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Abstract—New generation 3D scanning technologies are ex-
pected to create a revolution at the Industry 4.0, facilitating
a large number of virtual manufacturing tools and systems.
Such applications require the accurate representation of physical
objects and/or systems achieved through saliency estimation
mechanisms that identify certain areas of the 3D model, leading
to a meaningful and easier to analyze representation of a 3D
object. 3D saliency mapping is, therefore, guiding the selection
of feature locations and is adopted in a large number of low-level
3D processing applications including denoising, compression,
simplification and registration. In this work, we propose a robust
and fast method for creating 3D saliency maps that accurately
identifies sharp and small scale geometric features in various
industrial 3D models. An extensive experimental study using
a large number of 3D scanned and CAD models, verifies the
effectiveness of the proposed method as compared to other recent
and relevant approaches despite the constraints posed by complex
geometry patterns or the presence of noise.

Index Terms—3D Mesh saliency mapping, industrial modeling
& applications, spectral & geometric analysis for vertex saliency.

I. INTRODUCTION

Visual computing technologies play an important role in
several manufacturing tasks. Particularly nowadays, their role
is crucial due to the new Industry 4.0 applications including
manufacturing inspection [1], quality control [2], reverse en-
gineering [3], digital twin [4] as well as autonomous repair
operations. While the use of this new type of applications
will expand, the number of the digital 3D models will be also
increased, resulting in the interest for more accurate 3D model
processing.

The resolution and accuracy of the modern 3D scanners are
constantly increasing, making them even more attractive in
several vision-based manufacturing tasks, allowing the accu-
rate generation of dynamic virtual representations of physical
objects which are then used for inspection. Inspecting the parts
and repairing the damages or degradations are very basic tasks
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for many engineering or manufacturing products. More specif-
ically, surface defect inspection is of primary importance for
engineering part quality inspection, since surface defects affect
not only the appearance of parts, but also their functionality,
efficiency and stability. This task mostly depends on human
visual inspection by skilled inspectors. Human visual inspec-
tion is costly, labor-intensive, time-consuming, and prone to
errors due to inspectors’ lack of experience or fatigue, bad
environmental conditions, etc. Hence automatic inspection of
the surfaces using computational techniques, which is faster,
more consistent and robust, is highly desired [5]. We are
motivated by the fact that there are a lot of new-era industrial
applications that require the digitization of physical objects
or systems (e.g., inspection, digital twin, industry 4.0, quality
control, reverse engineering, etc.,) creating or using already
scanned 3D objects. However, this digitized information is
massive and raw, leading to the need of new essential and
meaningful identification of features that will facilitate robust
processing in various applications. These facts stress the need
to focus on the development of computational models of visual
attention, whose well-known outcomes are the saliency maps.
Saliency maps are compact 3D representations, generated by
simplifying, annotating and/or changing the representation of a
physical object/system giving more emphasis to geometrically
meaningful parts. The salient features also typically satisfy
important requirements such as scaling, rotation, resolution
invariance that can simplify industrial processes. In this work,
we focus on providing a method for the accurate extraction
of a meaningful 3D saliency mapping ideally suited for
industrial 3D models. More specifically, the contributions of
the proposed approach can be summarized as follows:

• designed to use both normals and guided normals, de-
pending on the application. Guided normals provide more
robust saliency mapping in cases of meshes affected by
scanning noise and imperfections where other methods
fail.

• combines the benefits of a spectral and a geometric
approach in a single unified approach.

• exploits both local and global information of a model.
In other words, the spectral method and the rows of
the coherent matrix E enclose local information while
the columns of the coherent matrix E encloses global
information corresponding to larger patches.

• use the same configuration parameters independently of
the input values for any model, making it 3D model
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agnostic, without the need for further modification.
• has low-computational complexity, especially in compar-

ison with other spectral methods that use the connectivity
information of a model.

• It can be ideally used in applications related to industrial
3D models which have some special geometric charac-
teristics (e.g., intense corners and edges) or have been
affected by complex noise patterns.

• It is easily adaptive and can be efficiently adopted both
by low-level applications (e.g., denoising, compression,
registration, etc.), as a pre-processing step and/or by high-
level industrial applications (e.g., maintenance, inspec-
tion, quality control, digital twin technologies, etc.)

• An extensive performance assessment using a large col-
lection of different industrial 3D models, clearly shows
the robustness of our method as compared to other
approaches.

The rest of this paper is organized as follows: Section 2
presents state-of-the-art methods and related work. Section 3
presents some basic definitions and preliminaries. Section 4
describes in detail the work-flow of the proposed method and
we show how our method can be used in a variety of actual
industrial applications. Section 5 presents the experimental
results and evaluation in comparison with other methods.
Section 6 draws the conclusions of our method.

II. RECENT WORKS

Visual saliency is a subjective perception cue that differen-
tiates a region from others and immediately attracts human
attention [6]. The human visual system (HVS) is evolved
to automatically detect salient regions over the entire field
of view [7]. It is firstly attracted by the most representative
salient elements and then the visual attention is transferred
to other regions [8]. Most of the existing methods try to
simulate the way that the human perceptual system works,
giving more emphasis to what the human brain assumes as
salient information. Nevertheless, what a human assumes as
a salient feature may vary from what computational methods
assume as salient. On the other hand, in industrial applica-
tions, simple geometry is usually more common and useful
compared to complex surfaces of high spatial frequency that
would trigger human visual attention. Wei et al. [9] presented
a 3D saliency mapping mechanism using the curvature co-
occurrence histogram, following similar steps with the method
proposed in [10] for extracting salient image features. Tao et
al. [11] proposed an entropy-based saliency approach using
the entropy of the normals to depict the local changes in a
region. Song et al. [12] proposed a method which incorporates
global considerations by making use of spectral attributes. An
et al. [13] proposed a hybrid saliency taking into account both
color and geometric information. Nouri et al. [14] proposed a
saliency-based metric for the evaluation of the quality between
an original and a distorted 3D mesh comparing the structural
information. They also [15] proposed a saliency method, using
a local vertex descriptor that is used as a basis for similarity
measurement and integrated into weighted multi-scale saliency

features. Zhao et al. [16] proposed a saliency detection method
by diffusing a shape index field with a non-local means filter.
Their algorithm generates a random center-surround operator
to create a saliency map and use the Retinex theory to improve
the saliency map. Wu et al. [17] proposed a 3D saliency map
estimation considering both local contrast and global rarity.
There are also many other methods that estimate a saliency
mapping but with a completely different way. For example,
the salient mapping of method [18], might be excellent for
tactile-focused applications, is however, far from acceptable if
applied in industrial applications like the ones demonstrated.
Authors in [19] detect salient regions on the mesh based on
the multi-scale Laplacian fairing results in order to use them
for head pose estimation. What they assume as a salient region
in their application is significantly different to we assume as
salient features in our application. The authors in [20] try
to automatically find landmark buildings in a city using a
Context-dependency saliency mapping. In [21], the authors
propose a saliency detection algorithm for large-scale colored
3D point clouds, which exploits geometric features and color
features together to estimate the saliency in colored point
clouds.

A major drawback of the aforementioned methods is that
their robustness is significantly deteriorated when applied to
scanned 3D models that have been affected by noise, outliers
or missing parts. Additionally, most of these works provide
only visual maps to show their effectiveness and none of them
have been used and evaluated in real industrial applications.

III. PRELIMINARIES

In this section, we present the basic definitions and prelim-
inaries which are necessary for the complete understanding of
our assumptions.

A. Basic Definitions of 3D Meshes

In this work, we use triangle meshes M consisting of n
vertices v and nf faces f . A vertex vi is represented by
Cartesian coordinates, denoted by vi = [xi, yi, zi]

T
, ∀ i =

1, · · · , n, and a face fj = {vj1 vj2 vj3} is represented by
its centroid cj = (vj1 + vj2 + vj3) /3 and the outward unit
normal nci =

(vj2−vj1)×(vj3−vi1)
‖(vj2−vj1)×(vj3−vj1)‖ , ∀ j = 1, · · · , nf .

B. Robust Principal Component Analysis (RPCA)

RPCA has been used in order to decompose a observed mea-
surement E into a low-rank matrix L representing the real data
and a sparse matrix S representing the noisy data by solving:
arg minL,S ‖L‖∗ + λ‖S‖1, s.t. L + S = E, where ‖L‖∗ is
the nuclear norm of a matrix L (i.e,

∑
i σi(L) is the sum of

the singular values of L). Despite the effectiveness that some
works [22], [23] have presented in the past, their execution
times need improvement. The computational complexity is a
crucial issue, especially for use in industrial applications. We
handle this convex problem using a very fast approach, as
described in [24], according to:

arg min
L,S

1

2
‖L + S−E‖F + λ‖S‖1 s.t. rank(L) = K (1)



L(t+1) = arg min
L

‖L + S(t) −E‖F s.t. rank(L) = K (2)

S(t+1) = arg min
S

‖L(t+1) + S−E‖F + λ‖S‖1 (3)

In each (t) iteration, the Eq. (2) is updated with rank = K. If
uK∑K
i=1 ui

> ε, where u denotes the singular values and ε is a
small threshold, then the rank is increased by one (i.e., K =
K+1) and the Eq. (3) is updated too. To update the Eq. (2), a
partial SVD(E−S(t)) is estimated keeping K components. To
update the Eq. (3), a shrinkage operator is used D(.), where:

D(E−L(t+1), λ) = sign(E−L(t+1))max{0, |E−L(t+1)|−λ} (4)
C. Guided Normals

Guided normals have been successfully applied in feature-
aware mesh approaches [25]–[27]. For each face fi, a set
Bi = {Pi1,Pi2, . . . ,Pinp} of np candidate patches Pij are
estimated. Each patch represents a small area consisting of
k neighboring faces, such as Pi = {fi, fi1 , fi2 , · · · , fik}
(including the face fi). The k geometrical nearest faces of
the face fi are estimated by the k nearest neighbors (k-nn)
algorithm (where we set k = 25). The main purpose is to
find which one of these candidate patches Pij is the ideal
representative area for the face fi, in terms of the direction of
the centroid normals. The parameters that are investigated for
the identification of the optimal patch are: (i) the maximum
distance between the i centroid normal and the other centroid
normals of the same patch (see Eq. (6)) and (ii) the mean
saliency φij based on the salient weights s of a patch Pij (see
Eq. (7)). Among all candidate patches, the ideal-selected patch
is the one P∗ with the smallest value of Eq. (5):

P∗i = (Pij | min(ωijφij)) (5)

ωij = max(||nci − ncl||2) ∀ ncl ∈ Pij (6)

φij =

∑
∀l∈Pij

sl

|Pij |
(7)

∀ i = 1, · · · , nf , ∀ j = 1, · · · , np. Examining Eq. (5), we
can observe that the ideal patch has a similar direction of
normals (small distance ω between normals) and lies in a flat
surface area (the smaller the mean saliency φ the less the
salient features). Finally, the guided normal gi is estimated as
the weighted average normal of this ideal patch P∗i :

gi =

∑
fi∈P∗i

Ajncj∥∥∥∑fi∈P∗i
Ajncj

∥∥∥
2

∀ i = 1, · · · , nf (8)

where Aj represents the area of face fj .

IV. OVERVIEW OF OUR METHOD

Fig. 1 briefly presents the pipeline of our approach. We start
by separating the whole mesh into nf (i.e., equal to the number
of centroids) overlapped and equally-sized patches. Then, we
estimate the spectral and geometrical saliency and finally,
we combine these two values. Once the saliency mapping
of a mesh has been estimated, it can be used in several
different industrial applications, facilitating several processes
in manufacturing, maintenance, inspection and repairing.
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Applications

 Denoising
 Compression
 Simplification
 Registration
 Inspection
 Manufacturing
 Maintenance
 etc.

Fig. 1: Pipeline of the proposed method for the estimation
of the saliency mapping of 3D meshes based on spectral and
geometrical analysis.

A. Geometry-Based Saliency Analysis

The geometrical saliency features are estimated by exploit-
ing the sparsity of the guided normals. Centroid normals nc

can be also used in this analysis, however, guided normals
have a more robust behavior in the presence of scanning noise
[27]. The estimated patches Pi are used for the construction
of matrix E ∈ R3nf×(k+1):

E =


g1 g11 g12 . . . g1k

g2 g21 g22 . . . g2k

...
...

...
. . .

...
gnf gnf1 gnf2 . . . gnfk

 (9)

where gi = [gix , giy , giz ]T . Then, we apply the RPCA ap-
proach to this matrix, as described in III-B, taking advantage
of the geometrical coherence between neighboring guided
normals. By the decomposition, the low-rank L and sparse
S matrices are estimated. However, the estimation of the
geometric saliency feature s1i of the centroid ci requires only
the values of the first column of the sparse matrix, according
to:

s1i =
√
S2
i1x

+ S2
i1y

+ S2
i1z
∀ i = 1, · · · , nf (10)

where Si1x denotes the scalar value of the x coordinate, of
the ith row, of the 1st column, of the S matrix.

The motivation for exploiting the sparsity of the guided
normals is based on the observation that the similarity of
the normals between neighboring triangles is an index of
geometrical coherence of the triangles. Low values of the
sparse matrix mean that the normals of a triangle and its
neighbors are similar (low-rank), so if all triangles of a
neighboring area have similar geometrical behavior this means
that this patch represents a flat area. On the other hand, if
there is a big dissimilarity this means that the surface has an
abnormal shape.

B. Spectral-Based Saliency Analysis

For each face fi of the mesh, we use Ei ∈ R3×(k+1),
representing the i row of the matrix E in Eq. (9):

Ei =

gix gix1 gix2 . . . gixk

giy giy1 giy2 . . . giyk
giz giz1 giz2 . . . gizk

 ∀ i = 1, · · · , nf (11)

Ei is used for the estimation of the covariance matrices Ri:

Ri = EiE
T
i ∈ R3×3 (12)

Then, Ri = UΛUT is decomposed to a matrix U, con-
sisting of the eigenvectors, and a diagonal matrix Λ =



diag(λi1, λi2, λi3), consisting of the corresponding eigenval-
ues λij , ∀ j = 1 − 3. Finally, the spectral saliency s2i of a
centroid ci is denoted as the value given by the inverse l2-
norm of the corresponding eigenvalues:

s2i =
1√

λ2
i1 + λ2

i2 + λ2
i3

∀ i = 1, · · · , nf (13)

Observing the Eq. (13), we can see that large values of the
term

√
λ2i1 + λ2i2 + λ2i3 correspond to small saliency features

indicating that the centroid lies in a flat area, while small
values correspond to large saliency values, characterizing the
specific centroid as a feature. This can be easily justified by
the fact that the centroid normal of a face lying in a flat area
is represented by one dominant eigenvector, the corresponding
eigenvalue of which has a very large value. On the other hand,
the centroid normal of a face lying in a corner is represented by
three eigenvectors, that correspond to eigenvalues with small
but almost equal amplitude.

C. Estimating the Saliency of Vertices

We then normalize spectral and geometric saliency in a
range [0-1], according to:

s̄ji =
sji −min(sji)

max(sji)−min(sji)
∀ i = 1, · · · , nf , j ∈ {1, 2} (14)

For the sake of completeness, we denote the saliency
mapping as the weighted combination of the normalized
geometrical s̄1 and spectral s̄2 saliency features, according to:

sci =
w1s̄1i + w2s̄2i
w1 + w2

∀ i = 1, · · · , nf (15)

where w1 and w2 are the corresponding weights which can be
tuned for giving emphasis to the one or the other approach.
However, we suggest the use of w1 = w2 = 1 which are also
used in all of our experiments.

The proposed method is robust, even when we assume
complex surfaces with different geometrical characteristics,
since it exploits spectral characteristic (i.e., over-sensitivity in
the variation of neighboring centroid normals) and geometrical
characteristics (i.e., sparsity property of intense features). For
the estimation of the saliency value of each vertex we use the
following equation:

si =

∑
∀cj∈Ni

scj

|Ni|
∀ i = 1, · · · , n (16)

where Ni represents the first-ring area of the vertex vi.

D. Speed up Process - Sampling Matrix E

Besides the fact that we use a very fast variants of RPCA,
the most time-consuming step, still is the decomposition of
the coherent matrix E into a low-rank and a sparse matrix.
The computational complexity of this method is related to the
size of the data, so an approach to decrease the execution time
is to use without of course reducing the detection accuracy.
To achieve this, we firstly use the saliency mapping results of
the spectral method. The salient map helps us to make a first
coarse estimation about where the sharp features and the flat
areas exist.

We start by assuming that each vertex can be categorized
into a saliency class, based on its salient value that has been
extracted by the spectral method only. We use 64 classes in
total which is equal to the number of different colors of the
“jet” colormap that is also used for the visualization of the
saliency mapping. Class 1 consists of the least salient vertices,
while class 64 consists of the most salient vertices. Then, we
are based on the observation that a large quantity of vertices
belongs to class 1 (as we can also see in the Histograms of Fig.
2) and we exclude these vertices. Finally we create a smaller
dimension matrix E′ ∈ R3n′f×(k+1) using all the vertices of
the rest of the classes [2-64] where n′f < nf .
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Fig. 2: Histograms showing the number of vertices per each
class. We have used 64 bins equal to the number of colors of
the “jet” colormap.

The final execution times of the fast approach are further
improved and the speed up of the new algorithm is up to ∼
85%, as we can see in the Table I. It is also presents the results
of the saliency mapping in different models using the two
presented approaches, namely the original RPCA and the faster
approach applied only to the salient vertices of the mesh. As
we can observe, there is no big perceptual difference between
the two results.

E. Utilizing 3D Saliency Mapping in Industrial Applications
In the following sub-paragraphs, we present indicatively

some industrial applications in which the proposed saliency
mapping can be utilized, facilitating several visual tasks.

1) Utilization in the manufacturing industry for quality
control inspections: It is very common, in the manufacturing
industry, objects to be produced in different sizes, retaining
however the same form with the prototype model. Nonetheless,
to assure quality, the reconstructed objects must satisfy a range
of statutory and contractual obligations. In this case, inspection
is used to verify and certify that the new scaled object
has been manufactured in full compliance with all specified
requirements and constraints. In Fig. 3, we present examples
of inspection between real-scanned industrial objects, denoted
as prototype models1 2 3 (Fig. 3-(a)), and their corresponding

1“Aeronautics actuator casting” model
2“Automobile Hubcap” model
3“Oil pump” model



Model

Number
of vertices
belongs to
category 1

Total number
of Vertices

Execution
times using
the original

approach (sec)

Execution
times using

the fast
approach (sec)

Speed up

fandisk 2782 6475 0.46 0.19 59.7 %
cad 8735 19398 1.22 0.42 65.2 %

block 2062 8771 0.38 0.22 40.3 %
joint 15848 20902 1.40 0.34 76.1 %

part Lp 898 4261 0.31 0.15 50.1 %
coverrear Lp 4902 7872 0.86 0.13 85.2 %

rockerarm 1782 9413 0.53 0.30 43.1 %
casting 4760 18410 1.14 0.21 81.8 %

trim-star 1806 5192 0.23 0.13 42.0 %

(a) (b) (a) (b)

(a) (b)

Block Cad

Casting

Part_Lp Fandisk Joint

Coverrear_Lp Rockerarm

Trim-star

TABLE I: [Left] Execution times for the original approach and the fast approach using a smaller coherency matrix. [Right]
Heat map visualization of the salient map extracted by the (a) Original approach, (b) faster approach applied only to the
salient vertices of the mesh.

scaled and deformed 3D objects (Fig. 3-(b)). Our purpose is
to inspect if the new manufactured 3D object has the exact
same design details as the original (regarding the fidelity of
its form) and also to ensure that it has not been affected by
irregularities encountered during the manufacturing processes.
In Fig. 3-(c), we present an enlarged representation of the
scaled model, presented in Fig. 3-(b), with red cycles that
specify the deformed areas. The purpose of this application is
to automatically identify deformations or other abnormalities
from the surface of the manufactured 3D object in com-
parison with the original model. For easier comparison, we
provide a heatmap visualization of the difference between the
original and the constructed model. Blue color means that
there is no difference between the compared models while
red color indicates a big difference. Our method is able to
find and highlight possible differences between two objects
with similar shapes comparing the saliency values of their
surface. In this way, it is capable to automatically inspect
degradations of the surface standards of manufactured objects
despite the constraints posed by scaled manufactured objects
or objects created by different materials. For the comparisons
between the original and the reconstructed models, we used
two different approaches. In the first approach, we deployed
the Hausdorff distance (HD) (Fig. 3-(d)) of the normalized
models (with values in the range [0-1]) while in the second
approach, we used both HD and the salient values (Fig. 3-
(e)) according to Eq. (16). We assume that we have two
normalized 3D models M1 ∈ Rn1×3 and M2 ∈ Rn2×3,
where n1 6= n2 (e.g., original and compared respectively).
Firstly, for each vertex of the these two models, we create a
representative vector consisting of the values of its coordinates
and its saliency:

qji = [vji sji] ∈ R4×1 (17)

∀ j ∈ {1, 2}, i ∈ [1, · · · , n1], [1, · · · , n2]. Then, for each i
vertex of M2 we find the closest d∗i vertex of M1 based on
their norm 2 difference:

d∗i = arg min
d

D(q2i,q1d) ∀ d ∈ [1, · · · , n1] (18)

(a) (b)

(c) (d) (e)

(a) (b)

(c) (d) (e)

(a) (b)

(c) (d) (e)

-50% scaled model

-20% scaled model

-30% scaled model

Fig. 3: [First line] (a) Original models, (b) scaled and de-
formed models. [Second line] Enlarged representations of (b)
with: (c) red cycles for highlighting the deformed areas, (d)
heatmap visualization of HD applied to vertices, (e) heatmap
visualization of HD applied both to vertices and salient values.



(a) (b) (c)

Fig. 4: Digital twin of gear model in a early stage and after 3
consecutive temporal moments.

∀ i ∈ [1, · · · , n2]), where:

D(q2,q1) =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 + (s2 − s1)2 (19)

Then for these indices d∗i , we estimate the saliency difference
(s2i − s1d∗i ) ∀ i = 1, · · · , n2 and we visualize it. The
experiments verifies that the proposed approach can identify
deviations easily and with great detail.

2) Utilization for the creation of digital twins and aging
inspection: The proposed method supports detecting changes
that can be caused by aging, comparing the saliency mapping
of a 3D object having been acquired in two or more different
temporal moments. In this way, our approach could be used
to identify surface differences of the same object, affected by
mechanical stress (e.g., a gear of a machine) or deteriorated
due to environmental conditions (e.g., an ancient statue or
columns). In Fig. 4, we present visual representations of the
same gear in 4 different occasions (i.e., in a early stage and
after 3 consecutive temporal moments). This figure shows that
our method is able to capture differences due to aging, so
indiscernible, that even the human eye could not easily notice.

3) Utilization in the heritage industry for the maintenance
of the historical objects: In Fig. 5, we present examples
of real-scanned historical objects 4 5 in which the proposed
method of the saliency mapping can be utilized so as to auto-
matically detect cracks and other defects on their surfaces. The
presented figures verify that the proposed 3D saliency mapping
approach is very useful since it can be used for identifying
areas of the original model that need to be repaired, facilitating
the work of the experts during the maintenance process. Our
method uses small patches of neighboring vertices, thus if
an abnormality appears somewhere in the surface, then our
algorithm is able to recognize it and highlight this specific
area. The higher the abnormality, the higher the value of
salience, so it is ideal for inspection of cracks, damages, etc,.
In this way, this method could be used as a pre-processing
step for the creation of a digital replica of the original cultural
object, without imperfections, since it highlights the areas that
need repair (i.e., digital repairing is also available). The recent

4“Calcite Vase” model
5“Epichysis 26332 b” model

(a) (b) (c) (d) (e) (e)

(a) (b) (c) (d) (e) (f)

Fig. 5: Original model (a) with texture, (b) with no texture.
Heatmap visualization of saliency mapping using: (c) curva-
ture co-occurrence histogram [9], (d) entropy based salient
model [11], (e) mesh saliency via spectral processing [12], (f)
the proposed method.

trend for digitalization and creation of digital twin models has
a lot of historical interest in the heritage industry. A digital
repaired 3D model can be used for the VR/AR representation
of a heritage object (e.g., for educational purposes) showing
how it looked like originally and additionally giving to the
visitors the opportunity to see reconstructed views of the
object.

V. EXPERIMENTAL ANALYSIS AND RESULTS

The proposed saliency mapping was evaluated using: (a)
heatmaps visualization, (b) 3D mesh simplification based on
the saliency of the vertices, and (c) a denoising application
using the saliency values for finding the ideal patches.

It should be emphasized that, in most cases, there is no
ground truth saliency map or a reliable metric that can be
used for benchmarking purposes. The typical way to evaluate
a saliency map is via subjective evaluation. The subjective
evaluation can clearly show if a specific saliency mapping has
achieved its purpose, applied in a specific application, and
provides a fair comparison with the results of other salient
mapping methods.

1) Heatmap Visualization of Saliency Mapping: Fig. 6
presents the heatmap visualization of the 3D saliency mapping
applied in different industrial 3D models. For easier compari-
son, all the results are normalized, taking values [0-1] Eq. (14).
The used colormap for the visualization is the “jet” contenting
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Fig. 6: (a) Original model, and heatmaps visualization of saliency mapping based on: (b) the eigenvalues of small patches
(spectral analysis), as described in paragraph IV-B, (c) the RPCA approach (geometrical analysis), as described in paragraph
IV-A, (d) Wei et al. [9], (e) Tao et al. [11], (f) Lee et al. [28], (g) Song et al. [12], (h) Guo et al. [29], (i) Song et al. (CNN)
[30], (j) our approach.

64 colors (deep blue = 0, deep red = 1). Saliency mapping of a
3D object must provide visual information that can be easily
recognizable. This means that different areas with different
characteristics will be highlighted with a different color. On the
other hand, different areas with the same characteristics will
be highlighted with the same color. The experimental results
show that our method (in Fig. 6-(e)) successfully follows this
direction providing more robust and meaningful results than
the other approaches. More specifically, the highest values (red
colors) represents very distinctive vertices (e.g., corners), while
the lowest values (blue colors) represents flat areas.

2) Simplification Based on the Saliency of Vertices: Due
to the easiness of creating digital 3D content nowadays, a
great amount of information can be captured and stored. The
information, acquired by 3D scanners, is usually huge creating
dense 3D models that are very difficult to be efficiently
handled by other applications (i.e., high computational com-
plexity). This information must be simplified, keeping only of
the most representative information, and removing least impor-
tant information. Simplification is a low-level application that
focus on representing an object using a lower resolution mesh
without errors or with errors that cannot be easily perceived.
The main objective of a successful simplification approach is
to remove only those vertices which do not offer significant
geometric information to the simplified 3D object and their
removal will not change significantly the shape or perceptual
details of the 3D object. Following this line of thought, we
suggest to remove the least perceptually important vertices,
preserving only the most salient vertices for the reconstruction
of the new simplified 3D model. More specifically, the steps
of the suggested simplification process are: (i) all vertices are
sorted based on their salient values. (ii) The K-th vertices
with the higher salient values remain. (iii) the rest n − K
less salient vertices are removed and the k-nn algorithm is
used for the recreation of the new connectivity (triangulation).
Fig. 7 presents simplified meshes under different simplification
scenarios.

3) Feature-aware Denoising Based on the Saliency of Ver-
tices: Guided normals filtering has been used in past works
[26], [25] providing excellent denoising results. In [26], the
saliency is estimated by using the difference between the
normals of the two incident faces.

We follow the same line of thought but we use a different
way for the estimation of the ideal patch. More specifically,
we select the patch that has the smallest value of Ψ, according
to Eqs. (20)-(21), since it consists of “less salient” faces (flat
areas that are depicted with deep blue color).

P∗i = (Pij | min(Ψij)) ∀ i = 1, · · · , n, j = 1, · · · , np (20)

where Ψij =

∑
∀l∈Pij

sl

|Pij |
∀ l = 1, · · · , k (21)

In Fig. 8, we present an example of five candidate patches (for
the face which is depicted by the yellow normal). In these
examples, we show that the selected ideal patch is this one
with the lowest value of Ψ (i.e., Ψ = 0.32 and Ψ = 0.37),
representing the area with the less salient features. As we can
observe, both the first and the last patches represent totally flat
areas, however they do not have the same Ψ value since the
first patch consists of more salient triangles in comparison to
the last patch, so the last area is more preferable to represent
the ideal patch. We also can observe that our method provides
reliable results of saliency mapping even under the presence of
noise, which makes it ideal for use in applications with noisy
3D models. The purpose of this example is the estimation of
the most representative centroid normal (i.e., guided normal)
in order to use it for a more efficient bilateral filtering [31]:

W1ij = exp(
−
∥∥ci − cj

∥∥2
2σ2

1

), W2ij = exp(
−
∥∥gi − gj

∥∥2
2σ2

2

) (22)

n̂c =

∑
fj∈Pi

AjW1ijW2ijncj

‖AjW1ijW2ijncj‖2
(23)



(a) (b) (c) (a) (b) (c) (a) (b) (c)(c)(b)(a)

(I)

(II)

(III)

(IV)

(VII)

(V)

(VI)

Fig. 7: Simplification of 3D models using the saliency mapping of different methods, namely: (I) Wei et al. [9], (II) Tao
et al. [11], (III) Lee et al. [28], (IV) Song et al. [12], (V) Guo et al. [29], (VI) Song et al. (CNN) [30] and (VII) our
approach respectively (from up to down). (a) Heatmap visualization of the saliency mapping and simplified results using
different simplification approaches, Cad (19,398 points): (b) 2000 (∼ 10.3%), (c) 4000 (∼ 20.6%), Block (8,771 points): (b)
2000 (∼ 22.8%), (c) 4000 (∼ 45.6%), Part Lp (4,261points): (b) 500 (∼ 11.7%), (c) 1000 (∼ 23.4%), Coverrear Lp (7,872
points): (b) 2000 (∼ 25.4%), (c) 3000 (∼ 38.1%).

Original model with enlarge detail Heatmap visualization of saliency mapping

Example of candidate patches for the face depicted by the yellow normal

Ψ = 0.32Ψ = 0.87Ψ = 0.81Ψ = 0.68Ψ = 0.54

Noisy  model with enlarge detail Heatmap visualization of saliency mapping

Example of candidate patches for the face depicted by the yellow normal

Ψ = 0.37Ψ = 0.93Ψ = 0.88Ψ = 0.74Ψ = 0.61

Fig. 8: Ideal patch selection based on the proposed saliency
mapping.

Finally, the denoised normals n̂c are used to update the vertices

according to [32]:

vi = vi +

∑
cj∈Ni

n̂cj(〈n̂cj , (cj − vi)〉)
|Ni|

(24)

where 〈a,b〉 represents the inner product of a and b. Note here
that we do not search for ideal parameters per each 3D model
or method. Instead, in all the experiments and for any of the
approaches, we use exactly the same values for each parameter.
Specifically, we define σ2 = 0.25, σ1ij =

∑
∀cj∈Ni

‖ci −
cj‖22/|Ni| [31], 15 iterations for the bilateral filtering Eqs.
(22)-(23) and 20 iterations for the vertex updating Eq. (24).
The ideal selected patch must consist of normals with similar
direction (in order to satisfy the normals’ consistency). The
patches that have a lot of corners or edges must be banned
(i.e., high salient values in our case) since they consist of
normals lying in different directions. As a result, the value of
Ψ would be totally misleading since it would not represent
a specific planar area. Fig. 9 presents the denoising results
with enlarged regions for easier comparisons. The quality of
the reconstructed models is evaluated using the metrics: (i)
θ representing the mean angle between the normals of the
ground truth and the reconstructed faces and (ii) the Hausdorff
distance (HD).
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Fig. 9: Heatmaps of saliency mapping and denoising results using the methods: (a) curvature co-occurrence histogram [9],
(b) entropy based salient model [11], (c) a mesh saliency [28], (d) mesh saliency via spectral processing [12], (e) Point-wise
saliency detection [29], (f) mesh saliency via CNN [30], (g) our approach.

VI. CONCLUSIONS AND DISCUSSION

We presented a 3D feature-aware saliency estimation ap-
proach, taking into account both spectral and geometrical
information of a 3D object. Purpose of this research is
to provide a meaningful 3D saliency mapping which could
be beneficial for industrial applications. Extensive evaluation
studies, carried out with several evaluation scenarios (e.g.,
heatmap visualization for visual perception, simplification,
denoising), verify the superiority of our approach as compared
to other state-of-the-art approaches. We also presented a
variety of actual industrial applications (i.e., manufacturing

inspection of scaled object, inspection of aging mechanical
parts, facilitation of heritage repairing/maintenance) in which
our method can be successfully utilized, in different industrial
areas (i.e., manufacturing, heritage, medical).

The saliency mapping of our method does not just detect
defects, but it highlights areas with high-frequency spatial
components (which means sharp features, noise, and abnor-
malities) and areas where a neighborhood of normals have a
random variance behavior (normals of this neighborhood do
not have a prevailing direction). In other words, our approach
highlights areas where the range distribution of normals is



high. In the following Fig. 10, we present boxplots showing
the standard deviation of the normals for all overlapped
patches which have been categorized (into 8 categories) based
on the salient values of each vertex. More specifically, we
estimate the standard deviation of the normals of each patch
Ei ∀ i = 1, · · · , n:

σi = std(Ei) ∀ i = 1, · · · , nf (25)

where std(A) represents the equation that estimates the stan-
dard deviation of the values consisting of A. Then, we cate-
gorize each vertex based on the saliency values of our method
in 8 categories.

As we can see, categories consisting of less salient vertices,
representing flat areas, have smaller mean values of standard
deviation since all the normals of a neighborhood have a
common direction and form. On the other hand, as we move to
categories including more salient vertices, the mean value of
the standard deviation increases, meaning that the directions
of the normals of a neighborhood become more irregular.
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Fig. 10: Boxplot of standard deviation of normals per different
classes.
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