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ABSTRACT

Throughout the years, several works have been proposed for
3D mesh denoising. Nevertheless, despite their reconstruc-
tion quality, there are still challenges related to the preserva-
tion of the fine surface features. Motivated by the impressive
results of image denoising by 3D transform-domain collabo-
rative filtering (CF), we extend it to 3D mesh denoising. CF is
also capable of revealing the finest details shared by grouped
blocks while preserving at the same time the unique features
of each block. A new promising approach suggests unrolling
the computational pipeline of CF into a convolutional neu-
ral network (CNN) structure increasing significantly the effi-
ciency of this solution. In this paper, we successfully extend
and apply this method to 3D meshes making a transition from
face normals to pixels. Extensive evaluation studies carried
out using a variety of 3D meshes verify that the proposed ap-
proach achieves plausible reconstruction outputs and provides
very promising results.

Index Terms— 3D mesh denoising, CNNs of BM3D fil-
tering, Image-based denoising of 3D normals.

1. INTRODUCTION
Despite the impressive results of recent 3D mesh denoising
approaches [1, 2, 3], algorithms that are used in the area of
image processing continue to inspire the area of 3D mesh pro-
cessing. Motivated by this observation, we focus on convert-
ing the problem of mesh to image denoising using very ro-
bust approaches that have been used and successfully tested
in this area. 3D transform-domain CF (e.g., 3D block match-
ing - BM3D [4]) is an approach that achieves state-of-the-art
image denoising performance by providing a 3D estimation
that consists of jointly filtered grouped image blocks. CF
is a special procedure that deals with 3D groups formed by
similar 2D fragments of the image, including the following
steps: 3D transformation of a group, shrinkage of the trans-
form spectrum, and inverse 3D transformation. The CF of
the grouped blocks, reveals the details which are common
between blocks, since for each pixel, we obtain several dif-
ferent estimates that need to be combined. This method has
been successfully applied in a large number of applications

including image/video denoising [5, 6] deblurring, superres-
olution, and compression. CF approaches process the noisy
images by successively extracting reference blocks and by
matching blocks that are similar to the reference one, form-
ing a 3D group matrix. After performing a 3D transform to
the group formed by the overlapping blocks and attenuating
the noise by hard thresholding, an aggregation step is taking
place in order to form the estimate of the whole image. Recent
approaches [7] suggest substituting the 3D transform-domain
processing with traditional CNNs, outperforming the original
BM3D approaches in terms of computational efficiency. The
BM3D filtering of images and its adoption to meshes have
an intuitive formulation, which leads to a simple data-driven
method that addresses issues that stem from the two dimen-
sions to manifolds in three dimensions. The data-driven meth-
ods have some significant benefits as compared to the tradi-
tional mesh denoising methods [8, 9, 10], since they do not
require the searching of ideal values per parameter for each
model. However, their limitations mainly rely on the large
dataset, required for the training process, and the correspond-
ing training complexity. Additionally, in real case scenarios,
the testing data have generally a different form from the train-
ing data (due to different light conditions, device character-
istics, etc.) making the implementation of the CNN process
in real applications, to be problematic. A possible solution
to this problem is to remove any objective characteristic from
the data (i.e., training and testing), in order to be independent
of geometry constrains (density, connectivity, etc.,), different
quality of the scanner devices, or other external conditions
that could affect the captured 3D model.

In this paper, we take into account all the aforementioned
drawbacks, introducing a novel pipeline for 3D mesh denois-
ing that efficienlty exploits the benefits of the 3D transform-
domain CF, used for image denoising. Our main contributions
can be summarized as follows:
• The proposed data-driven method gives the flexibility

for fully automatic runtime execution, without the need
for exhaustive searches of ideal parameters per model.
• Our method has no special requirements, related to the

form of the 3D mesh, since it operates with equal-sized
images uniformly, encoding the useful geometrical in-
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Fig. 1. Pipeline of the proposed method for image-based 3D mesh denoising using BM3D CNN filtering.

formation of any mesh.
• The proposed image-based approach results in a more

efficient training process, avoiding the need for large
datasets, exploiting efficiently geometrical coherence.

• We show how a method, inspired by robust and well-
known approaches used in the area of the image pro-
cessing, can be also efficiently used in the area of 3D
mesh processing.

The rest of this paper is organized as follows: In Section 2, we
discuss in detail each step of the proposed method. Section
3 presents the experimental results in comparison with other
methods and in Section 4 we draw the conclusions.

2. IMAGE-BASED 3D MESH DENOISING
The initial step of the proposed pipeline is dedicated to the
training of the CNNs. After that, the trained model is used
to denoise any new noisy 3D object. The most significant
process is a pre-processing step that generates the appropri-
ate and uniformly-used form of the equal-sized images which
efficiently encode the geometrical information of any noisy
mesh. Fig. 1 briefly illustrates the pipeline of the proposed
schema. We work with triangle meshes M consisting of n
vertices v and nf faces f . A noisy mesh M̂ can be writ-
ten as: v̂ = v + ẑ where ẑi ∈ R3×1 ∀ i = 1, · · · , nf
represents the noise vector. Each fj face is represented by
its corresponding normal ni and centroid point ci. Each unit
centroid normal ni = {nx ny nz},∀ i = 1, · · · , nf , where
|nx|, |ny|, |nz| ∈ [−1, 1] and

√
(nx + ny + nz)2 = 1, cor-

responds to a RGB pixel pi. However, a pixel of an image
can not take negative values, for this reason we normalize the
values of the normals in order to lie in a range of [0, 1]. Then,
we link the {R G B} components of each pixel to the values
{nx ny nz}, respectively. In this way, we can represent nor-
mals ni through pixels pi intensities, which is a fundamental
concept in our approach.

2.1. Creation of Images Based on Normals

We start assuming that for each centroid ci there is a patch
(enclosed in yellow border lines as shown in Fig. 2) which is
created based on its proximity with the k−1 geometrical near-
est neighboring centroids. Then, we estimate the normals of
the corresponding faces and we formulate an image with size
k×k, where k is an odd number {k = 2q+1 : q ∈ Z}. In the
central cell (k+1)/2 of the first row, we place the “normal-of-
interest” (in red color). The normal n12 of the closest centroid
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Fig. 2. Example of how an image 9 × 9 is created, using the
normals of a neighborhood of 9 centroid points.

(i.e., d1) is placed in the first right cell, then the normal n13

of the next closest centroid (i.e., d2) is placed in the first left
cell, and the completion of the row continues, in turn, using
the normals of all centroids, where d1 < d2 · · · < dk−1. The
next i rows are completed in the same manner assuming, how-
ever, that the central cell represents the normal of the i closest
centroid of n1, increasingly for each row.

2.2. Creation of the Dataset Consisting of Ideal Images

Image-guided filtering has been presented in many papers
providing superior results [11, 12, 13]. Additionally, in the
area of 3D mesh denoising, guided normals have demon-
strated also a remarkable denoising performance as it is also
validated in [14, 2, 15]. In this work, we follow the same line
of thought but using guided pixels and ideal-selected images,
for the filtering step of the mesh denoising.

2.2.1. Estimation of the Ideal-selected Row and Guided Pixel

As we discussed earlier, for each centroid normal ni of the
mesh, we estimate an image Ii, the first row I1i of which
represents the nearest neighborhood area called “patch”. Nev-
ertheless, the same pixel pi may be presented in more than
one row/patches since each neighborhood area is overlapping
the neighboring areas of other normals. In fact, some of
these rows may better represent the “color” of a pixel. For
this reason, we collect a set Si = {I1i1 , I1i2 , . . . , I1inp} of
np candidate rows and our main objective is to find which
one of the I1ij ∀ j = 1, . . . , np, is the ideal representa-
tive of the pixel pi [14], in terms of the similarity of the
color. For each one of these candidate rows I1ij , we esti-
mate the corresponding covariance matrix Cij = IT1ijI1ij ∈
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R3×3 ∀ i = 1, · · · , nf , ∀ j = 1, · · · , np and we de-
compose it Cij = UΛV to its eigenvectors U and eigen-
values Λ = diag(λ1ij , λ2ij , λ3ij ). Then, for the estima-
tion of the ideal-selected row I∗1i, two parameters are in-
vestigated: (a) the norm2 sij = ||λ1ij − λ2ij ||2 of the first
2 eigenvalues and (b) the maximum color difference hij =
max(||pi − pl||2) ∀ pl ∈ I1ij between the i pixel and the
other pixels of the same row. Among all candidates rows, we
pick this one with the smallest value of Eq. (1):

I∗1i = (I1ij | min(sijhij)) (1)

∀ i = 1, · · · , nf , ∀ j = 1, · · · , np. Finally, the guided gi
pixel is estimated as the average pixel of this ideal row:

gi =

∑
pj∈I∗1i

pj∥∥∥∑pj∈I∗1i
pj

∥∥∥
2

∀ i = 1, · · · , nf (2)

2.2.2. Estimation of Ideal Images Based on Guided Pixels

For the creation of the ideal images, we follow the procedure
presented in the subsection 2.1, but using the guided pixels
gi instead of the normals ni. In Fig. 3, we present examples
of images created by the RGB representation of: (i) the nor-
mals, and (ii) the guided pixels, for different features (i.e., flat
area, edge and corner) of Fandisk model affected by differ-
ent level of Gaussian noise with intensity σE = σ

Emean
, where

σ is the variance of the Gaussian function, and Emean is the
average edge length [2]. As we can observe, the images, cre-
ated by the guided pixels (Fig. 3-(ii) (b)-(d)), have a similar
presentation with the original, despite the different levels of
noise. On the other hand, images that have been created us-
ing the centroid normals are very noisy and differ from the
original, making difficult to be denoised, even in cases of flat
areas. This observation is very important since it shows that
it is not necessary to train different models for different noise
patterns, as other data-driven methods do. Instead, a generic
model would be also sufficient. This is especially useful in
cases where the level or type of noise is not known a-priori.

2.3. BM3D CNN for Ideal Images Denoising

2.3.1. Basic Characteristics of BM3D

BM3D uses three basic steps: (1) “Block matching” which
tries to find groups of similar patches, (2) “3D wavelet shrink-
age” which denoises each one of these groups in the 3D
wavelet transform domain and (3) “Patch group aggregation”
is an averaging procedure in which all the estimated patches
return to their original positions reweighed each pixel appear-
ing in many instances since images are created by overlap-
ping patches [4]. For a more efficient block matching step,
we use a feature classification, similar to [14]. More specif-
ically, we classify each i centroid into three different cate-
gories of features (i.e., flat area (F), edge (E) and corner (C)
), using a κ-means (κ = 3) clustering, applied to the vec-
tor λi = [λ1i1 λ2i1 λ3i1 ] of its eigenvalues, as described in
subsection 2.2.1. To create a more relevant dataset, we rotate
all normals of each i patch about an angle θxi , as shown in
Fig. 4, so that the i “normal-of-interest” (i.e., lied in the red
face), to be equal to the constant vector [1 0 0]. In this way,
a more coherent dataset is created, accelerating the learning
process. Otherwise, patches with every possible normal di-
rection would need to be provided, resulting in the creation of
very large training dataset, increasing also the execution time
of the learning step.

2.3.2. Characteristics of the used BM3D CNN

The presented CNN (Fig. 5), similar to [7], represents the
second step of the BM3D (i.e., 3D wavelet shrinkage) and
consists of two convolution layers and a nonlinear transform
layer. More specifically, the first convolution layer is used
as the wavelet transform step and the second as the inverse
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Fig. 5. Patches of the mesh are converted to images and then they are fed into the CNN for denoising.

wavelet transform step. They are generally presented as:

Il+1 = Wl ∗ Il (3)

where ∗ indicates multidimensional convolution, Il denotes
the group of images for the l ∈ {1, 3} layer andWl is the filter
with the weights of the l layer after the concatenate process.
The nonlinear transform layer is used as the wavelet shrinkage
step. Similar to [7], the radial basis functions (RBFs) is used
instead of regular hard thresholding or Rectified Linear Unit
(ReLUs), according to:

I3 = W2e
|I2−µ|

2

σ2 (4)

2.4. 3D Mesh Reconstruction by Updating Vertices

After the estimation of the denoised pixels p̄, which is the
central pixel of the first row of the denoised images, we con-
vert the RGB values to the (nx, ny, nz) values of the corre-
sponding denoised centroid normals n̄. Then, we reconstruct
the denoised mesh updating its vertices, using the following
robust and well-known equation [3]:

v
(t+1)
i = v

(t)
i +

∑
j∈Ψi

n̄j(〈n̄j , (c
(t)
j − v

(t)
i )〉)

|Ψi|
(5)

where 〈a,b〉 represents the inner product of a and b, (t) rep-
resents the t-th iteration and the matrix Ψi represents the first-
ring area of the vertex vi. Algorithm 1 summarizes the basic
steps of the proposed process.

3. EXPERIMENTAL ANALYSIS AND RESULTS

3.1. Experimental Setup, Datasets and Metrics

The experiments were carried out using an Intel Core i7-4710
CPU @ 3.60GHz PC with 16 GB of RAM. For the experi-
ments, a variety of 3D meshes were used [16], affected by
different levels of noise. For the training process, we use only
5 different models, consisting of ∼ 1.2 million (M) centroid
points in total. This means that we have 1.2 M very rele-
vant instances for the training which seem very effective, ac-
cording to the experimental results. For the evaluation of the
reconstructed results, we use the following metrics: (i) the
average one-sided Hausdorff distance HD from the denoised
mesh to the known ground-truth mesh, (ii) the metric θ repre-
senting the average angle difference between the normals of

Algorithm 1: BM3D CNN for 3D Mesh Denoising

Input : Noisy 3D model M̂ ∈ Rn×3;
Output: Denoised 3D model M̄ ∈ Rn×3;

1 Estimate the nf centroid normals n and convert them to
corresponding pixels p;

2 for i = 1, · · · , nf do
3 Estimate the ideal-selected row I∗1i via Eq. (1) and the

guided pixel gi according to Eq. (2);
4 Estimate the filtered image I∗i based on guided pixels;
5 end
6 Create 3 different types of images, based on the features

classification, for a more efficient block matching;
7 Image denoising based on BM3D CNN via Eqs. (3)-(4);
8 Convert denoised pixels p̄ to denoised centroid normals n̄;
9 Reconstruct the denoised 3D mesh M̄ according to Eq. (5);

the ground truth and the reconstructed model [14] and (iii)
heatmap visualization highlighting, in different colors, the
difference |M − M̄| between original M and reconstructed
M̄ mesh.

3.2. Experimental Results

The quality performance of the proposed technique is com-
pared with other well-known and robust techniques of the lit-
erature, namely (a) non-iterative smoothing (NIS) [17], (b)
fast and effective (FAE) [3] mesh denoising, (c) bilateral nor-
mal filtering (BNF) [18], (d) guided normal filtering (GNF)
[2], (e) two-stage graph spectral processing (TSGSP) [14].
We also compare the proposed approach to data-driven meth-
ods such as (f) deep autoencoders denoising (DAD) [19], and
cascade normal regression [16] in two different approaches:
(g) by using only a small dataset of models (CNR) (the exact
same dataset used) and (h) (CNR+) by using a larger dataset.
Our method is denoted as (OUR) and (GEN OUR) represents
our approach but using a general training model, having been
trained by different levels of noise at the same time. In Fig.
8, we present the original and three corresponding noisy 3D
models which have been affected by three different level of
noise (i.e, σE = 0.3, 0.4, 0.5). We provide enlarged details of
each reconstructed model, for easier comparison among the
methods, and we also provide the metric θ. The benefits of
our approach are more apparent when the level of noise is
σE > 0.3. For a lower level of noise, the results are compa-
rable with those of the other methods. We can make similar
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Fig. 6. Hausdorff distance error for different levels of noise.

conclusions observing the heatmaps of Fig. 7, which visualize
in different colors the differences between the reconstructed
and original mesh, in three different levels of noise. Big dif-
ferences are represented by red color while small differences
are represented with blue. Finally, in Fig. 6, we present plots
of Hausdorff distance (HD) error per different level of noise,
for the reconstructed models of different approaches. For a
fairer comparison between data-driven and other conventional
methods, we set fixed values at the parameters, which pro-
vide good results in all levels noise, and we do not search for
the ideal values per each parameter and model. Our method
avoids the over-smoothing of the models and at the same time,
preserves the special characteristics of the features.

4. CONCLUSIONS
In this work, we presented an image-based 3D mesh denois-
ing approach using BM3D CNN filtering applied in color im-
ages. We take advantage of the stable and robust behavior
of BM3D, which has exhaustively tested for image denois-
ing, in combination with the fast and effective behavior of
CNNs. To achieve this, we create an appropriate form of im-
ages, representing patches of neighboring normals. Exper-
imental analysis verified the correctness of our assumption
while comparison with other traditional state-of-the-art meth-
ods demonstrates the potential of our approach. The proposed
method has many advantages, such as (i) only fixed values of
parameters are used, (ii) it requires a relatively small dataset
for the training process, (iii) a general model, trained by dif-
ferent levels of noise, can be used for denoising, providing
acceptable results.
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Fig. 8. Denoising results of: (a) NIS [17], (b) FAE [3], (c) BNF [18], (d) GNF [2], (e) TSGSP [14], (f) DAD [19], (g) CNR
[16], (h) CNR+, (i) GEN OUR, (j) OUR. 6


