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Abstract: Conventional biomechanical modelling approaches involve the solution of large systems
of equations that encode the complex mathematical representation of human motion and skeletal
structure. To improve stability and computational speed, being a common bottleneck in current
approaches, we apply machine learning to train surrogate models and to predict in near real-time,
previously calculated medial and lateral knee contact forces (KCFs) of 54 young and elderly participants
during treadmill walking in a speed range of 3 to 7 km/h. Predictions are obtained by fusing optical
motion capture and musculoskeletal modeling-derived kinematic and force variables, into regression
models using artificial neural networks (ANNs) and support vector regression (SVR). Training schemes
included either data from all subjects (LeaveTrialsOut) or only from a portion of them (LeaveSubjectsOut),
in combination with inclusion of ground reaction forces (GRFs) in the dataset or not. Results identify
ANNs as the best-performing predictor of KCFs, both in terms of Pearson R (0.89–0.98 for LeaveTrialsOut
and 0.45–0.85 for LeaveSubjectsOut) and percentage normalized root mean square error (0.67–2.35
for LeaveTrialsOut and 1.6–5.39 for LeaveSubjectsOut). When GRFs were omitted from the dataset,
no substantial decrease in prediction power of both models was observed. Our findings showcase
the strength of ANNs to predict simultaneously multi-component KCF during walking at different
speeds—even in the absence of GRFs—particularly applicable in real-time applications that make use
of knee loading conditions to guide and treat patients.

Keywords: contact force prediction; musculoskeletal modeling; support vector regression; artificial
neural networks; gait analysis

1. Introduction

Musculoskeletal diseases, along with natural age-related sensorimotor decline, affect the lower
limbs’ soft tissue homeostasis and/or skeletal integrity, resulting in pain [1], muscle loss [2] and functional
decline [3,4] along with elevated fall [5,6] and fracture risk [7]. Even though knowledge discovery
has been immense during recent decades, the scientific community has been unsuccessful in treating
musculoskeletal diseases, and current prevalence, incidence, and socioeconomic burden still impose
a significant threat to healthcare systems [8,9]. Measures to counter their adverse effects include
pharmacological and rehabilitation interventions, mainly utilized when health status has already
diminished, and the patient seeks medical help. On the other hand, exercise has proven a lifetime
successful surrogate strategy for prevention and treatment of numerous pathologies [10], since it can
trigger an anabolic response to muscle and bone matrix and improve neuromotor function, followed
by improvement in key cardiovascular indicators [11] and overall quality of life [12]. Research interest
has focused on characterizing the mechanical loading exerted during exercise in important skeletal
sites, in order to elucidate the interplay between external forces and biological response of the human
skeleton [13–15].
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Forces acting on joints and resulting bone deformation (strain) can lead to degeneration
of impact-absorbing cartilage [16] or regulate fracture-protective bone mass and shape [15];
hence, their exploration constitutes an urgent matter for prevention of major diseases, such as
osteoarthritis (OA) and osteoporosis. Important descriptors of joint loading are joint contact forces,
which are highly affected by individual motion strategy [17–20], aberrant bone geometry [21,22],
and are also related to cartilage stress distribution [23–25] and joint osteoarthritis initiation and
progression [26,27]. As a result, the joint contact forces have been extensively used to assess joint
malfunction [28], disease-driven gait alterations [29] and joint replacement design [30,31]. Medial knee
force calculation has particularly attracted research efforts due to the high prevalence of medial
knee osteoarthritis compared to the lateral compartment [32], thus medial knee contact force (KCF)
reduction has been the focus of numerous gait modification regimens [33,34]. However, knowledge
of inter-compartmental knee loading patterns and force direction during locomotion will uplift the
design of knee rehabilitation programs for lateral osteoarthritis patients as well, and help towards the
investigation of the mechanical factors of knee prostheses’ loosening phenomenon [35].

The lack of actual forces/strains acting on bone, caused due to the invasiveness of available
acquisition techniques [36,37], has led to their estimation via modeling algorithms of muscle function
and bone mechanical response. Musculoskeletal models provide validated, clinically relevant,
subject-specific information, although their demand for high expertise, comprehensive collection of
input variables and excessive computational cost has inhibited their widespread use in the clinical
world. Moreover, standard modeling methods can be rather time-consuming—ranging from several
minutes to hours—thus being unsuitable for real-time applications. A representative example involves
the assessment and guidance of knee-osteoarthritic patients in self-managing their condition through
medial knee offloading while performing daily activities [33,34]. Consequently, new approaches
must emerge to facilitate prevention and treatment of major musculoskeletal deficits, integrating
sensor-based biomedical technologies coupled with computational models of muscle and bone.

As an alternative to biophysics-driven modeling approaches, data-driven techniques are rapidly
evolving to meet healthcare needs. The advancement of sensing devices that allow one to monitor
health-related parameters [38], as well as the increase in computation capacity permitting real-time
simulation and modelling of human body functions [39], has opened numerous opportunities for
machine learning (ML) in healthcare. ML methods’ strength lies on their ability to leverage non-linear
relationships between a set of inputs and outputs and build a model to “learn” the interaction between
them through a rigorous training phase on—usually large—acquired datasets. Once the formulation
and parameters of the model have been selected, it can offer predictions very fast, highlighting ML’s
usability as tool to predict key biomechanical variables. ML-based models can easily be embedded in
digital tools to become suitable for real-time applications.

Artificial neural networks are commonly used to predict lower limb joint angles and moments [40–44],
ground reaction forces [45], joint forces or impulses [46–49] and contact pressures [50–52]. On the
other hand, support vector machines have also demonstrated promising prediction performance
in various regression biomechanical problems, such as electromyography (EMG)-based prediction
of lumbosacral joint loads [53] and optical marker-based prediction of lower limb joint angles and
moments [54,55], standing out for their substantial generalization ability to unseen datasets [56]. For an
analytic review on ML applications in human movement biomechanics, including also unsupervised
learning techniques, we refer to the survey of Halilaj et al. [57]. Since a trained ML model is as good
as its training dataset, and most studies have used a very limited dataset of patient population or
limited range of walking speeds [47,48], generalization of their predictions may be restricted. In most
cases, input datasets were related to the motion capture (mocap) system used for motion analysis,
for example, the original trajectories from markers or inertial measurement unit (IMU) signal were
primarily included, thus limiting the usage of the trained models beyond the specific marker set
protocol or IMU placement and signal processing. Finally, the output variables were usually restricted
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to single medial KCF [47,48], and no multi output regression techniques were utilized to promote
understanding of overall, multi-component knee joint loading.

Thus, the aim of this paper is to establish an ML-empowered, mocap-agnostic framework to
predict all components of medial and lateral KCFs during different gait speeds, based on data fusion
of calculated variables through motion analysis and musculoskeletal modelling. The predictive
capability of two common regression ML methods—artificial neural network (ANN) and support
vector regression (SVR)—will be researched to elucidate their applicability on prediction of important
biomechanical parameters in real time.

2. Experimental Procedure and Biomechanical Simulations

2.1. Participants

Fifty-four (54) healthy, university students and community-dwelling citizens of two distinct age
groups—young (n = 40) and elderly (n = 14), (see Table 1)—provided informed consent to participate
in the study, approved by the local Ethics Committee. None of them had prior lower-limb defect that
could affect their performance.

Table 1. Participant characteristics.

No. Subjects Mean Age (SD) (Years) Body Mass Index (kg/m2) Percent Female

Young
40

Elderly
14

Young
22 (1.66)

Elderly
69.6 (3.5)

Young
22.8 (2.8)

Elderly
24.4 (2.3)

Young
60%

Elderly
100%

Total = 54

2.2. Experimental Protocol

All participants walked on a motor driven treadmill (Forcelink, Culemborg, The Netherlands) at a
speed increasing from 3 to 7 km/h, with an increment of 1 km/h. A harness attached to the ceiling was
utilized to ensure participants’ safety. Subjects were advised to walk casually and choose their last
walking speed on their own. They stopped at a different maximum walking speed; 4 subjects walked
up to 4 km/h, 13 subjects walked up to 5 km/h, 31 subjects walked up to 6 km/h and only 5 walked up
to 7 km/h. Twenty walked only barefoot, eleven walked with both shoes and barefoot interchangeably
and twenty five walked only with shoes. Due to continuous recordings between speeds and the lack
of an automated way to count steps, data were collected for 10 s per speed following an adaptation
period of 10 s, resulting in multiple gait cycles per subject and speed. More time for acclimation was
given to the elderly group, but not more than 1 min, to avoid fatigue. Forty-two (42) retroreflective
markers were placed on anatomical landmarks (Figure 1) and their spatial trajectories were recorded
using a 10-camera VICON system (10–15 MX camera system, VICON, Oxford Metrics, Oxford, UK)
with sampling rate of 100 Hz. Ground reaction forces (GRFs) and moments were captured through
force plates integrated in the treadmill at 1000 Hz and filtered at 6 Hz. Clusters of 3 markers were
placed on the femur and tibia of each side to improve capturing of respective body segment motion.

2.3. Musculoskeletal Modeling

The entire musculoskeletal procedure was implemented with the free open-source software,
OpenSim (Stanford University, Stanford, CA, USA). First, a generic musculoskeletal model [58]
consisting of 18 segments and 92 Hill-type musculotendon actuators was linearly scaled to each
participant’s anatomy and body weight, based on recorded marker positions during a static trial while
each participant was standing on a force plate in a neutral position. The included knee joint was
modeled as a single degree of freedom (DOF) joint acting along the sagittal plane, specifying two distinct
contact points between the femur and tibia lying on the medial and lateral compartment of a tibial
plateau. Two revolute joints acting on the frontal plane were attached to each contact point, respectively,
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sharing the forces acting between the femur and tibia. Inter-compartmental forces were calculated
via balancing the net reaction forces and frontal-plane torques around the knee joint. The distance
between the contact points and femur–tibia alignment was kept at the default values (3.5 mm and
0, respectively) since relevant subject-specific information was not available (e.g., through medical
imaging). The ankle and subtalar joints were modelled as revolute joints, whereas the hip was modelled
as a ball and socket joint. Joint angles were calculated for every recorded motion using the inverse
kinematics tool and, after low-pass filtering at 6 Hz, served as inputs—coupled with GRFs—to static
optimization for muscle force estimation. The cost function was set to minimize the squared sum
of all muscle activations. Reserve actuators were added at each joint of the model, to provide the
additional torques if needed during static optimization, although their usage was penalized to avoid
excessive activation. Finally, three medial and three lateral components of knee contact forces were
calculated in the local coordinate system, using the calculated joint angles and muscle forces, along
with the three components of GRFs, vertical GRF moment and two-dimensional coordinates of the
center-of-pressure acting at each foot, as inputs to the Joint Reaction Analysis in OpenSim. These KCFs
form the response variables that were subsequently used to train a regression model that takes as input
the kinematic variables and the GRFs. Once trained, the model can be used for real-time prediction on
new coming data.
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Figure 1. Marker set used for motion capture and joint angle/external force definition.

2.4. Data Pre-Processing

Individual gait cycle was determined as the stance phase of each leg and obtained between
heel-strike and following ipsilateral toe-off. Respective joint angles, GRFs and calculated KCFs of each
leg were synchronized by downsampling the GRFs to match the frequency of the other two. All forces
were normalized to individual body weight to account for inter-subject variability and represent
the residual force variation per weight unit. To include both right and left leg data in the dataset,
left mediolateral component of GRFs and KCFs was negated to match the right forces. No negation
was needed for the joint angles since they were calculated as relative degrees between attached body
segments, within the same range of values for both sides. The six components of right medial and
lateral KCFs comprised the output feature set, whereas the rest formed the input feature set. Features
with negligible standard deviation (less than 1 × 10−6) were considered as noise and were omitted from
the dataset. These included the lateral KCF across the x-direction, thereby ending up with 16 features
for the input and 5 features for the output dataset (see Figure 1 and Table 2).



Sensors 2020, 20, 6933 5 of 19

Table 2. Input and target tensors characteristics.

Anatomical Location Abbreviation Component Units

torso (lumbrosacral joint) lumbar
extension
bending
rotation

degrees

pelvis pelvis
tilt
list

rotation

hip joint hip
flexion

adduction
rotation

knee joint knee flexion

patella knee angle patella flexion

ankle joint ankle flexion

subtalar joint subtalar eversion

Force Description

ground reaction force GRF
anteroposterior (x)
distal proximal (y)

mediolateral (z)

body weight (BW)medial knee contact force KCF (med)
anteroposterior (x)
distal proximal (y)

mediolateral (z)

lateral knee contact force KCF (lat)
anteroposterior (x)
distal proximal (y)

mediolateral (z)

The input data were stored in a 3D tensor X of size Nx × M × T, where Nx = 16 is the number of
input variables, M = 4784 is the number of trials for all subjects, and T is the maximum number of
time points. As the subjects walked with different speeds, some gait cycles are shorter than others
and therefore the 3D tensor X is partially empty across its time dimension. We should underline
that we do not temporally align the gait cycles because such an alignment can only been performed
upon completion of the cycle. In an online prediction scenario where estimations should be provided
for each time point, i.e., before the completion of the gait cycle, such an alignment is not feasible.
The output data were stored in a similar way into a 3D tensor Y of size Ny ×M × T, where Ny = 5
is the number of output variables. Upon data splitting into training and testing sets (as described in
Section 3.4), the sub-tensors (for both input and output variables) were unfolded and linearized so that
each time measurement could be used as an independent sample for prediction. A description of all
data variables used for prediction by machine learning is shown in Table 2.

3. Prediction by Machine Learning

In the next sections, we describe how the kinetic variables computed by the previous
biophysics-driven modeling approach can be predicted using the fusion of kinematic variables
and data-driven techniques. We formulate our problem as a regression problem and apply machine
learning to solve it. For a complete overview of our methodology see Figure 2.
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3.1. Regression

Let us assume that f (x, w) is a family of functions parameterized by a vector w that transforms
a vector x into a new space. As a note, we represent vectors as columns and use the superscript
“t” to represent the transpose of a vector. Given a dataset of Ns observations—namely, single time
frames—D =

{
xi, yi

}
, i = 1, . . . , Ns, where each observation i is expressed by an input vector

(x)t = [x1, x2, . . . , xNx ] with Nx variables and a response variable (scalar) y, our goal is to estimate ŵ
that minimizes a loss function l between the transformed space representation ŷ = f (x, ŵ) and the
observed values for the Ns training instances, i.e.,

ŵ = argmin
∑Ns

i=1
l
(

f
(
xi, w

)
, yi

)
(1)

As the true function that maps x into y (plus noise) is unknown, we will evaluate our results based
on the residual of the predictions using the common root mean square error (RMSE) metric,

RMSE =

√
1

Ns

∑Ns

i=1
( f (xi, ŵ) − yi)

2 (2)

We examined two of the most popular methods for non-linear regression, the artificial neural
networks [59] and the support vector regression [60]. Details on the transformation function and
optimization mechanism for these two methods are provided next.

3.2. Artificial Neural Networks

ANNs have attracted the interest of the scientific community for classification of human
movement [61,62] or prediction of meaningful biomechanical parameters [57] based on lower-level
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motion capture data, mainly owing to their significant ability to learn intermediate features over
multiple levels of transformations. The generic structure a feed-forward ANN consists of multiple
processor units, called neurons, organized in a series of layers including the first (input) layer, a set
of intermediate (hidden) layers and the output layer. Each neuron is connected to the neurons of
neighboring layers via numerical values (weights) and receives the weighted sum of all neuron outputs
of the previous layer (except neurons from the input layer), after the application of an activation
function. In our network, all the hidden neurons were activated using the “REctified Linear Unit–RELU”
function according to the equation:

f (x) = max(0, x), (3)

The neurons of the output layer were fed with the weighted sum of all neurons’ outputs of the
last hidden layer, which were activated by a linear function. Adaptive moment estimation (Adam) [63]
algorithm was used to train the network by iteratively updating the weights, aiming at the minimization
of the loss function, set as the mean squared error between the network predictions and the target
values. To avoid overfitting, early stopping was utilized when a minimum loss was achieved and
stabilized for 10 consecutive epochs. The total network topology was a four-layer ANN with two
hidden layers of 400 neurons each, with the number of neurons in the input/output layers equal to the
size of the input and target variables, respectively.

3.3. Support Vector Regression

We investigated also support vector regression due to its high generalization ability, and because
SVR optimization does not depend on the dimensionality of the input space, therefore is very well
suited for datasets with a large number of independent variables. SVR, firstly proposed in [60],
expands Vapnik’s concept of support vectors [64]. A basic (polynomial) transformation function for
support vector machines can be expressed as

f (x, w) =
∑Ns

i=1

(
a∗i − ai

)(
xt

ix + 1
)p
+ b, (4)

where xi represents the i-th training instance, x a new input vector, and the 2Ns + 1 values of a∗i , ai and
b form the vector w. The optimization problem of Equation (1) also entails regularization constraints
over the magnitude of w to control the flatness of the solution. Moreover, a convex ε-insensitive loss
function is adopted to only penalize predictions that are farther than ε from the desired output.

Extending the original formulation of Equation (4) from linear, or polynomial, to non-linear
mapping through the use of kernels, it is possible to achieve a higher accuracy if enough data are
available to optimize for w and the kernel hyper-parameters. We chose a Gaussian (rbf) kernel with
a fixed kernel scale of 0.6, avoiding optimization of hyperparameters. Since SVR does not support
multi-output regression, five separate models were built for each target variable.

3.4. Assessment

The training and assessment of the regression models was performed in two different
cross-validation settings. Firstly, we considered random data split over trials (LeaveTrialsOut),
i.e., the trials of all subjects were divided in three equal parts and used to perform three-fold
cross-validation, thereby allowing some trials from one subject to be in the training set and the
other trials from the same subject in the test set. In the second setting, cross validation is performed
across subjects (LeaveSubjectsOut), i.e., the subjects were divided in three equal parts such that all trials
from each subject are either in the training set or in the test set. In both cases, the overall prediction
accuracy was calculated by averaging the results over the three folds. Any method requiring tuning of
hyperparameters exploited a small part of the training set only (to form a validation set), whereas the
test set was left completely out for the final assessment of accuracy.
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Assessment of the individual models trained for each KCF component was based on the error
between predicted and calculated (based on musculoskeletal modeling) values. As the standard RMSE
depends on the units, it impedes the results’ interpretation and comparison with others, if the data
scale is unknown. Thus, we calculate the normalized RMSE (NRMSE), by dividing with the range of
each variable (difference between maximum and minimum values) included in the dataset:

NRMSE =
RMSE

∆y
∗ 100% (5)

where RMSE is the root mean squared error calculated in the original range of values, and ∆y is the
range of values for each KCF component. The ∆y values used for the results of this paper were 8.069,
12.164, 1.389, for the anteroposterior, distal proximal and mediolateral medial KCF, and 9.657, 0.007 for
distal proximal and mediolateral lateral KCF, respectively.

Although the RMSE is the most representative metric for prediction accuracy, it is sensitive to
outliers and to systematic errors such as baseline shifts. Therefore, we also calculated the Pearson’s
correlation coefficient (R) as a measure of association strength between predicted and calculated values,
which is less sensitive to outliers.

4. Results

4.1. Calculated KCFs Based on Musculoskeletal Modeling

All (M = 4784) trials were successfully processed in OpenSim using standard inverse dynamics
and a dedicated musculoskeletal model as described in Section 2.3. To demonstrate the validity of the
calculated KCFs and deem their suitability for training ML models, respective average curves and
their peak values were calculated and compared with literature. Individual gait cycles were identified,
and all data were time normalized to 100 points by quadratic interpolation. An averaging process
of knee forces per gait cycle within and between subjects for each speed resulted in the ensemble
curves for each component of medial and lateral KCFs, as shown in Figure 3. The resulting ensemble
curves were calculated separately along the three directions, i.e., in the anteroposterial direction (x),
distal–proximal direction (y) and mediolateral direction (z). Positive x values indicate backwards,
positive y values downwards and positive z inwards.

Moreover, a double peak profile was found in both medial and lateral vertical components (med_y
and lat_y), with first and second peak occurring at early and late stance phase, respectively. Mean peak
KCF values were calculated for each force component by averaging identified first and second peak
values for every gait cycle per speed, within and between subjects. Results (see Table 3) show that
first and second peak of med_y increase with increasing speed, ranging from 2.18 to 3.30 body weight
(BW) and 2.50 to 3.22 BW, respectively. The same finding applies to the first and second peak of lat_y,
ranging from 0.71 to 1.84 BW and 0.70 to 1.73 BW, respectively.

Table 3. Mean peak vertical medial and lateral knee contact forces (standard deviation) during different
gait speeds.

Medial Force Lateral Force

1st Peak 2nd Peak 1st Peak 2nd Peak

3 km/h 2.18 (0.58) 2.50 (0.75) 0.71(0.34) 0.70 (0.39)
4 km/h 2.22 (0.58) 2.76 (0.82) 0.92 (0.45) 0.81 (0.49)
5 km/h 2.48 (0.63) 3.06 (0.86) 1.15 (0.49) 1.02 (0.49)
6 km/h 2.82 (0.71) 3.25 (0.96) 1.44 (0.63) 1.36 (0.79)
7 km/h 3.30 (0.65) 3.22 (1.05) 1.84 (0.68) 1.73 (0.77)
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their peak values were calculated and compared with literature. Individual gait cycles were 
identified, and all data were time normalized to 100 points by quadratic interpolation. An averaging 
process of knee forces per gait cycle within and between subjects for each speed resulted in the 
ensemble curves for each component of medial and lateral KCFs, as shown in Figure 3. The resulting 
ensemble curves were calculated separately along the three directions, i.e., in the anteroposterial 
direction (x), distal–proximal direction (y) and mediolateral direction (z). Positive x values indicate 
backwards, positive y values downwards and positive z inwards.  

Moreover, a double peak profile was found in both medial and lateral vertical components 
(med_y and lat_y), with first and second peak occurring at early and late stance phase, respectively. 
Mean peak KCF values were calculated for each force component by averaging identified first and 
second peak values for every gait cycle per speed, within and between subjects. Results (see Table 3) 
show that first and second peak of med_y increase with increasing speed, ranging from 2.18 to 3.30 
body weight (BW) and 2.50 to 3.22 BW, respectively. The same finding applies to the first and second 
peak of lat_y, ranging from 0.71 to 1.84 BW and 0.70 to 1.73 BW, respectively.  

Table 3. Mean peak vertical medial and lateral knee contact forces (standard deviation) during 
different gait speeds. 

 Medial Force Lateral Force 
 1st peak 2nd peak 1st peak 2nd peak 

3 km/h 2.18 (0.58) 2.50 (0.75) 0.71(0.34) 0.70 (0.39) 
4 km/h 2.22 (0.58) 2.76 (0.82) 0.92 (0.45)  0.81 (0.49) 
5 km/h 2.48 (0.63) 3.06 (0.86) 1.15 (0.49) 1.02 (0.49) 
6 km/h 2.82 (0.71) 3.25 (0.96) 1.44 (0.63) 1.36 (0.79) 
7 km/h 3.30 (0.65) 3.22 (1.05) 1.84 (0.68) 1.73 (0.77) 
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Figure 3. Ensemble curves of the 6 components of medial and lateral KCFs along the stance phase.

4.2. ML-Based Prediction with and without GRFs

We chose to train ML models with two versions of inputs, i.e., with and without GRFs, on grounds
of limited availability of GRF-measuring equipment in usual mocap settings. The ANN and SVR
predictions were compared against calculated KCFs. Generally, ANN slightly outperformed SVR in
most cases, both in terms of NRMSE and R. Average-across-folds values of NRMSE and Pearson’s R for
every model with or without GRFs, are depicted in Tables 4 and 5, respectively. Mean NRMSE values
for ANN-GRF were smaller and R values larger than the corresponding from SVR-GRF. The same trend
occurs when only joint angles are included in the input set: mean NRMSE values for ANN-noGRF
were smaller than the corresponding values for SVR-noGRF, while R was mostly larger for both
LeaveTrialsOut and LeaveSubjectsOut cross-validation settings. No substantial differences were noticed
between the prediction accuracies of GRF and noGRF models per case, thus ensemble curves across
trials of predictions and calculated KCFs were illustrated only for models using GRF, as depicted
in Figure 4.
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Table 4. NRMSE (%) for medial (med) and lateral (lat) KCF components in x, y and z.

med_x med_y med_z lat_y lat_z

LeaveTrialsOut

GRF noGRF GRF noGRF GRF noGRF GRF noGRF GRF noGRF
SVR 1.04 1.36 2.68 3.92 2.03 2.65 2.80 3.44 2.79 3.44

ANN 0.67 0.9 1.71 2.35 1.45 1.82 1.61 2.04 1.61 2.04

LeaveSubjectsOut

GRF noGRF GRF noGRF GRF noGRF GRF noGRF GRF noGRF
SVR 1.53 1.73 4.63 5.85 3.42 3.80 4.41 4.66 4.41 4.65

ANN 1.60 1.81 4.54 5.39 3.49 3.85 4.19 4.59 4.19 4.59

Table 5. R for medial (med) and lateral (lat) KCF components in x, y and z direction.

med_x med_y med_z lat_y lat_z

LeaveTrialsOut

GRF noGRF GRF noGRF GRF noGRF GRF noGRF GRF noGRF
SVR 0.85 0.73 0.94 0.88 0.94 0.89 0.83 0.73 0.83 0.73

ANN 0.94 0.89 0.98 0.96 0.97 0.95 0.95 0.91 0.95 0.91

LeaveSubjectsOut

GRF noGRF GRF noGRF GRF noGRF GRF noGRF GRF noGRF
SVR 0.64 0.50 0.83 0.73 0.82 0.77 0.52 0.44 0.52 0.44

ANN 0.63 0.48 0.85 0.76 0.83 0.76 0.58 0.45 0.58 0.45
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Figure 4. Ensemble curves along the duration of the stance phase for the 5 different components of
knee joint forces computed by inverse dynamics (in blue) and predicted by ANN and SVR based on
LeaveTrialsOut and LeaveSubjectsOut training scenarios. The graphs illustrate the distribution of time
normalized testing trials of one (out of three) fold summarized by the mean curve (solid line) and range
of variation (5–95% percentile of the distribution).
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A review of previous outcomes on predictive capability of different ML models for KCFs is
summarized in Table 6.

Table 6. Review of machine learning (ML)-based KCF prediction methodologies.

Subjects Test Trials Classifier Inputs Y 2
Mean Pearson’s R

(NRMSE%) 3

LeaveTrialsOut LeaveSubjectsOut

Ardestani et al.
(2014) [48]

4 (knee
replacement

patients)
75 ANN

-GRFs
-marker 3D
coordinates

-EMG

in vivo 0.96
(10.5)

0.94
(13.3)

Rane et al.
(2019) [47]

healthy and
knee OA
patients

58
63
28

CNN

-CoP 1

-GRFs
-marker 3D
coordinates

ID 0.90 0.90
0.87

Stetter et al.
(2019) [65]

13 healthy
athletes
(young)

198 ANN -2 IMUs ID - 0.87

Zhu et al.
(2019) [66]

3 (knee
replacement

patients)
135 Random

Forest

-GRFs
-marker 3D
coordinates

-EMG

in vivo 0.97 -

Proposed
method

54 healthy
(young and

elderly)
4784 ANN

-GRFs
-Joint
angles

ID 0.98
(1.71)

0.85
(4.54)

1 CoP: center of pressure. 2 Y: ML model trained on inverse dynamic (ID) modelling or instrumented knee prosthesis
(in vivo) data. 3 For fair comparison, the accuracy is reported only for the common (across studies) target variable,
i.e., vertical KCF.

4.3. Robustness of Fit

Results from musculoskeletal modeling methods are highly sensitive to instantaneous error
registration during motion capture, due to a faulty marker recording or noisy IMU signal. Although
low pass filtering techniques can remove minor drifting and ensure smoothness of signals [67], joint force
calculation remains susceptible to highly erroneous recording settings, propagating inconsistencies in
equations of motion, thus abnormal values can infiltrate the training set. To evaluate the robustness
to outliers of the proposed ML models, we selected the best performing model (i.e., the ANN)
and examined its sensitivity to approximate the target variable with varying amount of introduced
noise. Specifically, we artificially contaminated our dataset with outliers, generated by sampling
from a Student-t distribution with zero mean and 2 degrees of freedom and scaled by the standard
deviation of the original training data. The original samples were randomly replaced at proportions
of 5%, 10%, 15%, 20%, 25% and 30% of the training samples [68]. Training of the ANN with the
contaminated datasets was similar as before, and average values between folds were calculated for each
target variable. Average values of R across folds for every contamination level are shown in Figure 5.
As expected, increasing presence of outliers in the training set reduced the predictive capability of the
ANN under different training scenarios, although not significantly in most cases, indicating its high
prediction robustness, as also observed in previous work [69].
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5. Discussion

The current study demonstrates for the first time a mocap-agnostic, ML-empowered framework for
prediction of multi-component KCFs during different speeds of walking and showcases the advantages
of using supervised learning coupled with musculoskeletal modeling in mapping the kinematic to joint
force space. Multi-output regression enabled us to leverage correlations between the different KCF
components and improve the predictive accuracy rather than depending on separate regressions that
could overlook intra-component relation [70]. The prediction capability of artificial neural network
and support vector regression models was examined under different training schemes with two levels
of exposure to the dataset, identifying ANN as the best ML method among the investigated ones.
Last, testing different model configurations with artificially contaminated training sets with outliers
in different proportions indicated that ANN can successfully approximate the nonlinear function
mapping joint angles with or without GRFs to KCFs, even when errors are present in the measurements.

Reference values of inter-compartmental peak KCFs in different speeds during walking are of
significant importance for scientists exploring the dynamic loading of the musculoskeletal system
and its effects on local tissue response. Resultant and vertical forces are rarely distinguished in the
literature, probably because of the high similarity between their magnitudes since mediolateral and
anteroposterior components show negligible values. Nonetheless, the current work presents the three
components separately for a complete overview of healthy knee loading milieu. Average medial and
lateral force values for both peaks during stance phase fit well within the range of other modeling
studies or in vivo data, despite the large differences in cohorts’ profile or modeling practices of previous
work, as reviewed from Fregly et al. [71]. Few studies report peak values in certain gait speeds.
Specifically, Zhao et al. [72] reported in vivo medial peak forces of 1.51, 1.58 BW and 1.63 BW at speeds
of ~3, 4.5 and 5.5 km/h of one total knee arthroplasty (TKA) patient during gait, that are similar to
the lower bounds of our estimations. Our results also compare favorably with mean peak medial
knee forces of 2.08 BW and 2.25 BW as reported by Kutzner et al. [73], for the first and second peak,
respectively, at an average gait speed of ~4 km/h from three TKA patients. Regarding modeling efforts,
most studies focused on building sophisticated subject-specific knee models to reproduce in vivo
loads from TKA patients, leaving loading of the healthy knee mostly unexplored. Winby et al. [74]
first introduced a computationally efficient way to estimate inter-compartmental forces of healthy gait,
reporting—similar to ours—peak medial and lateral values of 2.0–3.0 BW and 1.0–1.4, respectively,
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during level walking. Kumar et al. [75] also reported comparable average values from a healthy elderly
cohort, namely, 2.37 and 1.80 BW for the first and second peak of medial KCFs, respectively, along with
1.30 and 0.45 BW for the first and second peak of lateral KCFs, at the walking speed of 5.6 km/h.
In conclusion, the current study has provided valid results of healthy knee loading on treadmill
walking, providing previously unexplored medial and lateral forces on a wide range of speeds.

Our prediction results showed that multidimensional medial and lateral KCF can be sufficiently
predicted by ANN or SVR based on joint angle data—with or without GRFs—although ANN performed
better in both cases. The prediction errors were determined in respect to the level of exposure to the
full dataset, being low when the model was partially exposed to some trials of the testing subject
(LeaveTrialsOut) and relatively high when no information from the testing subject was used during
training (LeaveSubjectsOut). The implemented ANN achieved a good to excellent prediction score in
the case of the compressive medial KCF in the distal–proximal (vertical) direction regardless of training
scenario, which is of significant importance since that force component is the main determinant of medial
knee loading and is considered an important risk factor for local cartilage degeneration. This finding
can be attributed to its steady-across-trials double peak profile and the resulting similarity between
training and test distributions. Hence, the regression model managed to sufficiently map inputs and
outputs and achieve good estimation accuracy, even when the training was artificially contaminated
with outliers in different amounts. Although comparisons between studies are problematic due to
variations in datasets and methods, the present study generally outperformed earlier efforts to predict
medial KCFs (see Table 6), possibly the main reason being the extensive dataset used in this study and
the range of speeds or shod conditions incorporated, thus substantial pattern variation was induced.
Based on comparisons of R values between our method and Ardestani et al.’s [48] (see Table 6),
inclusion of subject-specific EMGs in the training set by the latter seem to enhance model predictive
power in the LeaveSubjectsOut scenario, yet, respectively, a higher NRMSE% may indicate limitations in
that approach. Moreover, EMG acquisition requires advanced equipment and high expertise, which is
impractical in common clinical settings, in contrast with our approach that provides prediction of
KCFs solely based on joint angles estimation, irrespective of the mocap system used. Hence, IMUs or
even video-based mocap systems that are inexpensive, portable and can offer real-time joint angle
estimations, are appropriate for providing the necessary input to our trained models.

Different models’ exposure levels to the dataset revealed that their generalization capability
was compromised when all the trials of the testing subjects were excluded from the training dataset,
which is in accordance with previous findings [47,48]. Although ANN’s predictive power of medial
KCF was only slightly diminished in the LeaveSubjectsOut setting, it reaches moderate prediction
level for lateral KCFs and medial anteroposterior force. This can be partially explained by the lack of
consistent relationship between kinematic and kinetic variables in the lateral KCF or the noise level is a
serious confounding factor that hinders the discovery of any underlying relationship. Additionally,
uniqueness of individual joint motion characteristics during gait [69] may be an additional challenge
when the models are tested in data of unseen subjects. Strategies to overcome such limitations may
include larger datasets from larger cohorts or appropriate data augmentation techniques to induce
adequate variability within the training set, along with deeper architectures allowing a higher degree
of non-linearities.

The current study outlines the possibility to use only kinematic variables to predict KCFs during
walking, as indicated from the high prediction accuracy of the trained models when GRFs were
excluded from the training set. Such redundancy may be indicative of the dissociation between GRFs
and joint loading found in earlier studies [76,77], pinpointing kinematics and associated overall motion
strategy as most relevant. Using only kinematics for KCF estimation seems promising in all cases
when synchronous joint angle estimation and GRF acquisition is not feasible due to equipment/space
restrictions. For instance, IMU-based on-field measurements could be utilized in combination with
our model to explore outdoors’ mobility in terms of knee loading, and thereby gain more insight to
real-world gait dynamics in environments inappropriate for dedicated mocap equipment. Within the
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same context and in contrast with standard physics-based modeling, the ML-empowered method
requires no further knowledge on muscle physiology and overall anatomy, outlining its attractiveness
for KCF prediction in real time.

Limitations of the current study mainly lie on the development of a rich and representative
training dataset, a task extremely challenging in the context of musculoskeletal modeling. Owing to
lack of in vivo data, especially in healthy populations, knee forces had to be calculated under a rigorous
and time-consuming modeling framework, yet inherently limited to the subject sample, motion capture
protocol, and simulation process. Calculation of KCFs require sophisticated musculoskeletal models,
nonetheless, being a mere approximation of the actual human function, hence affecting their calculation.
No subject-specific information on knee geometry was available, hence overestimation of actual knee
forces might have infiltrated our results, as shown in [58], where estimated medial knee forces were
compared between a generic (uninformed) knee model and a (fully informed) model with known
contact point distance and tibiofemoral alignment, extrapolated from medical images. Our future
plans include the exploitation of previous work of our group on the automatic generation of
subject-specific and anatomically adopted knee geometry meshes [78] that allow one to personalize
the KCF computations, if imaging information is available. Additionally, the reported forces in the
anteroposterial and mediolateral directions must be cautiously considered, since no mathematical
formulation is incorporated in the knee model that allows the sharing of the prescribed loads between
the two knee contact points in the respective planes of motion. Hence, infinite couples of individual
values could sum up correctly to the net reaction forces. A systematic analysis of the synergetic nature
of the joint is a challenging direction for future work, as an extension of similar work for muscle
synergies found in [79]. Moreover, ANN prediction accuracy relies heavily on the network topology.
As a costly brute-force search allowed us to examine only a few parameter values, detailed fine-tuning
in search of the optimal settings may have resulted in better results. Nonetheless, high correlation
coefficients and low NRMSE support the validity of the selected parameters. Last, the choice of joint
angles as inputs (versus marker trajectories) was made upon the rationale that KCF prediction should
be independent of motion tracking system, so that the trained ML models could be used in various
settings. However, this introduces the need to calculate the joint angles (via inverse kinematics) prior to
KCF estimation. Although this is an easy and computationally fast processing step, the introduced
biomechanical modelling procedure might insert more variability than the variability introduced
by the differences in markers’ placement. Therefore, we cannot be sure if the original input data
(marker coordinates) can lead to improved prediction power of the used ML models. A follow-up
study may address this issue.

Our study showed that integration of advanced musculoskeletal modeling techniques and
artificial intelligence algorithms proved to be successful in predicting knee joint loading profiles
during gait stance phase for different walking speeds. The selected ML model was able to predict
multi-component KCFs instantaneously relying solely on motion-specific joint angles, also outlining
the redundancy of GRF data. In addition, prediction of medial and lateral KCF components was in
good agreement with calculated data, especially in the case of clinically relevant medial vertical KCF,
highlighting the potential of machine learning approaches in contrast with standard musculoskeletal
modeling techniques.

Predictive power was compromised in the case of lateral KCFs and especially for the
LeaveSubjectOut scenario, indicating that inclusion of subject-specific motion data in the training
set seems imperative to achieve the highest prediction accuracy within the current methodology.
This imposes a hindrance in the analysis since it requires the acquisition of new data and model
re-calibration every time a new subject is going to be assessed. Thus, future work should address the
need for more sophisticated machine learning models and architectures to approximate more abstract
kinematic to kinetic variables’ relationship and attain acceptable prediction rates of important variables
for previously unseen subjects.
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Finally, our method can be extended to real-time prediction of other motions and loading variables
solely based on joint angles, such as hip/ankle joint, ligament or muscle forces, once provided with the
appropriate dataset and musculoskeletal modeling workflow. Thus, well-informed decision making
will be facilitated for clinical settings with limited equipment, enabling medical professionals to
explore real-world motion dynamics for the design of targeted training protocols, or subject-specific
rehabilitation programs. For example, the current methodology can be implemented in a framework
that can train a professional athlete to perform landings in a joint-protective fashion to avoid injury
while exercising in an athletic environment or seamlessly guide osteoarthritic patients to offload joint
structures and address local cartilage degeneration during outdoor activities.

6. Conclusions

This paper presents the use of machine learning techniques to obtain surrogate models of
biophysics-driven simulations for real-time biomechanical computations. Such ML-empowered
models can be used whenever the original computational modelling approaches are too slow or
resource demanding. Their application can be combined with finite element analyses or augmented
reality technologies to explore force-driven, local bone deformation levels or facilitate balance and
mobility rehabilitation and support treatment strategies for gait alteration for pathological populations.
Integration of such trained models in digital tools will augment clinical practice and evidence-based
decision making. Seamless streaming of important scientific information via advanced visualization
interfaces or game-like platforms in real world settings, will enhance user experience and engage
involved parties, however, meticulous collection and processing of input data from portable devices
for offline or real-time analysis remains a challenge. Our results indicate the high potential of the ANN
model even for recordings of new subjects, while the SVR model requires the incorporation of previous
trials of the test subject for stable performance. In the future, we plan to investigate also other machine
learning techniques, such as convolutional neural networks with sparse coding for acceleration [80],
and graph neural networks [81].
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