to yield APPFD. In computing APPFD for 

this task, 4500 points and their normals, ( P , N ) were sampled 

from each 3D surface, K keypoints, { p k i , i = 1 : K} were selected 

and for each p k i , a LSP, { P i , i = 1 : K} and their corresponding 
normals, { N i , i = 1 : K} were computed. Points in P i are within 

the specified radius, r = 0 . 30 − 0 . 40 around p k i . 

For our first and second experimental runs (APPFD-FK-run1 

and APPFD-FK-run2) a one-dimensional [0, 1] normalized his- 

togram with bins = 35 is used to represent each of the feature- 

dimension in APPF, concatenated to yield a final 6 times 35 = 

210-dimensional local descriptor for each LSP or keypoint. In 

our third experimental run (APPFD-FK-run3) all six-dimensional 

feature in APPF are discretized into a multi-dimensional his- 

togram with bins = 5 in each feature-dimension, flattened and 

normalized to give 5 6 = 15625-dimensional local descriptor for 

each LSP or keypoint. 

2. Keypoint APPFD Aggregation with Fisher Vector (FV) and Gaussian 

Mixture Model(GMM): Inspired by the work in [25,26] , the final 

stage of our novel APPFD-FK algorithm consists of computing a 

global FV for each input 3D shape given their keypoint APPFDs. 

The FV computation relies on training a GMM, as a generative 

probabilistic model, with the keypoint APPFDs for all database 

shapes. The GMM is trained with 10 Gaussians, using diagonal 

covariances for all experimental runs. Using the trained GMM 

and local keypoint APPFDs for a given 3D shape, a final global 

FV which is L 2 and power-normalized (so it has unit length) is 

computed with the help of [30] . Then, for local APPFD with 210 

and 15,625 dimensions, FVs with 4210 and 312,510 dimensions, 

respectively are returned, which represent a single 3D shape. 

However through experimental findings, applying linear dimen- 

sionality reduction (in our case principal component analysis, 

PCA) to either of the 4210 or 312,510 dimensional FVs remain- 

ing 99% of their information reduces them to 162 or 186 re- 

spectively, and still yield close matching results. 

3. Shape Similarity Measurement: Overall, the L 2 or cosine distance 

metric between FVs is expected to give a good approximation 

of the similarity between shapes in the sc20-relief-rc dataset. 

The cosine metric in (6) is adopted, instead. 

cos ( FV 1 , FV 2 ) = 

FV 1 · FV 2 

‖ FV 1 ‖ ‖ FV 2 ‖ 

= 

∑ n 
i =1 FV 1 i FV 2 i √ ∑ n 

i =1 ( FV 1 i ) 2 
√ ∑ n 

i =1 ( FV 2 i ) 2 
(6) 

4.2. Orientation histogram (OH) and deep feature ensemble (DFE) by 

Hoang-Phuc Nguyen-Dinh, Minh-Quan Le, Hai-Dang Nguyen and 

Minh-Triet Tran 

This group submitted two different methods, with three runs 

each. Since the two methods share the pre-processing steps, we 

describe both methods in this Section. As the goal of the track is 

to retrieve 3D models based only on the relief of their surfaces and 

not the shape of the 3D models, the authors do not exploit the 3D 

mesh directly but take the 2D screenshots of the 3D models. Best 

view among multiple 2D screenshots is selected by searching the 

maximum inscribed rectangle. 

4.2.1. Orientation histogram (OH) 

1. Uprighting and rendering a 3D object: The first step is to upright 

the 3D object by transforming the object into a new 3D co- 

ordinate system so that the object stands vertically across the 

y-axis for the ease of rendering. That could be done by finding 

the eigenvector of all the vertices of the object and then choose 

the normalized version of it (called vector j ′ ) to be the O 

′ 
y axis 

of the new system. The two remaining axes O 

′ 
x and O 

′ 
z are cho- 

sen randomly, satisfying that all the three vectors are unit vec- 



204 E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 

3D models Upright 3D models
2D images with largest

inscribed square Cropped patterns

Upright Render & find largest
inscribed square

Crop

Fig. 6. Overview of the pre-processing steps for the OH and DFE methods. 

tors and pairwise orthogonal. The origin of the new system is 

the centroid of the object. Moving the camera around the O 

′ 
y 

axis, many 2D images of the object are sampled. Among these, 

the image having the most relief patterns is selected. As plain 

images would have fewer points at which the gradient vectors 

equal to zero and vice versa, the Sobel Filter [31] is used to cal- 

culate the gradients of an object’s rendered images. The image 

with the most non-zero gradient vectors is set to be the one 

representative of this object. An overview of this step is shown 

in Fig. 6 . 

2. Finding the largest inscribed square: In order to remove the 

global shape of the object and focus on the local reliefs, the 

largest inscribed square of the object on the 2D image is ex- 

tracted, which means selecting the largest region of only re- 

lief patterns. This is done by solving the problem of finding 

the largest square with no white points inside of it (because 

white points are background). The latter problem is resolved 

by using a simple binary search algorithm with the complex- 

ity of N 

2 ∗log N ( N is the greater value between the width and 

the height of an image). After this step, each 3D object has one 

representing a 2D square image. 

3. Feature extraction: The goal of this step is to represent every 

image after the second step as feature vectors with the length 

of N. Such vector is obtained with the method of counting the 

ǣgradient histogram ǥ of an image. Specifically, in each image, 

first, Sobel Filter [31] is used to find the gradient vectors of ev- 

ery point and derive their modules and their angles with the 

O x axis. Second, a histogram with the number of bins being N, 

ranging from −π/ 2 to π /2, is computed on the frequency of the 

calculated angles. Every angle is counted with the weight of its 

corresponding vectors module instead of one as usual. Further- 

more, the weight of a sample is distributed to the two nearest 

bins with a suitable ratio instead of just one. This histogram 

could describe the direction and size of the relief on an image. 

The histogram is then normalized by making the sum across N 

bins be 1 and translating the histogram so that the highest bin 

is the first bin (ranged from −π/ 2 to π/ 2 + π/n ). Every his- 

togram is saved as a 1D-array called the feature vector of the 

image. 

4. Creation of the Dis-similarity Matrix: The distance between pairs 

of 3D objects is calculated on their feature vectors using suit- 

able metrics, such as L1 distance, L2 distance, chi-square dis- 

tance, cosine-distance, etc. The original distance matrix is then 

created by calculating the distance between every pair of vec- 

tors. Authors aim to further exploit the visual relationships of 

an object x and its neighbors with another object y . There- 

fore, the authors use the Average Query Expansion (AQE) [32] 

to modify the original distance matrix (see Fig. 7 . Let R ( x ) be 

the list of the nearest neighbors (in the ascending order) of the 

x

y

R(x)1
R(x)2

R(x)k

x

Direct distance

Modified distance with AQE

Fig. 7. Overview of the Average Query Expansion used in OH and DFE. 

object x . The modified distance between object x and object y 

is defined as follows: 

dist AQE (x, y ) = α × dist(x, y ) + 

1 − α

k 
×

k ∑ 

i =1 

dist(R (x ) i , y ) 

where dist is the original distance, dist_AQE is the modified dis- 

tance matrix, k and α are hyperparameters. 

An overview of these last two steps is shown in Fig. 8 . The 

runs submitted to the track differ for the number of bins and 

the metrics for the feature vectors, their settings are described in 

Section 6.1 . 

4.2.2. Deep feature ensemble (DFE) 

This method shares the first two steps (i.e., the model pre- 

processing steps) with the method described in Section 4.2.1 . The 

third and fourth steps are described in the following. 

3. Use of pre-trained models to extract features: With the ad- 

vances of deep learning, especially pre-trained Convolutional 

Neural Networks (CNNs), the authors propose using these 

pre-trained models to extract features of each pattern. Many 

high-performance models such as ResNet [33] , DenseNet [34] , 

VGG [35] , and Efficient-Net [36] suit this purpose. 

A common approach is to use an extracted feature vector from 

a pre-trained network as the input for classification. However, 

the output at each layer in a pre-trained model offers differ- 

ent high-level information about the textures in the original 



E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 205 

Cropped patterns
Images’

gradient vectors Histograms Feature vectors Dissimilarity matrix

Calculate 
histogram

Calculate 
gradient vectors

Calculate 
distances with

query expansionAngle of Gradient Vectors

Represent
feature vectors

Fig. 8. Overview of the third and fourth steps of the OH method. 

Input Shape: (300, 300, 3)

(18, 18, 256) (9, 9, 896)

(896,)(256,)

DenseBlock5
DenseBlock1 DenseBlock2 DenseBlock3 DenseBlock4

Global Average 
Pooling

Global Average 
Pooling

Feature vector

…
× ×

Fig. 9. Illustration for step three ”Extracting Feature by concatenating feature vectors from different layers of pre-trained models” of the DFE method (the figure illustrates 

the step when using Dense-Net-201). 

input. Therefore, the authors propose to synergize the infor- 

mation extracted from different intermediate layers of different 

pre-trained networks by assembling feature vectors. 

The authors choose intermediate layers instead of the last ones 

because features extracted in the middle layers would be more 

appropriate to represent information of the simple patterns on 

the texture input image. First, the authors pass a square image 

containing patterns into a pre-trained neural network. Then, 

the authors take the output tensor of a chosen intermediate 

layer of that network with the shape of ( h , w, channelsize ). After 

that, the authors pass the tensor through a Global Average Pool- 

ing Layer to create a vector with a length of ( channelsize , ) used 

as a feature vector. By using Global Average Pooling, the authors 

pick up all requisite activated features without missing any of 

them as using Global Max Pooling and make the result more 

robust to spatial translation in the image. Finally, the authors 

multiply each feature vector by a parameter (see Section 6.1 ) 

and concatenate them into one single final feature vector. A vi- 

sual representation of the way authors ensemble the feature 

vectors from different layers in different models is shown in 

Fig. 9 

4. Creation of the Dis-similarity Matrix: After extracting features by 

the method described above, each object is represented as a 

feature vector. Such vectors are used to calculate distance be- 

tween all pairs of objects (with metrics such as cosine similar- 

ity, L1 distance, L2 distance, etc.). Besides, the authors combine 

Average Query Expansion (AQE) [32] with a view to helping our 

model to remove noises. 

The pipeline of DFE method is summarized in Fig. 10 . The au- 

thors considered many single pre-trained models.; the pre-trained 

models considered in the runs submitted to this track are de- 

scribed in Section 6.1 . 

4.3. Deep patch metric learning (DPML) by Leonardo Gigli, Santiago 

Velasco-Forero, Beatriz Marcotegui 

This method works in two main steps. The first one involves 

the extraction of patch images from the mesh surfaces, to decor- 

relate information about relief from the global shape of the mesh. 

The second step uses these patches to train a Siamese Neural Net- 

work [37] to learn a distance function between each pair of images. 

1. Patch extraction: The goal is to extract images containing only 

the local texture. Let us define a triangle mesh S ⊂ R 

3 , along 

with a graph G S = (V, E ) associated to S, that is the graph 

whose nodes are the points ( x 1 , . . . , x n ) of S . Two nodes are 

connected if and only if they are vertices of one of the trian- 

gles of S at the same time. With this setting, the method starts 

sampling a subset of points ( x 1 , . . . , x n ) ∈ S using Poisson Disk 

Sampling [38] . Then for each point x i , using the geodesic dis- 



206 E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 

Cropped patterns
Intermediate 

feature vectors
Concatenated
feature vectors Dissimilarity matrix

Extract features Calculate distances 
with query
expansion

Global pooling and
feature concatenation

Fig. 10. Overview of the third and fourth steps of the Deep Feature Ensemble method (DFE). 

Fig. 11. Pipeline of the first step of the DPML method. 

tance defined over the graph G S , a local neighborhood is de- 
fined. In particular, the geodesic distance d between two points 

x i and x j is the length of the shortest path connecting them. 

Thus, given r > 0, the local neighborhood is defined as N r (x i ) = 

{ x j ∈ V| d(x i , x j ) ≤ r} . The goal is to project the local neighbor- 
hood over a plane and obtain an elevation image. For this rea- 

son, only the neighborhood that are as flat as possible are se- 

lected. To estimate such a property, the covariance based fea- 

tures are used. Those features are derived from the eigenval- 

ues λ1 ≤λ2 ≤λ3 of the neighborhood covariance matrix defined 

as: 

cov (N r (x i )) = 

1 

|N r (x i ) | 
∑ 

x ∈N r (x i ) 
(x − x )(x − x ) T 

and x is the centroid of the neighborhood N r (x i ) . The following 

criteria are used to estimate if the neighborhood is flat enough: 

• criterion on planarity: 
λ2 −λ3 

λ1 
≥ 0 . 5 , 

• criterion on the change of curvature: 
λ3 

λ1 + λ2 + λ3 
≤ 0 . 03 . 

The two values have been chosen empirically after some test 

over different objects. Validated neighborhoods are projected 

over the tangent space of the surface at x i . A regular grid is 

defined over the tangent space, and each element of the grid 

corresponds to a pixel of the image. The intensity values of the 

image correspond to the distance between the points projected 

over the element and the tangent plane. In order to obtain a 

uniform sized patch the method crops them to obtain images 

of size 231 ×231 (equal to the smallest image extracted with 

this process). For each patch, crops are computed so that there 

is the minimum number of void pixels in each image. 

An overview of this process is reported in Fig. 11 . 

2. Learning the embedding: The selected images are used to train a 

Siamese neural network with the Triplet Loss. The architecture 

is composed of three CNNs sharing the same weights. In this 

case the VGG16 [39] , without fully connected layers, is chosen 

as CNN. The CNNs work in parallel taking as input a triplet of 

images and generating a comparable feature vectors, as shown 

in Fig. 12 . The Triplet Loss minimizes the distance between an 

anchor and a positive, both of which have the same identity, 

Fig. 12. Overview of the network of the DPML. Such network consists of a batch 

input layer and a deep CNN which results in the image embedding by using a triplet 

loss during training. 

and maximizes the distance between the anchor and a negative 

of a different identity, i.e. an image from a different object [40] . 

Finally, the distance 
 between two objects S i and S j is de- 
fined as the minimum distance between any couple of images 

belonging to the two surfaces: 


(S i , S j ) = min 
h,k ∈{ 1 , ... ,m i }×{ 1 , ... ,m j } 

δ(I h , I k ) , 

where δ( I h , I k ) is the similarity function learned by the Siamese 

neural network. 

The authors submitted two runs for this method. The different 

parameter settings are reported in Section 6.1 . 

4.4. Signature quadratic form distance and pointnet (pointnet+SQFD) 

by ivan sipiran and benjamin bustos 

This method consists of computing the distance between two 

shapes using the Signature Quadratic Form Distance [41] (SQFD) 

over descriptions of local patches. The SQFD distance has proven 

to be effective in large-scale retrieval problems where shapes are 

represented as sets of features [42] . This approach focuses the at- 

tention in the relief (instead of the entire shape) by decomposing 

the shape into local patches and describing the local patches us- 

ing a neural network. Subsequently, authors compute aggregated 

features that keep the local variability of the patches. Finally, the 

SQFD distance is used to compare two signature collections. 



E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 207 

Given the 3D shape M , the feature set F M 

contains descrip- 

tors for the shape. To use the SQFD distance, the feature set F M 

has to be clustered in a set of disjoint descriptors, such that F M 

= 

C 1 ∪ C 2 ∪ . . . C n . A signature is computed for each cluster, defined 

as S M = { (c M 

i 
, w 

M 

i 
) , i = 1 , . . . , n } , where c M 

i 
= 

∑ 

d∈ C i d | C i | and w 

M 

i 
= 

| C i | | F M | . 
Each signature contains the average descriptor in the correspond- 

ing cluster and a weight that quantifies the representative power 

of the cluster with respect to the entire feature set. The cluster- 

ing method uses an intra-cluster threshold ( λ), and an inter-cluster 
threshold ( β) and a minimum number of elements per cluster 

( Nm ) to perform the grouping. For more details about the local 

clustering method, see [42] . 

Given two objects M and N , and their corresponding signatures 

S M and S N , the SQFD distance is obtained as follows: 

SQF D (S M , S N ) = 

√ 

(w 

M | − w 

N ) · A sim 

· (w 

M | − w 

N ) T , 

where (w 

M | w 

N ) denotes the concatenation of weight vectors. Ma- 

trix A sim 

stores the correlation between averaged descriptors in the 

signature. The correlation coefficient between two descriptors is 

defined as: 

cor r (c i , c j ) = exp(−αd 2 (c i , c j )) . 

Given an input shape, p local patches of diameter diam are sam- 

pled. The first seed vertex is randomly selected from the shape, 

while the remaining vertices are chosen using a farthest point 

sampling strategy over geodesic distances. For each selected vertex, 

a local patch of diameter diam is computed, using a region growing 

method. Each local patch is used to obtain a point cloud that rep- 

resents the patch. In all the submitted runs, a local patch is sam- 

pled with 2500 points. For the description of a given point cloud, 

a PointNet neural network [43] is used. A PointNet network using 

the ModelNet-10 dataset [44] is pre-trained for the classification 

task. After training, the neural network is fed with the point clouds 

obtained from the previous procedure. The 1024-dimensional fea- 

ture obtained by PointNet is used before the classification of the 

network. 

In the end, each shape in the dataset is represented by p de- 

scriptors of 1024 dimensions, which are finally used to compute 

the signatures and the SQFD. The other parameters that character- 

ize the runs are the number and diameter of the patches. More 

details on these settings are reported in Section 6.1 . 

4.5. Smooth-Rugged Normal Angle (SRNA) by Ioannis Romanelis, 

Vlassis Fotis, Gerasimos Arvanitis, Konstantinos Moustakas 

This approach outlines the geometric texture by using a per- 

vertex quantity and extracts a representative feature vector which 

is used to test against every other model in the database. 

Consider a smooth planar surface on which a transformation 

matrix T 1 ( v i ) is applied on each of its vertices, ”bending” it in such 

a way, that it forms a smooth cylinder (see Fig. 11 (b, left)). As is to 

be expected, T 1 ( v i ) is different depending on v i . By applying a pat- 

tern on the planar surface, while retaining one-to-one correspon- 

dence between the vertices, the surface of Fig. 11 (b, center) is ob- 

tained. The new vertices will have moved by some distance εi from 

their original positions yielding ˆ v i = v i + εi . This surface can also 
be morphed into a cylinder, using a transformation T 2 ( ̂  v i ) . With 

sufficient vertex density it is possible to state that T 1 ( v i ) ≈ T 2 ( ̂  v i ) . 

Since the transformation matrices affect not only the shape’s 

vertices, but also its vertex normals, we can conclude that the an- 

gle between the normal vectors n i (smooth) and ˆ n i (with pattern) 

is preserved on both the plane and the cylinder. This implies that 

the quantity θi = ∠ ( n i , ˆ n i ) is not affected by the underlying geom- 

etry and depends solely on the pattern. A small error is introduced 

in cases where the vertex density is not sufficient, but the angles 

θ i remain a good descriptor of local features. 

1. Laplacian Smoothing: The smoothing of the mesh is an iterative 

procedure which adjusts the position of each vertex based on 

the position of its neigborhood. The process is described by the 

following recursive equation: 

p n i = p n −1 
i 

+ λL ( p n −1 
i 

) 

L ( p n −1 
i 

) = 

∑ 

j∈N i 
p n −1 
j 

· w i j 

∑ 

j∈N i 
w i j 

− p n −1 
i 

w i j = 

√ 

( p j − p i ) · ( p j − p i ) T 

Authors set 30 iterations with a smoothing factor λ = 0 . 7 in or- 

der to erase the pattern from the meshes. An example of the 

final output of this step is shown in Fig. 13 (a). 

2. Theta Calculation: The normal vectors of the original and the 

smooth models are computed as well as the angles between 

them. As can be seen from the visualization in Fig. 13 (c), the 

angles outline the local features with great precision. Thus, it 

can be concluded that the process can be generalized to more 

complex shapes than planes and cylinders. 

3. Surface Segmentation: In order to distinguish areas containing 

pure textures from those with little to no texture, authors use 

the magnitude of the saliency s i of the vertices, similarly to 

[45] . In particular, points with small saliency are considered 

to lie on flat areas. Points with high saliency are either part 

of a texture or lie in areas with significant geometric defor- 

mation. Generally, the latter points are few and far between, 

so they are not taken into consideration. More precisely, for 

each vertex v i of the mesh, a patch of the 20 closest geometri- 

cal neighbours (including v i ) is created, together with a matrix 

N i = ( n 

T 
1 
n 

T 
2 

. . . n 

T 
N 
) of their normals. Afterwards the co-variance 

matrix is formed as: 

R i = N 

T 
i N i ∈ R 

3 ×3 ∀ i = 1 , · · · , n (7) 

Decomposing the covariance matrix leads to R i = U�U 

−1 

Finally, the saliency value of each vertex is computed as 

s i = 

1 √ 

λ2 
i 1 

+ λ2 
i 2 

+ λ2 
i 3 

∀ i = 1 , · · · , n (8) 

where λ1 i , λ2 i , λ3 i are the elements of �. Finally, k-means 

is used to cluster the points in the two aforementioned cate- 

gories: with or without texture. The points that belong to the 

cluster with the smallest centroid are considered to be part of 

flat areas (4 centroids were used in total). The points have now 

been labeled but they are randomly scattered along the surface 

of the mesh. A density based clustering helps unify them into 

large textureless areas. A variation of the DBSCAN algorithm 

[46] is used to find and connect neighboring flat points. In this 

variation the connectivity of the mesh is used to define a one- 

ring topological neighborhood instead of a geometrical one. An 

arbitrarily large threshold of points (in this case 10 0 0) per area 

ensures that only large areas are classified as flat. The segmen- 

tation result is visualized in Fig. 13 (d). 

4. Feature Vector Extraction: Finally, a feature vector needs to be 

computed for each model. The feature vector is a concatenation 

of 2 histograms H 1 , H 2 (see Table 1 ) multiplied by the weights 

w 1 , w 2 defined as follows: 

w 1 = 

number of points in the ”flat” areas 

total number of points 
(9) 

w 2 = 

number of points in the ”texture” areas 

total number of points 
(10) 

Probability normalization is applied to both histograms to bring 

the values between models to the same order of magnitude. 



208 E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 

Fig. 13. Overview of the steps of the SRNA method. (a): on the left, the original models with texture, while on the right the smoothed models without texture. (b): On the 

left, a smooth cylinder; on the center, a plane with texture; on the right, a cylinder with texture. (c): Theta angles visualization on different models. (d): Thetas (on the left) 

and segmentation (on the right) of the same model. 

Table 1 

Description and parameterization of the Histograms used for the feature vec- 

tor of the SRNA method. For every histogram a constant number of 30 uni- 

formly sampled bins has been used. 

Histogram Description Value range 

H1 angles in the ”flat” areas [0 , π
4 
] 

H2 angles in the ”texture” areas [0 , π
2 
] 

H3 st. dev. of the angles in the ”flat” areas [0,0.5] 

H4 st. dev. of the angles in the ”texture” areas [0,0.5] 

It is important to note that while flat areas may also contain 

some minor characteristics of the texture (see Fig. 13 (d)), they 

have to be taken into consideration during feature vector ex- 

traction. Finally, the feature vector is equal to: 

F V = [ w 1 · H 1 , w 2 · H 2 ] ; (11) 

The distances between each model are computed using the 

Manhattan distance, which makes the calculation very effi- 

cient computation-wise. Finally, the distance matrix obtained 

by comparing all the models is computed. While the method it- 

self will take a significant amount of time to finish, it is highly 

parallelizable. 

5. Neighborhood angle standard deviation: The method described so 

far only depends on the set of θ angles of a mesh. As a varia- 

tion of the previous steps, the authors included some neigh- 

borhood information in the feature vector. If two textures dis- 

play similar angles but differ in their spatial distributions they 

would otherwise be classified as the same. This extra bit of 

information can help distinguish between them and improve 

the accuracy of the method. However, computing a complex, 

rotation-invariant spatial descriptor is by no means an easy 

task, so authors overcome this problem by using the standard 

deviation of angles in small topological neighborhoods (1 rings). 

If the normals of that area have a common orientation the 

value will be small, whereas irregular areas will display much 

larger values. Two more histograms H 3 , H 4 (see Table 1 ) with 

weights w 3 = w 1 , w 4 = w 2 for the flat and texture areas are 

added to produce the final feature vector. A distance matrix is 

finally computed as described in the step 4. 

4.6. Mesh local binary pattern (meshlbp ∗), meshLBP-Sobel and 

meshLBP-Sharpen by Claudio Tortorici, Naoufel Werghi, Ahmad 

Shaker Obeid and Stefano Berretti 

This method comprises four stages: (i) the extraction of patches 

from the object surface, (ii) the regularization of the patches tes- 

sellation, (iii) the computation of the descriptors, and finally, (iv) 

the generation of the dissimilarity matrix. Being based on a local 

patch analysis, this approach is intrinsically de-correlated from the 

global shape of the surface. These four steps are described down 

below. 

1. Patches extraction from the objects surface: Up to six points are 

selected on the surface, obtained intersecting the mesh surface 

with the three eigenvectors of the covariance matrix centered 

at the center of mass of the object (see Fig. 14 (a)). This process, 

depending on the object shape, can detect 4 to 6 points on the 

mesh surface. Around each of these points a region is sampled 

(called patch), selecting only the vertices of the mesh within 

a given geodesical radius. Among those, the three patches with 

the largest ratio 
e 2 
e 3 

, where e 2 and e 3 are respectively the second 

and third eigenvalues associated to the eigenvectors of the co- 

variance matrix of the patch. An example of the final outcome 

of this step is shown in Fig. 14 (b). 

2. Regularization of the patches tessellation: The three patches are 

then resampled by projection (PR) [47] . At first, (a) PCA is used 

to determine the two main axes of the sample that define a 2D 

plane of projection; (b) a uniform 2D grid of points is gener- 

ated, which is then triangulated using the Delaunay algorithm; 

(c) the points on the grid are projected back to the mesh sur- 

face using interpolation, while keeping their triangulation in- 

tact. 

3. Descriptor computation: Using the ORF structure (see Fig. 15 ), it 

is possible to compute LBP patterns and perform convolution- 

like operations locally and directly on the mesh. In particular, 

the authors use the ORF (as in [48] ) as a tool to operate convo- 

lution on the mesh manifold, and represent them as Convolu- 

tion Binary Pattern [48] . Leveraging on the ordered structure of 

the ORF, the authors redefine the convolution operator between 



E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 209 

Fig. 14. Patches extraction for the meshLBP- ∗ method. (a) Intersection between the eigenvectors of the covariance matrix with the object surface to select the candidate 

points for the patch extraction. (b) A sample model is shown on the left, and the three extracted patches are reported on the right. 

Fig. 15. ORF ordered structure, showing its construction procedure, the ordered rings and its extension to multiple rings. 



210 E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 

a mesh M and a filter F in polar coordinates as follows: 

(M ∗ F ) = 

∑ 

r 

∑ 

θ

m r,θ · f r,θ , (12) 

where m r , θ , and f r , θ are, respectively, a scalar function com- 

puted on the mesh and the filter values, both at radius r and 

angle θ . Subsequently, the response to the filter is used as in- 
put for the MeshLBP descriptor, thus obtaining a convolution 

binary pattern. Finally, the local descriptors are accumulated on 

a histogram computed over the entire patch surface. 

4. Dissimilarity matrix computation: To compare two models, au- 

thors compare all their patches together in a pair-wise manner 

using Bhattacharya distance. The dissimilarity between the two 

models is obtained by accumulating such distances. 

Three runs have been submitted, changing the descriptor com- 

puted directly on the mesh manifold. The descriptors used in the 

runs are listed in Section 6.1 

4.7. Correspondence matching based on kd-tree Fast Library for 

Approximate Nearest Neighbors (kd-tree FLANN) by Yoko Arteaga and 

Ramammorthy Luxman 

This method is based on using the kd-tree Fast Library for Ap- 

proximate Nearest Neighbors (FLANN [49] ) correspondence match- 

ing to match the query of the other objects in the database. FLANN 

stands for Fast Library for Approximate Nearest Neighbors and it 

is a method used for evaluating the correspondence between two 

objects, by finding the distance between the extracted features. For 

this context, the kd-tree radius is set to be 0.15. This method works 

essentially in two steps: a pre-processing step that only extracts 

the surface information and the application of the kd-tree FLANN 

method on such information. For each patch, the authors detect 

points that are suitable for effective description and matching, us- 

ing uniform sampling keypoints detection method. Then, the lo- 

cal feature descriptor SHOT352 [50] is applied for each of the de- 

tected keypoints. The obtained features are then matched using KD 

Tree FLANN correspondence matching method. Notice that, instead 

of analysing the global shape, this method matches the features 

from the representative patches in order to de-correlate relief from 

shape. The criteria for choosing the patches is that the curvature 

must be minimum so it belongs to a flatter section of the object. 

The pre-processing step is done to speed up the retrieval and 

to ensure only texture information is used. First, 400 points within 

the object are chosen at random. From each of the 400 points, 

their 400 nearest neighbors are found. Then, the mean curvature 

and the normals of each of the 400 patches are found. The final 

patch used as the representative of the object is selected as fol- 

lows: it must be the one with the lower mean curvature and the 

greater mean variance of the normals. That is because, if the mean 

curvature is low, the patch belongs to a flat area of the object with 

the least curvature from its global shape, while the highest mean 

variance of normals implies that this area has the highest distri- 

bution of peaks and valleys in the sample, i.e. more texture. An 

example of the extracted representative is shown in Fig. 16 . 

The kd-tree FLANN method is used to match the model repre- 

sentatives. Each entry of the dissimilarity matrix is equal to the 

inverse of the number of matches obtained as results from the kd- 

tree FLANN matching. If no matches are found, the value is set to 

1. 

5. Evaluation measures 

We selected different evaluation measures for this SHREC track. 

The combination of these measures gives us a global view of the 

various methods, highlighting various properties (goodness of the 

Fig. 16. On the left, the final point cloud obtained after the conversion used for 

the kd-tree FLANN method. On the center, the representative patch (in blue) no the 

model. On the right, final extracted patch. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

method per model, class, overall based on multiple criteria). These 

measures are well known performance measures in information 

retrieval [51,52] and many of them are already used in related 

SHREC tracks [11,12] . To better understand which measure does 

what, in the following we describe the evaluation measures we are 

going to use. 

Nearest Neighbor (NN), First tier (FT), Second tier (ST). These mea- 

sures checks the fraction of models in the query class also appear- 

ing within the top k retrievals [53] . In the case of NN, k is 1 and 

corresponds to the classification rate if the nearest neighbor classi- 

fier would be performed. Given a class of | C | elements, k is | C| − 1 

for the FT and k is 2 ∗ (| C| − 1) for the ST. Higher values of the NN, 

FT and ST measures indicate better matches. These measures range 

in the interval [0,1]. 

Normalized Discounted Cumulated Gain (nDCG) . This measure is 

based on the assumption that relevant items are more useful if ap- 

pearing earlier in the list of the retrieved items. The nDCG is based 

on the graded relevance of a result with respect to the query. Then, 

the value is normalized with respect to the ideal outcome of that 

query. 

Average precision-recall curves, mAP and e-Measure (e). Precision 

is the fraction of retrieved items that are relevant to the query. Re- 

call is the fraction of the items relevant to the query that are suc- 

cessfully retrieved. By plotting the precision value with respect to 

the recall value we obtain the so called recall vs. precision curve: 

the larger the area below such a curve, the better. In particular, the 

precision-recall curve of an ideal retrieval system would result in 

a constant curve equal to 1. For each query, we have a precision- 

recall (PR) curve. In our context, results are evaluated on the mean 

of all the PR curves. The mean Average Precision (mAP) corresponds 

to the area between the horizontal axis and the average precision- 

recall curve and ranges from 0 to 1. The higher, the better. The e- 

Measure (e) derives from the precision and recall for a fixed num- 

ber of retrieved results (32 in our settings), [51] . For every query, 

the e-Measure considers the first 32 retrieved items and is defined 

as e = 

1 
1 
P 

+ 1 
R 

, where P and R represent the precision and recall val- 

ues over those results, respectively. 

Confusion matrix. To each run we associate also a confusion 

matrix CM , that is, a square matrix whose order is equal to the 

number of classes in the dataset. For a row i in CM , the element 

CM ( i , i ) gives the number of items which have been correctly clas- 

sified as elements of the class i . The elements CM ( i , j ), with j � = i , 

count the items of the class i which have been misclassified and j 

corresponds to the class in which they were wrongly classified. An 

ideal classification system should be a diagonal matrix. The sum 

j CM ( i , j ) equals the number of items in the class i . Generally, the 

confusion matrix is non-symmetric. 

Tier images. Similar to the confusion matrix, the tier image 

visualizes the matches of the NN, FT and ST. The value of the 

element T ( i , j ) is: black if j is the NN of i , red if j is among the 

(| C| − 1) top matches (FT) and blue if j is among the 2(| C| − 1) top 



E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 211 

matches (ST), where | C | is the number of elements of the class C . 

The models of a class are grouped along each axis so it is easier to 

interpret. With this configuration, the optimal tier image clusters 

the black/red square pixels on the diagonal. 

Receiver Operating Characteristic (ROC) curve and AUC value. ROC 

curves are largely used to evaluate the classification performance 

of a method and are suitable to assess retrieval issues, too. The 

ROC curve shows the ratio between False Positive Rate and True 

Positive Rate for each model at different classification thresholds. 

In our scenario, the classification thresholds are the number of 

models in each class (20) multiplied by a scalar value that goes 

from 1 to the number of classes in the dataset (11). The higher 

the curve is the better. A quick comparison between the methods 

based on the ROC curves can be derived also by the AUC value 

(namely the area under curve value), which is the measure of the 

area under the ROC curve. The higher this value is, the better. Any- 

way, note that an AUC value of 0.5 means that the corresponding 

method is not able to classify the models at all. In this work, we 

consider the mean of all ROC curves. 

6. Description and evaluation of the submitted runs 

In this Section, the settings of the runs submitted for evalua- 

tion are detailed. Their outcome is presented with respect to the 

performance measures described in Section 5 . 

6.1. Run settings 

In the following, the parameter settings of the runs submitted 

are listed. If an author sent a single run, the setting are those 

described in Section 4 . The same happens if the runs of a single 

method differ more than ”just” different parameters. 

• APPFD-FK : two runs (APPFD-FK(run1) and APPFD-FK(run2) re- 

spectively) use a mono-dimensional, [0, 1] normalized histogram 

with 35 bins for each one of the feature-dimensions in the 

APPF; these histograms are concatenated to yield a final 6 x 35 

= 210-dimensional local descriptor for each LSP or key-point. 

In APPFD-FK(run3), the six-dimensional features in the APPF 

are discretized into a multi-dimensional histogram with 5 bins 

for each feature-dimension, the histogram is then flattened and 

normalized to give a 5 6 = 15625-dimensional local descriptor 

for each LSP or key-point. 
• OH : The authors sent three runs for this method, changing the 

number of bins of the histogram or the metric used for the dis- 

similarity matrix computation (or both). In particular, 

– OH(run1): Number of bins: N = 200 - metric: modified L1 

norm 

– OH(run2): Number of bins: N = 200 - metric: modified 

cosine-similarity. 

– OH(run3): Number of bins: N = 128 - metric: modified L1 

norm. 
• DFE : The runs differ in the models used for transfer learning. 

The models used in each run are listed in the following. 

– DFE(run1): 

∗ model 1: DenseNet201(layer pool3_pool) + Global Aver- 

age Pooling 

∗ model 2: DenseNet201(layer pool4_pool) + Global Aver- 

age Pooling 

∗ model 3: DenseNet169(layer pool3_pool) + Global Aver- 

age Pooling 

The authors ensemble the three models above with the ratio 

of weights: model1 : model2 : model3 = 2 : 1 : 1 , using the 

Cosine distance as metric. 

– DFE(run2): Same model settings as DFE(run1), using Eu- 

clidean distance as metric. 

– DFE(run3): 

∗ model 1: ResNet152(layer conv4_block36_out) + Global 

Average Pooling 

∗ model 2: ResNet152(layer conv5_block3_out) + Global 

Average Pooling 

∗ model 3: ResNet101(layer conv4_block23_out) + Global 

Average Pooling 

The authors ensemble the three models above with the ratio 

of weights: model1 : model2 : model3 = 2 : 1 : 2 , using the 

Cosine distance as metric. 
• DPML : The runs differ in the way the patches generated are 

pre-processed and in the use of data augmentation. 

– DPML(run1): once obtained the patches authors uniformed 

them cropping to obtain images of size 231 ×231. No data 

augmentation has been used in this run. 

– DPML(run2): Same model as in Run 1. This time instead of 

cropping patches, authors padded them with zero-values to 

the size of the biggest patch that is 836 ×836. Furthermore, 

during training data augmentation was applied rotating in- 

put image with random angles and also flipping vertically 

and horizontally. 
• PointNet+SQFD : All the runs used the following clustering pa- 

rameters: λ = 0 . 3 , β = 0 . 4 and Nm = 10 . The other settings are 

listed in the following: 

– PointNet+SQFD(run1): number of patches p = 100 of diam- 

eter diam = 0 . 1 of the diagonal of the bounding box of the 

shape. 

– PointNet+SQFD(run2): number of patches p = 200 of diam- 

eter diam = 0 . 05 of the diagonal of the bounding box of the 

shape. 

– PointNet+SQFD(run3): number of patches p = 500 of diame- 

ter diam = 0 . 025 of the diagonal of the bounding box of the 

shape. 

In all the submitted runs, α = 0 . 9 and d is the L 2 distance. 
• SRNA : Two runs have been proposed for this method: 

– SRNA(run1); this run corresponds to the outcome of the first 

four steps of the method described in Section 4.5 ; 

– SRNA(run2): this run corresponds to the variation of the 

SRNA method that includes also neighbour information as 

described in the step five of Section 4.5 . 
• meshLBP- ∗: the descriptors used in each of the three runs sub- 

mitted are: 

– (meshLBP-so): Sobel filter; 

– (meshLBP-sh): sharpen filter; 

– (meshLBP): MeshLBP. 

6.2. Results 

Table 2 summarizes the performances of all the twenty runs 

submitted for evaluation, namely each column of the Table reports 

the label of each run, the Nearest Neighbour (NN), the First Tier 

(FT), the Second Tier (ST), the normalized Discounted Cumulated 

Gain (nDCG), the e-measure (e) and the AUC value, respectively. 

The best performances for each measure are highlighted in bold. 

Many methods achieve good or very good performances. For exam- 

ple, 4 methods have an NN value above the level of 0.9, i.e. they 

have a classification rate above 90%. Similarly, the same 4 methods 

have the mAP value greater than 0.7 and the nDCG greater than 

0.8. Also, note that 2 methods have the ST score above 0.99 which, 

having all the classes 20 models each, means that the models with 

the same 3D texture as a query are generally found within the first 

39 retrieved models, with very few exceptions. 

For a better visual comparison of the methods, only the Con- 

fusion Matrix and Tier Image of the best run of each method are 

reported in Fig. 18 and Fig. 19 respectively. For completeness, the 

Confusion matrices and the Tier images of the all the runs submit- 



212 E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 

Fig. 17. Overview of Precision-Recall plots of the best run for each method. 

Table 2 

Nearest Neighborhood, First Tier, Second Tier, mAP, nDGC, e-measure and AUC value 

of all the submitter runs. Values goes from 0 (red), to 1 (green). The higher the 

value is, the better the method performs. 

ted are listed in the Appendix . Precision-Recall plots of the best 

run for each method are shown in Fig. 17 . Similarly, only the ROC 

curves of the best runs are shown in Fig. 20 . As also reflected by 

the area under the ROC curve, methods with AUC greater than 0.97 

provide a better classification than other methods. For complete- 

ness, the PR plots and the ROC curves of the all the runs submit- 

ted are listed in the Appendix . This more complete overview of the 

runs highlights that the performances of a method show the same 

trend for the different runs, with small qualitative variations be- 

tween the different parameter choices. 

7. Discussions and concluding remarks 

Overall, the best performances are obtained by the DFE method, 

which uses a pre-trained neural network. We observe that the NN, 

FT and ST scores for the methods based on transfer learning do 

not change significantly. This fact suggests that, if they have suc- 

cess, these methods have a larger capability of ranking the mod- 

els that contains a texture similar to the query at the beginning 

of the list of the items retrieved, while the other methods drop 

around 0.3 from NN to FT. However, also methods that do not 

use learning techniques perform well (like the meshLBP, OH and 

SRNA). We notice that these methods are all based on feature 

vectors. Some methods share some background, for instance, the 

meshLBP-so run and the OH methods use of the Sobel Filter. How- 

ever, among the three meshLBP-based runs submitted to this track, 

the best performances are reached by the meshLBP run that is 

based on convolution-like operations extended to a triangle mesh. 

A common characteristic of most of methods is the sampling 

of one or more representative patches as a pre-processing step. It 

consists of a single patch (like in the case of the DFE, OH, DPML, 

kd-tree FLANN runs) or multiple ones (like in the APPFD-FK, Point- 

Net+SQDF, SRNA, meshLBP runs). In general, the selection of a sin- 

gle patch seems to lead to good results with the exception of the 

SRNA and meshLBP methods, which compute a more statistical ap- 

proach on the representative patches. 

Methods that convert the model into point clouds (APPFD-FK) 

or that are based on CNNs trained on point clouds (PointNet) seem 

to be sub-optimal for this task. Probably these methods lose infor- 

mation on local details (for instance, the sampling process in the 

APPFD-FK focuses on the representation of the global geometry) 

and do not capture the subtle geometry and structure variations of 

local patterns and reliefs. On a similar note, the authors of the kd- 

tree FLANN method suggest that the performance of their methods 

will probably be improved by considering a smaller representative 

patch. With the current size of the patch, the global geometry of 

the model is still kept in consideration and it biases the results. 

This fact highlights the importance of analysing a surface with re- 

liefs by local approaches (but that are robust to noise). 

From the Confusion Matrices we observe there is not a class (i.e. 

a realistic geometric relief that corresponds to a real texture) that 

is more complex to deal with at all. On the other hand, Tier Images 

highlight that some methods (DFE and meshLBP in particular) tend 

to confuse class 10 (straight horizontal lines with some thing dou- 

ble lines) and class 2 (just straight lines) or class 4 (bricks). Indeed, 

all these classes have a set of horizontal and parallel lines which 

lead to some uncertainty in the classification (especially classes 10 

and 2). 

In conclusion, we have presented the results of the SHREC’20 

contest track on ”Retrieval of surface patches with similar geomet- 

ric reliefs”. The number of runs (twenty) and methods (eight) is 

significantly numerous and show the increasing effort s of the com- 

munity in the effective characterization of all the aspects of a sur- 

face. The runs and the methods submitted to this track present a 

satisfactory variety, in terms of the diversification of the approach 

followed (feature-based and learning-based methods) and the type 

of description chosen (global vs local descriptions). Several meth- 



E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 213 

Fig. 18. Overview of the confusion matrices of the best run for all the methods. 

ods use a transfer learning approach based on pre-trained, image- 

based neural networks. For instance, the best performances are ob- 

tained by the DFE method, which follows such a strategy. 

With respect to the methods submitted to similar, previous 

SHREC contests, we can observe the rise of the machine learn- 

ing based approaches specifically designed for and/or adapted to 

this track task. A future direction of investigation is to deepen the 

analysis of the performances of methods based on learning. To this 

end, it will be necessary to create larger data collections, oppor- 

tunely equipped with a training set of models, even if the appli- 

cation of reliefs to a surface is not trivial. Indeed, at the moment 

it requires some manual cleaning of the models, in particular in 

correspondence of high curvature features like handles. 

Fig. 19. Overview of the tier images of the best run for all the methods. 

The way models are analysed by most methods, that is a lo- 

cal conversion of the surface into a kind of texture image, helps 

in removing the influence of the underlying surface from the re- 

liefs. Still, corresponding to models that can be manufactured, the 

surfaces of the models proposed in this benchmark can be locally 

projected in a plane and therefore in an image. Further research 

is needed to deal with more challenging models and how these 

methods work on models with a more complex geometry and/or 

how they could be patched to deal with them. 

Overall, this contest has received a good number of satisfactory 

solutions that highlight the progress of recent years in the field 

of geometric pattern retrieval. As a future research direction we 

envisage an increase of interest in the more complex task of pat- 

tern recognition on surfaces, i.e., addressing a problem similar to 

the challenge proposed in [22] , where the models were only par- 



214 E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 

Fig. 20. Overview of ROC curves of the best run for each method. 

tially covered by none, one, or many patterns. The goal of that 

track was to identify, from a set of sample patterns, if and where 

the same pattern was located on each model. At the time of that 

track [22] there were no satisfactory solutions. In the near fu- 

ture, in the light of the progress achieved in the pattern retrieval 

problem and the progress made in the field of transfer learning, 

it would become interesting to understand what can be exploited 

also in the field of pattern recognition, too. 

Declaration of Competing Interest 

The authors declare that they have no known competing finan- 

cial interests or personal relationships that could have appeared to 

influence the work reported in this paper. 

CRediT authorship contribution statement 

Elia Moscoso Thompson: Conceptualization, Methodology, 

Software, Investigation, Formal analysis, Resources, Data curation, 

Project administration, Writing - original draft, Writing - review 

& editing. Silvia Biasotti: Conceptualization, Methodology, Inves- 

tigation, Formal analysis, Resources, Supervision, Writing - origi- 

nal draft, Writing - review & editing. Andrea Giachetti: Concep- 

tualization, Methodology, Writing - original draft, Writing - re- 

view & editing. Claudio Tortorici: Methodology, Software, Investi- 

gation, Writing - original draft, Writing - review & editing. Naoufel 

Werghi: Methodology, Writing - original draft, Writing - review 

& editing. Ahmad Shaker Obeid: Methodology, Software, Inves- 

tigation. Stefano Berretti: Methodology, Writing - original draft, 

Writing - review & editing. Hoang-Phuc Nguyen-Dinh: Methodol- 

ogy, Software, Investigation, Writing - original draft, Writing - re- 

view & editing. Minh-Quan Le: Methodology, Software, Investiga- 

tion, Writing - original draft, Writing - review & editing. Hai-Dang 

Nguyen: Methodology, Supervision, Investigation, Writing - origi- 

nal draft, Writing - review & editing. Minh-Triet Tran: Method- 

ology, Supervision, Investigation, Writing - original draft, Writ- 

ing - review & editing. Leonardo Gigli: Methodology, Software, 

Investigation, Writing - original draft, Writing - review & edit- 

ing. Santiago Velasco-Forero: Methodology, Software, Investiga- 

tion, Writing - original draft, Writing - review & editing. Beatriz 

Marcotegui: Methodology, Software, Investigation, Writing - orig- 

inal draft, Writing - review & editing. Ivan Sipiran: Methodology, 

Software, Investigation, Writing - original draft, Writing - review 

& editing. Benjamin Bustos: Methodology, Investigation, Writing 

- review & editing. Ioannis Romanelis: Methodology, Software, 

Investigation, Writing - original draft, Writing - review & edit- 

ing. Vlassis Fotis: Methodology, Software, Investigation, Writing - 

original draft, Writing - review & editing. Gerasimos Arvanitis: 

Methodology, Software, Investigation, Writing - original draft, Writ- 

ing - review & editing. Konstantinos Moustakas: Methodology, 

Software, Investigation, Writing - original draft, Writing - review 

& editing. Ekpo Otu: Methodology, Software, Investigation, Writ- 

ing - original draft, Writing - review & editing. Reyer Zwiggelaar: 

Methodology, Investigation, Writing - original draft, Writing - re- 

view & editing. David Hunter: Methodology, Software, Investiga- 

tion, Writing - original draft, Writing - review & editing. Yonghuai 

Liu: Methodology, Software, Investigation, Writing - original draft, 

Writing - review & editing. Yoko Arteaga: Methodology, Software, 

Investigation, Writing - original draft, Writing - review & edit- 

ing. Ramamoorthy Luxman: Methodology, Software, Investigation, 

Writing - original draft, Writing - review & editing. 



E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 215 

Acknowledgements 

The authors thank the 3DOR 2020 Workshop and Program 

Chairs for helping us in the organization of our contest despite 

the current COVID-19 pandemic. We also thank the anonymous re- 

viewers for providing constructive comments on earlier drafts of 

the manuscript, which helped us to improve and clarify this work. 

This study was partially supported by the CNR-IMATI projects 

DIT.AD0 04.10 0 and DIT.AD021.080.001. Research for the team 

from University of Science, Ho Chi Minh city, Vietnam is sup- 

ported by Vingroup Innovation Foundation (VINIF) in project code 

VINIF.2019.DA19. The team Y. Arteaga and R. Luxman research is 

funded by the Horizon 2020 programme of the European Union 

Grant #813789 . The work of Ivan Sipiran has been supported by 

Proyecto de Mejoramiento y Ampliacin de los Servicios del Sis- 

tema Nacional de Ciencia Tecnolog ȡ a e Innovacin Tecnolgica(Banco 
Mundial, Concytec), Nro. grant 062-2018-FONDECYT-BM-IADT-AV. 

The work of Benjamin Bustos is funded by the Millennium Insti- 

tute Foundational Research on Data (IMFD). 

Appendix. Confusion Matrices, Tier Images, PR plots and ROC 

curves 

https://doi.org/10.13039/100010661


216 E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 



E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 217 

References 

[1] Othmani A , Voon LFLY , Stolz C , Piboule A . Single tree species classification 

from terrestrial laser scanning data for forest inventory. Pattern Recognit Lett 
2013;34(16):2144–50 . 

[2] Zeppelzauer M , Poier G , Seidl M , Reinbacher C , Schulter S , Breiteneder C , 

et al. Interactive 3d segmentation of rock-art by enhanced depth maps and 
gradient preserving regularization. J Comput Cult Herit 2016;9(4):19:1–19:30 . 

[3] Cimpoi M , Maji S , Kokkinos I , Mohamed S , Vedaldi A . Describing textures in 
the wild. In: Proceedings of the 2014 IEEE Conference on Computer Vision 

and Pattern Recognition. Washington, DC, USA: IEEE Computer Society; 2014. 
p. 3606–13 . 

[4] Giachetti A . Effective characterization of relief patterns. Comput Graphics Fo- 
rum 2018;37(5):83–92 . 

[5] Ojala T , Pietikäinen M , Harwood D . A comparative study of texture mea- 

sures with classification based on featured distributions. Pattern Recognit 
1996;29(1):51–9 . 

[6] Werghi N , Tortorici C , Berretti S , Bimbo AD . Local binary patterns on trian- 
gular meshes: concept and applications. Comput Vision Image Understanding 

2015a;139:161–77 . 

[7] Werghi N , Berretti S , Bimbo AD . The mesh-LBP: a framework for extracting 
local binary patterns from discrete manifolds. IEEE Trans Image Processing 

2015b;24(1):220–35 . 
[8] Moscoso Thompson E , Biasotti S . Description and retrieval of geometric pat- 

terns on surface meshes using an edge-based lbp approach. Pattern Recognit 

2018a;82:1–15 . 
[9] Moscoso Thompson E , Biasotti S . Edge-based LBP Description of Surfaces with 

Colorimetric Patterns. In: 11 th EG Workshop on 3D Object Retrieval. The Euro- 
graphics Association; 2018b. p. 1–8 . 

[10] Moscoso Thompson E , Biasotti S . Retrieving color patterns on surface meshes 
using edgelbp descriptors. Computers & Graphics 2019;79:46–57 . 

[11] Biasotti S , Moscoso Thompson E , Aono M , Hamza AB , Bustos B , Dong S , 

et al. Retrieval of surfaces with similar relief patterns: Shrec’17 track. In: 
10 th EG Workshop on 3D Object Retrieval. Eurographics Association; 2017. 

p. 95–103 . 
[12] Moscoso Thompson E , Tortorici C , Werghi N , Berretti S , Velasco-Forero S , Bia- 

sotti S . Retrieval of gray patterns depicted on 3d models. In: 11 th EG Workshop 
on 3D Object Retrieval. The Eurographics Association; 2018. p. 63–9 . 

[13] Moscoso Thompson E , Biasotti S , Digne J , Chaine R . mpLBP: An Extension of 

http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0004
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0004
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0008
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0008
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0008
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0009
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0009
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0009
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0011
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0011
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0011
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0011
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0011
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0011
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0011
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0011
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0013


218 E. Moscoso Thompson, S. Biasotti and A. Giachetti et al. / Computers & Graphics 91 (2020) 199–218 

the Local Binary Pattern to Surfaces based on an Efficient Coding of the Point 
Neighbours. In: 12 th EG Workshop on 3D Object Retrieval. The Eurographics 

Association; 2019a. p. 9–16 . 
[14] Moscoso Thompson E , Biasotti S , Digne J , Chaine R . Mplbp: a point-based 

representation for surface pattern description. Computers & Graphics 
2020;86:81–92 . 

[15] Othmani A , Torkhani F , Favreau J . 3D geometric salient patterns analysis on 3d 
meshes. CoRR 2019;abs/1906.07645 . 

[16] MIT CSAIL Textured Models Database. 2008. 

[17] Publish & find 3D models online. https://sketchfab.com/ ; 2020. 
[18] Turbosquid. https://www.turbosquid.com/3d-model ; 2020. 

[19] Cerri A , Biasotti S , Abdelrahman M , Angulo J , Berger K , Chevallier L , 
et al. SHREC’13 Track: Retrieval on Textured 3D Models. In: 6 th EG Workshop 

on 3D Object Retrieval. The Eurographics Association; 2013. p. 73–80 . 
[20] Biasotti S , Cerri A , Abdelrahman M , Aono M , Hamza AB , El-Melegy M , et al. Re- 

trieval and classification on textured 3d models. In: 7 th EG Workshop on 3D 

Object Retrieval. Eurographics Association; 2014. p. 111–20 . 
[21] Biasotti S , Cerri A , Aono M , Hamza AB , Garro V , Giachetti A , et al. Retrieval 

and classification methods for textured 3D models: a comparative study. Vis 
Comput 2016;32(2):217–41 . 

[22] Biasotti S , Moscoso Thompson E , Barthe L , Berretti S , Giachetti A , Lejemble T , 
et al. Recognition of Geometric Patterns Over 3D Models. In: 11 th EG Work- 

shop on 3D Object Retrieval. The Eurographics Association; 2018. p. 71–7 . 

[23] Texture Haven. https://texturehaven.com/ ; 2020. Accessed: 2020-04-23. 
[24] Otu E, Zwiggelaar R, Hunter D, Liu Y. Nonrigid 3d shape retrieval with happs: 

A novel hybrid augmented point pair signature. In: 2019 International Confer- 
ence on Computational Science and Computational Intelligence (CSCI); 2019. 

p. 662–8. doi: 10.1109/CSCI49370.2019.00124 . 
[25] Jégou H , Perronnin F , Douze M , Sánchez J , Pérez P , Schmid C . Aggregating lo- 

cal image descriptors into compact codes. IEEE Trans Pattern Anal Mach Intell 

2011 . 
[26] Simonyan K , Parkhi OM , Vedaldi A , Zisserman A . Fisher vector faces in the 

wild.. In: BMVC, 2; 2013. p. 4 . 
[27] Wahl E , Hillenbrand U , Hirzinger G . Surflet-pair-relation histograms: a statis- 

tical 3d-shape representation for rapid classification. In: Fourth International 
Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceed- 

ings.; 2003. p. 474–81 . 

[28] Wikipedia. Dot Product. https://en.wikipedia.org/wiki/Dot _ product ; accessed: 
2019-10-15. 

[29] Mathworld W.. Dot Product. http://mathworld.wolfram.com/DotProduct.html ; 
accessed: 2019-10-15. 

[30] Github - Fisher Vector, Python. https://gist.github.com/danoneata/9927923/ ; 
2014. Accessed: 2020-03-12. 

[31] Kanopoulos N , Vasanthavada N , Baker RL . Design of an image edge detection 

filter using the sobel operator. IEEE J Solid-State Circuits 1988;23(2):358–67 . 
[32] Azad DHK , Deepak A . Query expansion techniques for information retrieval: a 

survey. Inf Process Manag 2017;56:1698–735 . 
[33] He K , Zhang X , Ren S , Sun J . Deep residual learning for image recognition. 

CoRR 2015;abs/1512.03385 . 
[34] Huang G , Liu Z , Pleiss G , Van Der Maaten L , Weinberger K . Convolutional net- 

works with dense connectivity. IEEE Trans Pattern Anal Mach Intell 2019 . 
[35] Simonyan K , Zisserman A . Very deep convolutional networks for large-scale 

image recognition. CoRR 2014a;abs/1409.1556 . 

[36] Tan M , Le QV . Efficientnet: rethinking model scaling for convolutional neural 
networks. CoRR 2019;abs/1905.11946 . 

[37] Chopra S , Hadsell R , LeCun Y . Learning a similarity metric discrimina- 
tively, with application to face verification. In: Proceedings of the 2005 IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition 
(CVPR’05) - Volume 1 - Volume 01. USA: IEEE Computer Society; 2005. 

p. 539–46 . ISBN 0769523722 
[38] Yuksel C . Sample elimination for generating poisson disk sample sets. Comput 

Graphics Forum 2015;34 . 
[39] Simonyan K , Zisserman A . Very deep convolutional networks for large-scale 

image recognition. arXiv 14091556 2014b . 

[40] Chechik G , Sharma V , Shalit U , Bengio S . Large scale online learning of 
image similarity through ranking. Journal of Machine Learning Research 

2010;11(36):1109–35 . 
[41] Beecks C, Uysal MS, Seidl T. Signature quadratic form distances for content- 

based similarity. In: Proceedings of the 17th ACM International Conference on 
Multimedia; 2009. p. 697–700. doi: 10.1145/1631272.1631391 . New York, NY, 

USA 

[42] Sipiran I , Loko J , Bustos B , Skopal T . Scalable 3d shape retrieval using local fea- 
tures and the signature quadratic form distance. Vis Comput 2017;33:1571–85 . 

[43] Qi CR , Su H , Mo K , Guibas LJ . Pointnet: deep learning on point sets for 3d 
classification and segmentation. Proc Computer Vision and Pattern Recognition 

(CVPR), IEEE 2017 . 
[44] Zhirong Wu , Song S , Khosla A , Fisher Yu , Linguang Zhang , Xiaoou Tang , 

et al. 3d shapenets: A deep representation for volumetric shapes. In: 2015 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015. 
p. 1912–20 . 

[45] Moscoso Thompson E, Arvanitis G, Moustakas K, Hoang-Xuan N, Nguyen ER, 
Tran M, et al. Feature Curve Extraction on Triangle Meshes. In: 12 th EG Work- 

shop on 3D Object Retrieval. The Eurographics Association; 2019b. p. 85–92. 
doi: 10.2312/3dor.20191066 . ISBN 978-3-03868-077-2 

[46] Ester M , Kriegel H-P , Sander J , Xu X . A density-based algorithm for discovering 

clusters in large spatial databases with noise. In: Proceedings of the Second In- 
ternational Conference on Knowledge Discovery and Data Mining. AAAI Press; 

1996. p. 226–31 . 
[47] Werghi N, Tortorici C, Berretti S, Del Bimbo A. Representing 3D texture on 

mesh manifolds for retrieval and recognition applications. In: IEEE Conf. on 
Computer Vision and Pattern Recognition (CVPR), 07-12-June. IEEE; 2015c. 

p. 2521–30. doi: 10.1109/CVPR.2015.7298867 . ISBN 978-1-4673-6964-0 

[48] Tortorici C, Werghi N, Berretti S. Extending LBP and Convolution-Like Opera- 
tions on the Mesh. In: IEEE Int. Conf. on Image Processing (ICIP). IEEE; 2019. 

p. 4479–83. doi: 10.1109/ICIP.2019.8803593 . ISBN 978-1-5386-6249-6 
[49] Friedman JH , Bentley JL , Finkel RA . An algorithm for finding best matches in 

logarithmic expected time. ACM Trans Math Softw 1977;3(3):209–26 . 
[50] Tombari F , Salti S , Di Stefano L . Unique signatures of histograms for lo- 

cal surface description. In: Proceedings of the 11th European Conference on 

Computer Vision Conference on Computer Vision: Part III. Berlin, Heidelberg: 
Springer-Verlag; 2010. p. 356–69 . ISBN 364215557X 

[51] Rijsbergen CJV . Information retrieval. 2nd. Newton, MA, USA: Butter- 
worth-Heinemann; 1979 . 

[52] Baeza-Yates RA , Ribeiro-Neto B . Modern information retrieval. Boston, MA, 
USA: Addison-Wesley Longman Publishing Co., Inc.; 1999 . ISBN 020139829X 

[53] Shilane P , Min P , Kazhdan M , Funkhouser T . The Princeton shape benchmark. 
In: Shape Modeling International; 2004. p. 167–78 . 

http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0015
https://sketchfab.com/
https://www.turbosquid.com/3d-model
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0019
https://texturehaven.com/
https://doi.org/10.1109/CSCI49370.2019.00124
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0022
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0022
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0022
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0022
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0022
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0023
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0023
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0023
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0023
https://en.wikipedia.org/wiki/Dot_product
http://mathworld.wolfram.com/DotProduct.html
https://gist.github.com/danoneata/9927923/
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0025
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0025
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0025
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0026
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0026
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0026
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0026
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0026
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0028
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0028
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0028
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0029
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0029
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0029
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0031
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0031
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0032
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0032
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0032
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0033
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0033
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0033
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0033
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0033
https://doi.org/10.1145/1631272.1631391
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0035
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0035
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0035
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0035
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0035
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0036
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0036
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0036
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0036
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0036
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0037
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0037
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0037
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0037
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0037
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0037
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0037
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0037
https://doi.org/10.2312/3dor.20191066
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0039
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0039
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0039
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0039
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0039
https://doi.org/10.1109/CVPR.2015.7298867
https://doi.org/10.1109/ICIP.2019.8803593
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0042
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0042
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0042
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0042
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0043
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0043
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0043
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0043
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0043
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0044
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0044
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0045
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0045
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0045
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0045
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0046
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0046
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0046
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0046
http://refhub.elsevier.com/S0097-8493(20)30113-8/sbref0046

	SHREC 2020: Retrieval of digital surfaces with similar geometric reliefs
	1 Introduction
	2 Related benchmarks
	3 The dataset
	The Ground Truth

	4 The participants and the proposed methods
	4.1 Augmented point pair feature descriptor aggregation with fisher kernel (APPFD-FK) by Ekpo Otu, Reyer Zwiggelaar, David Hunter, Yonghuai Liu
	4.2 Orientation histogram (OH) and deep feature ensemble (DFE) by Hoang-Phuc Nguyen-Dinh, Minh-Quan Le, Hai-Dang Nguyen and Minh-Triet Tran
	4.2.1 Orientation histogram (OH)
	4.2.2 Deep feature ensemble (DFE)

	4.3 Deep patch metric learning (DPML) by Leonardo Gigli, Santiago Velasco-Forero, Beatriz Marcotegui
	4.4 Signature quadratic form distance and pointnet (pointnet+SQFD) by ivan sipiran and benjamin bustos
	4.5 Smooth-Rugged Normal Angle (SRNA) by Ioannis Romanelis, Vlassis Fotis, Gerasimos Arvanitis, Konstantinos Moustakas
	4.6 Mesh local binary pattern (meshlbp*), meshLBP-Sobel and meshLBP-Sharpen by Claudio Tortorici, Naoufel Werghi, Ahmad Shaker Obeid and Stefano Berretti
	4.7 Correspondence matching based on kd-tree Fast Library for Approximate Nearest Neighbors (kd-tree FLANN) by Yoko Arteaga and Ramammorthy Luxman

	5 Evaluation measures
	6 Description and evaluation of the submitted runs
	6.1 Run settings
	6.2 Results

	7 Discussions and concluding remarks
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	Appendix Confusion Matrices, Tier Images, PR plots and ROC curves
	References


