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Recently, 3D visual representations of highly deformable 3D models, such as dynamic 3D 
meshes, are becoming popular due to their capability to represent realistically the motion 
of real-world objects/humans, paving the road for new and more advanced immersive 
virtual, augmented and mixed reality experiences. However, the real-time streaming of 
such models introduces increasing challenges related to low cost, low-latency and scalable 
coding of the acquired information. In view of this, this article proposes an efficient 
scalable coding mechanism, that decomposes a mesh sequence into spatial and temporal 
layers that remove a single vertex at each layer. The removed vertices are predicted by 
performing Laplacian interpolation of the motion vectors. The artifacts that are introduced 
in low-resolution representations are mitigated using a subspace based normal-vector 
denoising procedure, that is optimized to support low-latency streaming scenarios using 
incremental SVD. A novel initialization strategy offers robustness to outliers generated due 
to local deformations. An extensive evaluation study using several synthetic and scanned 
dynamic 3D meshes highlights the benefits of the proposed approach in terms of both 
execution time and reconstruction quality even in very low throughput scenarios of bit-
per-vertex-per-frame (bpvf).

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

3D meshes are widely used in various applications in different scientific fields from heritage science and education 
to health and robotics. Recently, interest in 3D mesh sequences has also increased because of the rapid growth of new 
3D scanning technologies, 3D cinema/television, and immersive telepresence systems capable to provide XR1 experiences. 
Streaming of 3D animated objects can be used in applications where the geometric data is live-captured and needs to be 
available in real-time. Nevertheless, these types of applications demand the storage and the transmission of a huge amount 
of 3D data. The real-time rendering of 3D models, representing either real-world or synthetic objects, generates massive 
datasets and it requires the use of efficient and fast algorithms for increasing the compression ratios without affecting 
noticeably the visual quality of the object. For this reason, various techniques on dynamic 3D mesh processing should be 
developed to address the growing demand and at the same time, to handle these important challenges. Geometry data are 
generally encoded in a lossy manner Peng et al. (2005). However, scalable coding seems to be the most promising approach 
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1 X refers to Virtual, Augmented or Mixed.

https://doi.org/10.1016/j.cagd.2019.07.005
0167-8396/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cagd.2019.07.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
mailto:arvanitis@ece.upatras.gr
mailto:lalos@isi.gr
mailto:moustakas@ece.upatras.gr
https://doi.org/10.1016/j.cagd.2019.07.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagd.2019.07.005&domain=pdf


G. Arvanitis et al. / Computer Aided Geometric Design 73 (2019) 70–85 71

especially in cases where the network performance is unstable, allowing practical implementations for inferring the available 
bandwidth and adjusting rates for chunks while balancing metrics like quality, interruptions, number of rate switches (i.e., 
rate stability). Additionally, a stringent latency is a vital requirement for providing a pleasant immersive VR/AR experience 
Elbamby et al. (2018). This means that any real-transmitted dynamic 3D mesh must be easily perceivable, at any frame of 
its sequence, without affecting its visual quality regardless if a decrease in the transmission rate takes place at any moment. 
The main purpose of low-latency applications is avoiding to disturb the user’s perception because this can negatively affect 
his/her quality of experience.

In this work, we take into account all the aforementioned problems and challenges in order to develop a scalable coding 
method for reliable adaptive representation of dynamic surface 3D meshes, with known connectivity, ideal for low-latency 
applications. Our research counts on the observation that a reduced frame of a mesh sequence can efficiently be recon-
structed by taking advantage of the general spatiotemporal information of the entire animated mesh. The proposed method 
is scalable since a different number of points are transmitted in each frame, depending on the network capability. To sum-
marize, the main contributions of this work are:

• We propose a mechanism for decomposing a mesh sequence into spatial and temporal layers that remove a single 
vertex at each layer. This decomposition is based on (i) topological characteristics of the mesh and (ii) the temporal 
behavior of each point separately as their position change through the time frames. In this way, we remove vertices 
that can be predicted accurately by their neighbors.

• Contrary to the conventional compression approaches for 3D mesh sequences, our method does not use a fixed com-
pression rate for the whole dynamic 3D mesh but each mesh may have a different rate depending on the network’s 
ability at the certain moment.

• We have created an online step for the online reconstruction of the removed frames by exploiting coherences on the 
subspaces corresponding to the different layered representations of the corresponding normals. This is achieved using 
incremental SVD (ISVD), ending up with a significant saving in complexity, allowing a close to real-time execution using 
current machines.

• Besides the fact that our method has a lot of parameters, we suggest the use of the ideal values so the user does not 
need to change or modify them for better results. In other words, all the used parameters are fixed and pre-defined, 
based on either the literature or the experimental analysis, so the users do not need to search for ideal values of 
parameters per model.

The rest of this paper is organized as follows: Section 2 reviews prior art in detail. Section 3 presents some preliminaries, 
necessary for the proposed method. It also highlights our contributions, emphasizing how the proposed pipeline is capable 
to improve both the reconstruction quality and the computational efficiency providing increased quality of experience to 
the user. Section 4 presents the qualitative, quantitative and comparative results of our method, highlighting its advantages, 
while Section 5 draws the conclusions.

2. Related work

3D tele-immersion allows the mixture of real and virtual content Mekuria et al. (2014), Desai et al. (2017). However, this 
type of applications requires the real-time transmission of triangular meshes which is a very challenging issue. Mueller et 
al. (2004) presented a complete system for efficient 3D animated object extraction, representation, coding, and interactive 
rendering. Zhang et al. (2010) proposed a method for generating progressive animated models based on local feature analysis 
and deformation area preservation. Matusik and Pfister (2004) presented a system for real-time acquisition, transmission, 
and high-resolution 3D display of dynamic multiview TV content. However, this system is applied to pixels and not to point 
clouds with connectivity. Stefanoski et al. (2007) presented a linear predictive compression approach for time-consistent 
3D mesh sequences supporting and exploiting scalability. The algorithm decomposes each frame of a mesh sequence in 
layers employing patch-based mesh simplification techniques. This layered decomposition technique is consistent in time. 
Following the predictive coding paradigm, local temporal and spatial dependencies between layers and frames are exploited 
for compression. Isenburg et al. (2005) proposed a streaming compression scheme that allows encoding meshes on-the-fly 
by operating on a partial representation of the connectivity that is created and deleted as the mesh is fed in increments of 
single triangle and vertices to the compressor.

Yang et al. (2006), Yang et al. (2005) proposed different approaches that represent 3D dynamic objects with a semi-
regular mesh sequence. Then, they compress the sequence using the spatiotemporal wavelet transform. Hachani et al. (2016)
used 3D affine transforms to compute the prediction errors. Additionally, they achieved to improve the coding efficiency by 
optimizing the prediction error quantization, using a rate control mechanism. On the other hand, Zhang and Owen (2004), 
Zhang and Owen (2005) used an octree-based coder representing the motion between points of adjacent frames with an 
octree. The eight corners of each octree block are associated with eight corresponding motion vectors. The motion of each 
point in that block is approximated by the tri-linear interpolation of the corner motion vectors. Thanou et al. (2016) ex-
ploited both the spatial correlation inside each frame (through the graph) and the temporal correlation between the frames 
(through the motion estimation) for color and geometry compression. Subramanyam and Cesar (2018) used a point cloud 
codec that encodes additional information in an enhancement layer, then they propose to add inter prediction to the en-
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hancement layer in order to gain further bit rate savings. Ibarria and Rossignac (2003) proposed an algorithm traversing 
each mesh surface in a depth-first order. The location of each vertex can be predicted using information of the spatial 
neighbor vertices as well as information of the corresponding vertices in the previous frame. Chen et al. (2017) proposed a 
method for cloth compression using local cylindrical coordinates which is suitable for cloth animation compression because 
the dihedral component of LCC describes the main feature of the animation sequence. One limitation is that this method 
cannot exploit the spatial coherence, which means that the compression ratio may be low if the triangles are much smaller 
than the granularity of wrinkles. Yang et al. (2018) proposed a method for compression and progressive transmission of 
dynamic mesh sequence exploiting both temporal and spatial redundancy to effectively reduce the data size of the dy-
namic sequence. Although the proposed compression algorithm has many advantages, there are still problems that remain 
to be solved, such as the adaptive progressive transmission of the mesh sequence and the perceptual metrics focus on local 
relations.

Anis et al. (2016) produced a scheme for the compression of dynamic 3D point clouds using sub-divisional meshes and 
graph wavelet transforms. Guskov and Khodakovsky (2004) proposed an algorithm that uses a wavelet coding method for 
mesh sequences. A progressive mesh hierarchy and an anisotropic wavelet are built for the first frame and maintained for 
subsequent frames. To exploit the temporal correlation, wavelet coefficients between adjacent frames are encoded differ-
entially. A wavelet-based transform and coding scheme is also presented by El Sayeh Khalil et al. (2016), in which the 
proposed transform preserves geometric features at lower resolutions by adaptive vertex sampling and re-triangulation. Ma-
glo et al. (2015) discussed in detail the problem of static and dynamic 3D mesh compression, summarizing a lot of novel 
approaches. They presented the main categories of the literature, give comparisons and evaluate the performance of the 
described algorithms.

Regarding the reconstruction of the dynamic 3D meshes, many works have also been presented Zhang and Xu (2018). Li 
et al. (2009) presented a framework for robust geometry and motion reconstruction of complex deforming shapes. However 
this method requires registration of each frame making it difficult to be applied in real-time of unregistered data. Li et al. 
(2012) presented a shape completion technique for creating temporally coherent watertight surfaces from real-time captured 
dynamic performances. A limitation of this method was that the unobserved regions in each frame have no geometric 
details in them. Süßmuth et al. (2008) described an approach for the reconstruction of animated meshes from a series of 
time deforming point clouds, given a set of unordered point clouds that have been captured by a fast 3D scanner. Due to 
the high memory consumption of the MPU approximation, this algorithm was currently limited to reconstruct point clouds 
containing a lot of points.

3. Overview of our method

In this section, we introduce the necessary definitions and terminology related to the dynamic 3D meshes and addition-
ally, we explain in detail every step of our method. In Fig. 1, the proposed framework is briefly presented, highlighting the 
most important procedures of our approach. In a nutshell, we start with the layer decomposition process taking into account 
the spatial and temporal information of the dynamic mesh. The output of this process corresponds to the active points at 
the end of the removal process.2 After the transmission, each reduced frame is reconstructed. Firstly, we use a weighted 
Laplacian interpolation approach, as a coarse reconstruction process, in order to estimate the position of the removed ver-
tices. Then, we perform a fine estimation step by tracking the normals subspace deviation between different layers using 
ISVD, significantly reducing the required complexity as compared to a conventional SVD based approach. The convergence 
of this approach is significantly accelerated using Robust PCA (RPCA) as an initialization procedure. Finally, each frame is 
fine-reconstructed penalizing displacement of the vertices over a tangent plane perpendicular to the local surface normal.

3.1. Basic definitions of static and dynamic 3D meshes

We start assuming the existence of a sequence of n static meshes M(t) ∀ t = 1 · · ·n, creating a 3D mesh sequence (dy-
namic mesh), such as A = [M(1); M(2); . . . M(n)]. Each individual mesh M, consisting of k vertices, can be represented 
by two different sets M = (P , F) corresponding to the vertices P and the indexed faces F of the mesh. Each vertex can 
be represented as a point vi = (xi, yi, zi) ∀ i = 1 · · ·k. In this case, we create a vector of vertices v = [x, y, z] in a 3D coor-
dinate space such as x, y, z ∈ Rk×1 and v ∈ Rk×3. This means that we have a set of k points such that P = {v1, v2, . . . , vk}. 
Additionally, each face is defined by a set of 3 indices to vertices f i = [vi1, vi2, vi3] ∀ i = 1 · · ·k f where k f > k for the wa-

tertight 3D meshes that we use in our research, so we have k f faces F =
{
f1, f2, . . . , fk f

}
. Each face constitutes a triangle, 

the simplest surface unit, that can be represented by its centroid point ci and its outward unit normal nci ∀ i = 1 · · ·k f . We 
define as C ∈ Rk×k the binary adjacency matrix with the following elements:

Ci j =
{
1 i f i, j ∈ E
0 otherwise

(1)

2 At this point, it should be noted that the number of the removed vertices depends on the network’s capability per frame.
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Fig. 1. The pipeline of the proposed method.

where E is the set of edges which can be directly derived from the sets P and F . The connectivity is estimated once since 
it remains the same from frame to frame, in contrast with the position of vertices which changes. In this work, we assume 
that the topology is global, meaning that every static mesh of the same sequence has the same topology over time. Let 
Z ∈ Rm×g be a matrix which can be decomposed as Zm×g = U�VT . We assume that its best κ-rank approximation could 
be described as Ẑm×g = Uκ�κVT

κ where Uκ and Vκ are formed by the first κ columns of U and V, respectively, and �κ is 
the κ-th leading principal submatrix of �.

3.2. Layer decomposition

In this paragraph, we propose a spatiotemporal layer decomposition algorithm for scalable coding of mesh sequences, 
similar to Ahn et al. (2013), which removes the vertices of a mesh taking into account both topological and temporal criteria. 
The vertex removal order is a vital process because it could affect the visual quality of each frame/mesh reconstruction 
influencing the prediction accuracy and hence the compression performance. We assume that only one vertex is removed 
at each layer so that k spatial layers are created. We notate as P1 the set of points of the layer 1 which has only one vertex 
while in the highest layer k there is the set of points Pk consisting of k vertices. The relation between the set of points Pl

and the exactly previous set Pl−1 can be described as:

Pl = Pl−1 ∪ {v} (2)

It is obvious that each layer has one more vertex in comparison to its exactly previous layer, and always Pl ⊆ P ∀ l = 1 · · ·k. 
We need to mention here that the layer decomposition process is an offline procedure taking place before the start of the 
transmission.

3.2.1. Vertex removal using topology information
For the layer decomposition, we use an iterative process which removes one single vertex per iteration. Firstly, the 

removal cost for any candidate vertex is estimated and then the vertex with the lowest value is eliminated. The process 
is repeated k times until only one vertex will have remained in layer 1. The proposed removal cost function consists of 
two terms, namely the spatial Cs and the temporal Ct . The spatial factor is related to the geometry of the first frame 
and it is estimated as follows. We define as R j(i) the set of the j-ring neighbors of the i vertex and the R̂ j(i, l) as a 
subset of R j(i) with the remaining j-ring neighbors of i vertex in the l level. We also define as b the topological distance 
between any vertex v and its neighboring vertices. Topological distance shows the minimum number of edges with which 
two vertices are connected to each other, as shown in Fig. 2. The selected j value of b j ∀ j = 1 · · ·∞ is an important 
variable to determine the spatial prediction accuracy. We suggest the maximum value of j to be equal to 3 otherwise the 
process becomes time-consuming without providing any reconstruction benefit. At each layer, we remove this specific vertex 
which can be efficiently predicted by the reconstruction process. This is the reason why the vertex with the lowest value is 
selected. Finally, the removed vertex vl at layer l is given by:

vl = argmin
v∈Ml

C(i, l) (3)

where C(i, l) is the removal cost of vertex i at layer l. We define the prediction inaccuracy Cs(i, l) (spatial term) for vertex i
at layer l as:

Cs(i, l) =
3∑

j=1

|R j(i)| − |R̂ j(i, l)|
|R j(i)| ρ j (4)



74 G. Arvanitis et al. / Computer Aided Geometric Design 73 (2019) 70–85

Fig. 2. Topological distance b j ∀ j ∈ {1, 2, 3} between vertex v and other neighboring vertices. Vertices with topological distance equal to b1 belong to 
first-ring area etc.

Fig. 3. [Left] Only topological information, [Right] Topological and temporal information (Samba of 9971 vertices). (a) 3000 vertices have been removed 
(layer P6971), (b) 5000 vertices have been removed (layer P4971), (c) 7000 vertices have been removed (layer P2971). The green color represents the 
remaining vertices while the red color represents the removed vertices. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

where |.| operator returns the number of elements in a set and ρ is a positive parameter. In the experiments, the fixed 
ρ = 0.6 is used for all the models. Note that (|R j(i)| − |R̂ j(i, l)|)/|R j(i)| becomes equal to 0 when |R̂ j(i, l)| = |R j(i)|, and 
it is equal to 1 when |R̂ j(i, l)| = 0. In any case |R j(i)| ≥ |R̂ j(i, l)|. Ahn et al. (2013) suggested the use of an extra factor 
which evaluates how each candidate vertex will affect its neighboring vertices if it is removed. However, its estimation is 
very time-consuming and the provided results do not appear any significant advantage. Instead of this factor, we propose 
the use of temporal information term Ct as described in the next paragraph.

3.2.2. Vertex removal using temporal information
Generally, a stationary or slow-motioned point is more likely to be accurately predicted. On the other hand, highly 

deformable surface patches are less accurately predictable. According to this observation, we propose a new factor that 
exploits the temporal information from frame to frame, taking into account the mean motion vector of each point, as 
shown below:

Ct(i) =
∑n

t=2 ‖vi(t) − vi(t − 1)‖2
n

∀ i = 1 · · ·k (5)

where (t) represents the current frame while the (t-1) represents the previous frame. Then, the final removal cost is esti-
mated as:

C(i, l) = Cs(i, l) + λCt(i) (6)

where λ = 0.1. In Fig. 3, a frame of the animated model Samba is presented under different removal layers and using 
different removal cost functions. The difference between the two removal cost functions is more apparent in case Fig. 3-(a), 
wherein the second case more vertices of the hand are selected as active since they experience large deviations within 
frames as compared to other slowly varying vertices and consequently are expected to be predicted less accurately.

One of the strongest benefits of our approach is the fact that the layer decomposition algorithm sorts vertices based on 
their contribution to the accurate prediction of their real position, using both spatial and temporal criteria. In each layer 
decomposition step, the easiest predicted vertex is removed (i.e., this one that takes the lowest value of the cost function). 
This means that if time-variant wrinkles are apparent somewhere, then our algorithm will keep more vertices from this 
area and will remove vertices for other “more static” areas.
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3.3. Laplacian interpolation to the motion vectors for coarse reconstruction

In this section, we describe the process for the online coarse reconstruction. For the reconstruction of each frame, the 
topological and geometrical information of the previously reconstructed frame is used. We follow the main idea of the 
method, proposed by Arvanitis et al. (2017b), but we take into account that the number of vertices, for any appeared 
incomplete frame, is variable and depends on the network’s transmission ability.

3.3.1. Weighted graph Laplacian matrix
Generally, a binary Laplacian matrix provides information regarding the connectivity of vertices. However, weighted 

Laplacian matrices are able to provide additional information which can efficiently be utilized by a variety of other processes. 
In order to set the preferable constraints, we construct a modified weighted Laplacian matrix, similar to Arvanitis et al. 
(2018b), that takes into account the two following factors H ∈ Rk×k and O ∈ Rk×k . Parameter H is related to the distance 
between connected vertices. The value of this parameter represents the inverse L2 norm between two vertices vi, v j

provided that vi and v j are connected to each other. It is estimated according to:

Hi j =
{

1
‖vi(t−1)−v j(t−1)‖2+ε if j ∈ R1(i)

0 otherwise
∀ i = 1 · · ·k (7)

where ε is a very small positive number. For the estimation of this parameter, the values of the vertices from the previously 
reconstructed frame (t − 1) are used. Parameter O is related to the connecting proximity b (degree or topological distance) 
of an unknown vertex with an already known vertex. The initial known vertices have a value equal to 4 (reinforcing the 
contribution of the known values), while the value of the unknown vertices depends on their connectivity degree b, as 
shown in the following equation:

Oi j =
{
4Ci j if vi is known
Ci j
b+1 otherwise

∀ i, j = 1 · · ·k (8)

where C is the adjacency matrix as described in Eq. (1). Finally, the weighted adjacency matrix Cw is created using the 
estimated parameters H of Eq. (7) and O Eq. (8) according to:

Cw = H ◦O ◦ C (9)

where ◦ denotes the Hadamard product. Then, the weighted Laplacian matrix is estimated according to the following equa-
tion:

Lw = D− Cw (10)

where D = diag{D1, . . . , Dk} is a diagonal matrix with Di = ∑k
j=1 Cwij .

3.3.2. Weighted Laplacian interpolation
Oostendorp et al. (1989) first proposed that a triangulated 3D model can be interpolated with a curved surface by 

putting constraints on the Laplacian matrix L. We follow the same line but applying it on the motion vectors δ of the 
vertices instead of the vertices directly.

δi = [δxi, δyi, δzi]ᵀ
⎧⎨
⎩

δxi = |vxi(t) − vxi(t − 1)|
δyi = |v yi(t) − v yi(t − 1)|
δzi = |vzi(t) − vzi(t − 1)|

∀ i = 1 · · ·k (11)

Additionally, we use the estimated weighted Laplacian matrix Lw of Eq. (10) which encloses all the necessary constraints for 
an efficient weighted Laplacian interpolation. We also define d = [δ1 δ2 · · · δk] ∈ Rk×3 the matrix which represents the 
motion vectors of each vertex of the mesh. The Laplacian of d is written as: �δ = Lwd. Next, we split the d into two parts: 
dk ∈ Rk′×3 containing the motion vectors of known vertices and du ∈ Rk−k′×3 containing zeros because of the unspecified 
values of the unknown vertices. Please note that k − k′ is equal to the decomposition layer. Correspondingly, the Lw can be 
partitioned into four parts: Lw =

(
Lw11 Lw12

Lw21 Lw22

)
, Lw11 ∈ Rk′×k′

, Lw12 ∈ Rk′×k−k′
, Lw21 ∈ Rk−k′×k′

, Lw22 ∈ Rk−k′×k−k′
. The 

Euclidean norm |�δ| is minimized according to:∣∣∣∣
(
Lw11 Lw12

Lw21 Lw22

)(
dk
du

)∣∣∣∣ =
∣∣∣∣
(
Lw11

Lw21

)
dk +

(
Lw12

Lw22

)
du

∣∣∣∣ (12)

Then, we solve the following system of k equations with k − k′ variables:
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(
Lw12

Lw22

)
du = −

(
Lw11

Lw21

)
dk ⇐⇒ du = −

((
Lw12

Lw22

)ᵀ (
Lw12

Lw22

))−1 ((
Lw12

Lw22

)ᵀ (
Lw11

Lw21

))
dk (13)

For the fast solving of the Eq. (13), we follow the same line of thought as presented by Arvanitis et al. (2017a). We start by 
simplifying the representation of the parameters H and O. We can say that the correspondingly matrices could be written 
as a set of k vectors of parameters with variance size depending on the first-ring area size: H = {h1; h2; · · · ; hk}, O =
{o1; o2; · · · ; ok} where hi, oi ∈ R|R̂1(i)|×1 ∀ i = 1 · · ·k and dk i consist of the known motion vectors of the neighbor vertices 
belonging on R̂1(i). The solution is estimated based on an iterative process which is executed until |R̂1(i)| = |R1(i)| ∀ i =
1 · · ·k.

dui =
∑

∀ j ∈R̂1(i)
hi joi jdki∑

∀ j ∈R̂1(i)
|hi joi j| ∀ i = 1 · · ·k (14)

The closer the value of |R̂1(i)| to |R1(i)| the faster the reconstruction process. For this reason the process is faster when 
the used decomposition layer is higher. Despite the fact that the geometric approach solves the same problem, described 
of our mathematical background in Eqs. (7)-(13), the execution is much faster. The coordinates of the missing vertices are 
estimated by updating their position of the previous frame using the motion vectors of Eq. (13).

vu(t) = vu(t − 1) + du, ∀ t = 2 · · ·n (15)

Finally, all vertices of the incomplete frame (t) are known v(t) = vk(t) ∪ vu(t) where vk = [vk1 · · ·vkk′ ] and vu =
[vuk′+1 · · ·vuk−k′ ]. Please note that for the estimation of the motion vectors of the second frame, the first frame has to 
be known. Despite the extremely good results that this step provides, especially when the decomposition layer is high, 
there are some misaligned points affecting the visual quality of the final results. We refine these abnormalities following 
the procedure described below.

3.4. Online scalable coding using fine reconstruction

The coarse reconstructed method, provided by the previously presented step, demonstrates impressive performance. 
However, in cases where the scalable coding is responsible for highly incomplete frames > 60% then noise appears in 
specific areas (e.g., nonrigid areas, areas with high motion between consecutive frames). To remove these abnormalities, a 
fine reconstruction step is utilized. Firstly, we estimate the ideal (denoised) centroid normals of all faces and then we use 
them to update the position of any vertex of the mesh using an iterative process. Although a deformation method, as this 
one presented by Huang et al. (2006), could be used as the main method for the fine reconstruction step, providing very 
plausible visual results, it would be very time consuming process for the final reconstruction of the whole dynamic 3D 
mesh.

3.4.1. Initialization strategy by exploiting outliers via RPCA
For the denoising of the first n̄ frames, we follow a batch approach in order to exploit more effectively their coherence 

using RPCA. As a result, we initially create a spatiotemporal matrix E ∈ Rk f ×3n̄ according to:

E =

⎡
⎢⎢⎢⎣

nc1(1) nc1(2) . . . nc1(n̄)

nc2(1) nc2(2) . . . nc2(n̄)
...

...
. . .

...

nck f (1) nck f (2) . . . nck f (n̄)

⎤
⎥⎥⎥⎦ (16)

where n̄ � n and nci(n̄) = [ncxi (n̄); ncyi (n̄); nczi (n̄)] represents the ith centroid normal of n̄th frame. To note here that the 
experimental process has shown that a patch with size n̄ = [5 − 10] is enough.

The motivation for using RPCA, as initialization strategy, counts on the observation that the noisy (misaligned) normals 
of the coarse reconstructed mesh are also affected by outliers. This impulsive noise structure is attributed to the fact that 
most of the vertices keep their original position or have been already well reconstructed due to the weighted Laplacian 
interpolation step. Because of this observation, we assume that the presented type of noise is more like sparse outliers than 
noise with normal distribution. Then, the matrix E, consisting of the k f centroid normals of the first n̄ frames, may be 
decomposed as: E = S + N where S is a low-rank matrix representing the real data while N is a sparse matrix representing 
the space where the noise lies. The low-rank matrix S can be recovered by solving the following convex optimization 
problem:

minimize ‖S‖∗ + λ‖N‖1, subject to S+N = E (17)

where ‖S‖∗ denotes the nuclear norm of the matrix which is the sum of the singular values of S. This convex problem can 
be solved using an Augmented Lagrange Multiplier (ALM) algorithm, as described in Lin et al. (2009):
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l(S,N,Y,μ)
.= ‖S‖∗ + λ‖N‖1 + 〈Y,E − S−N〉 + μ

2
‖E− S−N‖2F (18)

The ALM method for solving the RPCA problem can be described as an iterative process, estimating: S(h+1) =
argminS l(S, N(h), Y(h), μ(h)), N(h+1) = argminN l(S(h+1), N(h), Y(h), μ(h)), where (h) represents the number of the iteration. 
For the estimation of matrices S, N, Y we iteratively compute the following equations:

(U,�,V) = SVD(E−N(h) + (1/μ(h))Y(h)) (19)

S(h+1) = UQ(1/μ(h))[�]VT (20)

N(h+1) = Q
λμ−1

h
[E− S(h+1) + (1/μ(h))Y(h)] (21)

Y(h+1) = Y(h) + μ(h)(E− S(h+1) −N(h+1)) , μ(h+1) = ξμ(h) (22)

where Qν [�] is a shrinkage operator which subtracts the value ν of every element of matrix �, μ(0) = 1.25/||E||2 and the 
iterative process terminates when ||E − S −N||F /||E||F < γ where the tolerance for stopping criterion is γ = 10−7. Once the 
convergence criterion has been satisfied, the iterative process stops and the matrices S(h), N(h) ∈ Rk f ×3n̄ are returned. Then 
we use the elements of the low-rank matrix S to refine the n̄ meshes updating the positions of their vertices. The low-rank 
matrix S, consisting of the denoised normals represented as ṅ. However, the process does not return unit normals so we 
need to normalized them, as shown in Eq. (23).

S =

⎡
⎢⎢⎢⎣

ṅc1(1) ṅc1(2) . . . ṅc1(n̄)

ṅc2(1) ṅc2(2) . . . ṅc2(n̄)
...

...
. . .

...

ṅck f (1) ṅck f (2) . . . ṅck f (n̄)

⎤
⎥⎥⎥⎦ , ṅci( j) = [ ṅcxi ( j)

‖ṅci( j)‖2 ; ṅcyi ( j)

‖ṅci( j)‖2 ; ṅczi ( j)

‖ṅci( j)‖2 ] ∀ j = 1 · · · n̄ (23)

3.4.2. Online refining using ISVD
The previously mentioned step (initialization strategy) is applied once, only for the patch of the first n̄ noisy frames. After 

that, we use the knowledge of the reconstructed frames in order to estimate the denoised normals of any new presented 
frame. In the literature, many of the proposed methods are trying to estimate the ideal normals. However, none of them are 
fast enough for real-time or online applications. To overcome this limitation, we suggest the use of an incremental approach. 
The SVD updating algorithm, described in detail in Zha and Simon (1999), Kwok and Zhao (2003), provides an efficient way 
to carry out the SVD of a larger matrix [Sk f ×3n̄, Bk f ×3r ], where B is an k f × 3r matrix consisting of the k f centroid normals 
of the r additional frames. At this point it should be noted that the matrix S is an already low-rank matrix consisting of 
the denoised normals of the n̄ previous frames. Specifically, for the normal’s estimation of the n̄ + 1 frame, the matrix S, as 
described in Eq. (23), is used, while for any frame > n̄ + 2 the matrix S is updated as we will show later in Eq. (27). The 
r ≤ n̄ represents the number of the observed noisy frames where we want to estimate the denoise normals. Typically, r = 1
because each new frame appears online, however, if a buffer could store a sequence of coarse reconstructed meshes then 
more frames (block of frames) could be used, increasing the benefits that ISVD method provides regarding the execution 
times. By exploiting the orthonormal properties and block structure, the SVD computation of [S, B] can be efficiently carried 
out by using the smaller matrices, Uq, Vq , and the SVD of the smaller matrix 

[
�q UT

q B
0 R

]
. The computational complexity 

analysis and details of the SVD updating algorithm are described in Zha and Simon (1999). The steps of the ISVD method 
that we use are described in the next Eqs. (24) - (26). Firstly, we apply a qr(.) decomposition of the (I −UqUT

q )B in order to 
estimate the matrices Q and R:

QR = qr((I−UqU
T
q )B) (24)

Next, we obtain the q-rank SVD of the (q + r) × (q + r) matrix:[
�q UT

q B
0 R

]
= Û�̂V̂T (25)

where r′ is the rank of (I − UqUT
q )B. Then, the best q-rank approximation of [S, B] is:

[S,B] = ([Uq,Q]Û)�̂(

[
Vq 0
0 I

]
V̂)T (26)

Finally, the matrix B obtains the denoised normals of the new frame which will be used to update the vetrices. Matrix S will 
be updated, by a left shifting operation denoting as �→, in order to obtain the most recent information for more efficient 
online estimation of the denoised normals of the next frame, according to:

S : (ṅc1, ṅc2, · · · , ṅc(n̄−1), ṅcn̄) �→ (ṅc2, ṅc3, · · · , ṅcn̄, B) (27)
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Fig. 4. Heat map visualization showing: [Left] the total distance of each centroid that travels through the frames, [Right] the total change of the first-
ring area of each centroid. The heat maps have been applied in a random snapshot of each 3D animation models (Crane, Elephant gallop and March 2 
respectively). The deep blue color represents low changes and the dark red represents high changes, as also shown in the provided colormaps.

Fig. 5. Two consecutive frames of the animated mesh Camel gallop. Different areas have different behavior, with respect to the change of their shape from 
frame to frame, depending on the type of motion that each area manifests.

where ṅci represents the ith row of matrix S. Please note that similar to the previous step using RPCA, the centroid normals 
must be normalized again so that any normal to be equal to the unit vector.

3.5. Ideal normals for the vertex updating

As we referred earlier, the apriori knowledge of the denoised normals of a mesh could be effectively used for fine denois-
ing. The next step is to use the centroid normals, estimated in the previous steps, for achieving online fine reconstruction. In 
the past, a lot of researchers have adopted the same vertex updating algorithm, firstly described in Sun et al. (2007), mainly 
because of its robustness and the very good provided results. We follow the same line of thought but we give different 
reliability to different points. More specifically, we assume that some points are more reliable than others. Two parameters 
affect mostly the classification of a point as trustable or not. The first one is the rigidness of the area (first-ring) where a 
point lies (please see Fig. 4-[Right]) and the second is the total distance that a point covers through the frames (please see 
Fig. 4-[Left]).

More specifically, in regard to the first parameter, we suggest that only vertices with a significant change (> 1%) of 
their first-ring area between two frames will be updated, otherwise, we assume that they have been correctly reconstructed 
under the Laplacian interpolation step. The criterion that is used for the characterization of a point as rigid or not depends 
on the percentage change of its first-ring area between two consecutive frames and it is described in the Eq. (28):

�(i) =
{
1 if |area(i,l)−area(i,l−1)|

max(area(i,l),area(i,l−1)) > 1%
0 otherwise

(28)

where area(i, l) is the first-ring area of point i as it appears in the l frame and �(i) = 1 means that the i point needs to be 
updated for more accurate results. An example of two areas (rigid and no-rigid) is shown in Fig. 5. Rigid area (e.g., head of 
camel) means better reconstruction using Laplacian interpolation regardless of the value of the motion vectors.

Regarding to the second parameter, the temporal factor Ct is used, as it has been defined in Eq. (5). Then the updated 
weights are estimated according to Eq. (30), giving emphasis to the known and less moving points. Additionally, in order 
to make the process more time efficient, the known points included in the Pl set, are excluded from the updating process. 
The fine-tuned normals are then used to update the vertices according to Sun et al. (2007). The stability and the robustness 
of this approach has made it very popular and it has been used in a lot of other papers Zhang et al. (2015), Wang et al. 
(2016), Wang et al. (2015), Yadav et al. (2017), Arvanitis et al. (2018a).

v(e+1)
i = v(e)

i +
∑

j∈�i
β jn̄cj(〈n̄cj, (c

(e)
j − v(e)

i )〉)
|�i| ∀ i /∈ Pl, �(i) = 1 (29)

β i =
{
4Ct(i) if vi is known
Ct(i) otherwise

(30)

c(e+1)
j = (v(e+1)

j1 + v(e+1)
j2 + v(e+1)

j3 )/3 ∀ j ∈ �i (31)

where 〈a, b〉 represents the dot product of a and b, (e) represents the number of iteration and matrix �i is the cell of 
vertices that are directly connected with the vertex vi . This iterative process can be considered as a gradient descent process 
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that is executed for minimizing the energy term 
∑

j∈�i
‖n̄cj(c

(e)
j − v(e)

i )‖2 across all faces. Finally, we need to mention here 
that for any of the used animated models, the ideal number of iterations e for an efficient fine reconstruction, was only 1-2. 
This is due to the fact that the coarse reconstructed frames are already denoised and need just a refinement through the 
aforementioned approach so as to remove outliers. Algorithm 1 briefly presents the steps of the proposed process.

Algorithm 1 Scalable Coding of Dynamic 3D Meshes.
// Offline and Online Processes in the Encoder Side
Input : Dynamic 3D mesh
Output: k different Layers (set of vertices) and reduced frames
// Offline Process (Layer Decomposition)

1 for l = 1 · · ·k do
2 Estimate the set of vertices Pl based on topological and temporal information via Eq. (6);
3 end
// Online Process (Scalable Coding)

4 for i = 1 · · ·n do
5 Choose which layer Pl (set of vertices) you would send based on network ability
6 end
// Online Process in the Decoder Side (Reconstruction)
Input : Reduced frames of the dynamic 3D mesh
Output: Reconstructed dynamic 3D mesh

7 for i = 1 · · ·n do
8 Coarse reconstruction based on Laplacian interpolation to the motion vectors via Eqs. (7)-(15);

// Denoised normals and ouliers removal
9 Creation of spatiotemporal matrix E Eq. (16);

if i < n then
10 Estimation of low-rank matrix based on Robust PCA via Eqs. (17)-(23);
11 else
12 Online refining using Incremental SVD via Eqs. (24)-(27);
13 end
14 Fine reconstruction using the vertices updating Eqs. (28)-(31);
15 end

4. Results

The effectiveness of our approach in terms of both reconstruction quality and computation complexity is highlighted 
through a thorough experimental study, presented in this section.

4.1. Experimental setup, datasets and metrics

In all the presented experiments, a PC Intel core i7-4790 CPU @ 3.60GHz, 16 GB RAM was used. The main core of the 
algorithms is written in C++ and Matlab.

We have used a wide range of 3D animated models. More specifically, the experiments and any other presented figures 
of this work are carried out using two different well-known 3D animation datasets such as: (i) A dataset consisting of 
artificial sequences of moving animal models James and Twigg (2005), (ii) A dataset consisting of motion capture animations 
representing humans in different kind of movement actions Vlasic et al. (2008).

The quality of the reconstructed results is evaluated using a variety of different metrics. (i) θ : represents the angle 
between the normal of the ground truth face and the resulting face normals, averaged over all faces. (ii) NMSVE (Normalized 
Mean Square Visual Error): has been shown to correlate well with perceived distortion by measuring the average error in 
the Laplacian and Cartesian domains Karni and Gotsman (2000). (iii) KG error metric: has been introduced by Karni and 
Gotsman and it has been designed for the evaluation of animated triangle meshes. The detailed description of this metric is 
presented in Karni and Gotsman (2004). (iv) STED (Spatiotemporal edge difference): focus on the local changes of the error 
rather than on the absolute value of it. More details about this metric are presented in Vasa and Skala (2011). The two first 
metrics (θ , NMSVE) are commonly used for the evaluation of each 3D mesh separately, while the last two (KG, STED) are 
used for the evaluation of the whole dynamic mesh as an object.

4.2. Scalable coding evaluation

In this section, we evaluate the benefits of the proposed pipeline in terms of both reconstruction quality and execution 
time. In particular, we explicitly show how this method could be efficiently used and why we chose each one of the selected 
steps.
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Fig. 6. Execution times by using ISVD Vs. SVD. The numerical results are expressed in seconds.

Table 1
Execution times per each frame for different decomposition layers and different models.

Name of 
model

Decomposition 
layer

Execution time
per frame in (sec.)
(linear approach)

Execution time
per frame in (sec.) & speed up
(geometric approach)

Bo
un

ci
ng

P8000 1.392561 0.040240 (34.61x)
P6000 2.739982 0.066960 (40.92x)
P4000 3.691753 0.085024 (43.42x)
P2000 8.080768 0.111490 (72.48x)

Cr
an

e

P8000 1.422852 0.041686 (34.13x)
P6000 2.665091 0.065021 (40.99x)
P4000 3.682691 0.082462 (44.66x)
P2000 8.132842 0.144083 (56.44x)

H
an

ds
ta
nd P8000 1.401952 0.039392 (35.59x)

P6000 2.604363 0.060651 (42.94x)
P4000 3.714263 0.078702 (47.19x)
P2000 8.293463 0.125693 (65.98x)

Ju
m
pi
ng

P8000 1.396755 0.041670 (33.52x)
P6000 2.798114 0.065335 (42.83x)
P4000 3.721518 0.083198 (44.73x)
P2000 8.378740 0.122232 (68.55x)

Sw
in
g

P8000 1.171689 0.034310 (34.15x)
P6000 2.403907 0.059041 (40.72x)
P4000 3.481418 0.076251 (45.66x)
P2000 7.726545 0.122875 (62.88x)

4.2.1. Impact of using ISVD
ISVD is used not only because it allows an online solution but also because it is a very fast process especially when it 

is used in blocks of frames. Specifically, the larger the size of a block (e.g., frames per block (F/B)) the more apparent the 
benefits of the ISVD, regarding the execution time. ISVD is a vital step for this research because it allows the online recon-
struction of frames in acceptable rates. Fig. 6 shows the execution times of incremental and traditional SVD, for different 
animated models and for different blocks of frames. Observing the table, it is obvious that ISVD is much faster than the 
traditional SVD (from 8 to 35.91 times faster). The bold values represent the execution times per block of frames while the 
values in the parenthesis represent the execution times per frame. To mention here that an extra benefit of ISVD is that it 
can be used for large matrices too, like in the case of Elephant model (last lines of Fig. 6). On the other hand, SVD cannot 
be directly applied without extra modification (e.g., separation in parts). Table 1 presents the execution times of the coarse 
reconstruction step using two different approaches, mentioned as “linear” and “geometric”. More specifically, the “linear” 
approach directly solves the linear system of Eq. (13) while the “geometric” approach uses the iterative process of Eq. (14)
for the solution of the system.
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Fig. 7. NMSVE error per frame in (dB) for the dynamic 3D model March 2. Each line represents a different initialization strategy.

Fig. 8. Dynamic 3D mesh Samba (9971 points each frame). (a) layer P6971 (3000 points have been removed ∼ 30%), (b) layer P4971 (5000 points have been 
removed ∼ 50%), (c) layer P2971 (7000 points have been removed ∼ 70%), (d) layer P971 (9000 points have been removed ∼ 90%).

4.2.2. Impact of using RPCA as initialization strategy
As mentioned earlier in Paragraph 3.4.1, for efficiently applying the ISVD step, some initial knowledge is required. More 

specifically, the low-rank matrix of any new entrance is estimated using the updated matrix S which contains the values 
of the n̄ previous frames, as described in Eq. (27). However, for the first n̄ frames, this knowledge is missing. The proposed 
method fails if the initial matrix S is not already low-rank (e.g., using the noisy frames without further processing). Alter-
native approaches, returning a low-rank matrix of the first n̄ frames, could also be used (e.g., SVD, PCA) as an initialization 
strategy. However, RPCA satisfies simultaneously both the reconstruction quality and the lower computational complexity, 
as shown in Fig. 7.

4.3. Experimental analysis

The effectiveness of our method is presented in the following figures. The results of our proposed method are compared 
with: (a) A layer decomposition approach using an Efficient Fine-granular Scalable Coding Algorithm (EFSCA) of 3D mesh 
sequences for low-latency streaming applications, as described in details in Ahn et al. (2013). (b) The Frame-based Animated 
Mesh Compression (FAMC) method which is promoted within the MPEG-4 standard Mamou et al. (2008). This method uses 
different types of transforms to encode the residual motion compensation error, namely (1) the Discrete Cosine Transform 
(DCT) and (2) the integer to integer lifting-based bi-orthogonal wavelet transform.

In Fig. 8, we present the reconstructed results using the pipeline of our proposed method for different frames (50, 
100, 150) of the same dynamic mesh (Samba). In this example, we have assumed that any frame of the animation has 
been compressed with the same compression rate, through the same compression scenario (∼ 30%, 50%, 70%, 90%), showing 
how the reconstructed dynamic mesh is affected because of a consistent compression rate. Fig. 9 shows how the NMSVE 
metric changes during the frames of the dynamic mesh under of different experimental scenarios. Targeting a more realistic 
scenario, we assume that the change of layers happens in blocks of frames, each block consisting of 50 consecutive mesh 
instances. Specifically, the experimental scenarios that we studied are: (i) Stable coding: the points of any frame of the 
dynamic mesh is reduced based on the same layer (P2000, P4000, P6000 correspondingly). (ii) Random coding: the points of 
each block of frames is reduced based on a random layer in a range of (P500-P9500). (iii) Scalable coding: means that the 
points of each block of frames are reduced based on a layer which is lower of the layer of the previous block of frames 
using an incremental step of 1000. The initial layer of the first block of frames is P8000 (2002 points have been removed). 
We can observe that the NMSVE error is much lower in the first frames, where the motion of the object has not started yet 
(relatively stationary frames). However, after that, the error is slightly increased but without being affected by the type of 
the motion of the object.

As shown in this figure, the random coding, which typically is more close to a realistic scenario (network with variable 
transmission capability), has overall better results. It should be noticed that in this scenario it is possible to remove 9502 
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Fig. 9. NMSVE error expressed in (dB) per frame for the dynamic 3D model Bouncing. Each line of this plot represents a different experimental scenario.

Fig. 10. STED error of the reconstructed results using different approaches and different rates of bpvf. (Jumping Model).

points (in layer P500) from a frame which is equal to 95% of the dynamic mesh (for the Bouncing model consisting of 10,002 
points).

Fig. 10 illustrates the STED error through the change of bpvf rate for different approaches. We can see that in high 
rates of bpvf, our proposed method has a very similar response to the two approaches of FAMC, however, when the bpvf is 
decreased our approach seems performs better. In Fig. 11, we present comparisons between our method and others using 
different rates of bpvf. For the evaluation we use the KG error metric. In Fig. 12, we present the heatmap visualization of θ
metric for different reconstructed models. Additionally, we provide the mean θ of each frame for the different approaches, 
as well as enlarged detail of the reconstructed models for easier comparison. Besides the good results that the approaches 
of the FAMC method provide, a significant disadvantage of this method is the fact that it compresses the whole animation 
in a file using the same rate of bit-per-vertex for any frame. However, this approach is inappropriate for online applications 
where the bandwidth is unstable. To simulate variable bandwidth capabilities and adjust rates for chunks we separate the 
whole animation in blocks-of-frames (e.g., 10 frames per block) and at any block, a different bpvf is used. Note, that even if 
our method does not theoretically guarantee non-occurrence of tangled meshes, nevertheless we use centroid normals with 
always positive direction (outside of the 3D object) so as to practically never face this problem.

5. Conclusions and limitations

In this work, we presented an efficient approach for online scalable coding of dynamic 3D meshes. This method is totally 
parameter free and it can be used without further changes or extra parameterization. A significant advantage of the proposed 
method is its ability to transmit different bpv per each frame depending on the instant network’s capability. Additionally, 
the selection of the transmitted vertices is optimized, taking into account both the spatial and temporal information. This 
gives an extra benefit to the reconstruction process to handle more efficiently the received vertices providing more accurate 
results. The main objective of our method is to provide the most efficient solution combining both the low execution 
time and the high perception quality of the reconstructed result (using a variety of evaluations metrics, namely θ , NMSVE, 
KG error). A very fast reconstruction process with bad results or high-quality results in a time-consuming process is not 
acceptable.

However, despite the effectiveness demonstrated by a variety of presented experiments and metrics, there are still some 
limitations. The transmitted dynamic mesh must be known in advance in order to create the decomposed layers. For this 
reason, applications, which require simultaneous scanning and transmission of the captured frames of a moving object, need 
an extra processing step so that each frame to have the same number of vertices and the same connectivity.
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Fig. 11. KG error of the reconstructed results using different approaches and different rates of bpvf. (a) Original mesh and reconstructed using: (b) EFSCA 
Ahn et al. (2013), (c) the lifting approach of the FAMC method Mamou et al. (2008), (d) the DCT approach of the FAMC method Mamou et al. (2008), 
(e) our approach.

Fig. 12. Heatmap visualizing the θ metric per face in different colors. The mean θ of the reconstructed mesh is also provided. (a) Original mesh and 
reconstructed using: (b) EFSCA Ahn et al. (2013), (c) the lifting approach of the FAMC method Mamou et al. (2008), (d) the DCT approach of the FAMC 
method Mamou et al. (2008), (e) our approach.
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