Real-time Upper Body Reconstruction and Streaming for Mixed Reality Applications

Dimitrios Laskos
Electrical and Computer Engineering Department
University of Patras
FPatras, Greece
Email: dlaskos@ece.upatras.gr

Abstract—In view of the challenges of real-time 3D recon-
struction and transmission, the research on tele-immersion
systems has been quite intense. We present an end-to-end, real-
time 3D reconstruction system of the human body’s upper part
in mixed reality applications, implemented with the use of a
single depth camera on the capture side, whereas no special
setup is required. Our system captures the scene, extracts the
user’s point cloud and by quantizing it, achieves real-time
mesh generation and streaming. This system, together with the
appropriate virtual (VR) or augmented (AR) reality equipment,
creates a sense of a more direct, face-to-face communication,
as if both users were in the same environment.

Keywords-Tele-Immersion; 3D reconstruction; Real-time;
Mixed Reality

I. INTRODUCTION

Tele-immersion refers to an emerging technology that
allows remote users to co-exist in the same virtual or
augmented space supporting realistic communication, while
trying to reach the level of direct human contact. In recent
years, and especially after consumer depth cameras appeared
in the market, there has been a particularly extensive re-
search on immersive real-time 3D systems and several works
with impressive results have been published. Nevertheless,
most of them, require the use of many depth cameras,
specially adapted premises and, in general, costly equipment.
The proposed real-time 3D reconstruction system of the
human body’s upper part is implemented by using a single
depth camera on the capture side. On the receiving side,
the visualization may take place in a virtual or augmented
reality environment, depending on the available equipment.

II. RELATED WORK

The first tele-immersion systems appeared in the 1990s;
[1]-[3] however, increased computational demands of 3D
reconstruction in combination with hardware limitations at
that time, led to poor quality models although the results
were promising.

The development of computers was followed by several
works [4]-[6], the results of which were impressive at the
time but not fully satisfactory. In some of them (e.g. [7],
[8]), entire scenes were reconstructed in real-time, which
was quite a complex problem given the massive data to be
reconstructed.

Konstantinos Moustakas
Electrical and Computer Engineering Department
University of Patras
FPatras, Greece
Email: moustakas@ece.upatras.gr

Following the marketing of depth cameras (e.g. Microsoft
Kinect), highly effective systems were developed [9]-[11].
Nevertheless, all of them require a great number of depth
cameras in specific positions, specially designed studios as
well as highly expensive equipment.

Viewport [12] is a system similar to the proposed one, as
regards the goal and the upper body reconstruction. Never-
theless, on the capture side it requires a camera rig consisting
of a Kinect Camera, three IR cameras, three color cameras
and two IR laser projectors. Microsoft’s holoportation [13]
system achieves high quality real-time 3D reconstruction and
transmission of whole scenes; however, its hardware require-
ments are particularly high since it requires multiple high-
end desktops and cameras on the capture side. SLAMCast
[14] is an impressive system for large-scale environments,
which supports streaming to multiple clients. However, in
addition to the end point systems it requires an additional
PC which serves as a server to manage the reconstruction
and streaming.

The sole equipment required for the proposed system is a
single RGB-D camera with a conventional PC on the capture
side, whereas on the rendering side AR or VR equipment
is necessary. No specially designed area is required, as the
user may place the camera immediately in front of him/her
resulting in a user-friendly environment. In our system,
user motion is not strictly limited and the data size can
be adjusted according to the available bandwidth of the
network.

III. PROPOSED SYSTEM

This work presents an end-to-end, real-time, tele-
immersive, 3D reconstruction system of the upper part of
a user’s body. Such system allows for the user’s projection
on one or more remote users by means of relatively con-
ventional equipment. Our system is composed of five basic
steps, as shown on the figure 1.

On the capture side, there is a StereoLabs® Zed Mini
RGB-D camera, which is placed just as a plain web camera.

A. Scene capture and user extraction

From the camera, the point cloud of the entire scene is
received. Each point is given in the form of a 3D coordinate

Scene Capture
& User Extraction

Geometry
processing

h

n Data Transmission
| (Mesh & Texture)

h J
h

Texture Mapping Display

Figure 1.

(x,y, z) and the axis of coordinates starts at the left camera’s
lens, as it is shown on the figure 2. The number’s values are
mentioned in meters. The user extraction took place by using
each point’s depth and rejecting points at a distance from the
camera exceeding a value of z,,4,. Such value is at the user’s
discretion, but is usually measured within the interval [0.5, 2]
meters. In this manner, the system is capable of supporting
the reconstruction of other objects or more users and user
motion is not strictly limited.

Figure 2. Zed’s Mini coordinate units used [15]

Figure 3.
Z > Zmax

User extraction was accomplished by rejecting points with

Therefore, in the present paper point cloud shall hence-
forth refer to the point cloud derived following the user’s
extraction.

B. Geometry Processing

Mesh generation from a point cloud is a classic problem
in graphics and computational geometry and a huge amount
of work has been published (e.g. [16], [17]). In the proposed
system, the Marching Cubes [18] algorithm was used used
after quantizing the point cloud. For setting the algorithm’s
logical restriction, three basic steps were taken.

We initially calculate the point cloud’s minimum bound-
ing box by finding the minimum and maximum values of
the vertices in all dimensions.

We subsequently divide the bounding box into smaller
cubes, thus creating a grid. We select a cube having the
same size in all its dimensions. We refer to the size as step.
The step may be determined by the user and its selection
is particularly crucial for the result’s quality as well as for
the frames per second rate that the system is capable of
supporting. The proposed step is between 1 and 0.6cm.

The proposed system pipeline

Based on this step, we quantize the point cloud by
matching each vertex with the nearest vertex of a cube. In
parallel, we insert a three-dimensional logical array that we
call gridArray[X]|[Y][Z] and constitutes an index for the
grid, and of course its dimensions depend on the bounding’s
box dimensions combined with the step. For example, the
array element gridArray[1][5][2] will correspond with the
grid vertex having the coordinates (X,Y, Z) = (X,in + 1 %
step, Yinin + 5 * step, Zmin + 2 * step) and will indicate
whether a point cloud vertex is near this area.

Following the creation of the logical array, we go across
the sampled area using the table as an index, as stated herein
above. We start from the first point Pgyqpr € IR? of the grid,
namely the one under the coordinates (Xnin, Yinin, Zmin)
and, after traversing all three dimensions with a step, we
end up at the point P.,q € IR3 where Popag = (Xomin +
Xmam - St(ip, szn + Ymam - Step, Zmzn - Zma:c - Step)-
Considering a grid point P € R®, where P = (X,Y, Z)
with Xmin < X < Xmin + Xmaa: - Stepa Ymin < Y <
Ymin +Ymaw - Step’ Zmin < Z < Zmin + Zmaw - Stepa we
determine the cube vertices including point P as a vertex
(P = V1) by adding vector P to vector A; € R® i =1,..,8.
of each line in matrix A. Namely V; = P+ A4;,i=1,..,8.

With regard to each cube within the grid, based on the
logical values of its 8 vertices, we form a surface by using
the Marching Cubes algorithm.

0 0 0
step 0 0
step step 0
0 step O
A= 0 0 step
step 0 step
step step step
0 step step

C. Data Transmission

For the purposes of the present implementation, we con-
sider that geometrical processing takes place within the PC
of the transmitter, whereas the texture mapping is imple-
mented on the receiver’s PC. Therefore, the information
concerning the mesh and the image to be used as texture
have to be transmitted. Understandably, the quantity of
data depends on the point cloud vertices after the user’s
extraction, the algorithm step during the process of mesh
creation from the point cloud, the image resolution and
format of the texture and the frames per second (fps) rate.

Figure 4. Mesh examples with step equal to lcm and 0.7cm form left to
right

For the transmission of data, the protocols TCP/IP were
used. The algorithm’s step and camera’s resolution can be
selected according to the available network’s bandwidth.

D. Texture Mapping

The aforementioned procedure of geometry processing
results in a textureless mesh. The image captured by the
camera’s left lens is then used as a texture. In order to
find the appropriate UV coordinates of every vertex of the
mesh, algorithm 1 was used, considering the focal length and
optical center coordinates of the camera. Both parameters are
defined in pixels. The exact focal length can vary depending
on the camera calibration and selected resolution.

Algorithm 1 UVs calculation

Input: Mesh vertices, focal length, optical center and
camera’s resolution
Output: Uv
tex

coordinates for each ver-
for every vertex of Mesh do
Utemp ¢ (vertex.x * focalLength.x)/vertex.z +
opticalCenter.x;
Viemp < (vertex.y x focalLength.y)/vertex.z +
opticalCenter.y;
U < Uiemp/resolution.z;
V 4= Viemp/resolution.y;
end for

E. Display

The final rendering takes place in a virtual or augmented
reality environment, depending on the available equipment
of the receiver(s). We used the Meta2 augmented reality
headset by Meta®) for an AR experience.

IV. RESULTS

A. Implementation statistics

The presented implementation statistics for the algorithm
were extracted by taking into account the average imple-
mentation of the algorithm in twenty random frames. Three

different sample tests are presented. Data size and execution
time refer only to the mesh generation. The end point
systems were connected via a local network. In all the
experiments on the capture side we have used a PC Intel
Core 15-9400F CPU, GeForce TRX 2060 OC 6G GPU, 8
GB RAM. The algorithms are written in C#.

Point Cloud Vertices ~ 105000
Step Icm 09cm | 0.8cm | 0.7cm 0.5cm
Vertices 25K 30K 40K 50K 97K
Mesh data size (bytes) | 400K | 480K 640K 800K 1.552M
Execution Time (ms) 9 13 17 25 63
Point Cloud Vertices =~ 120000
Step lcm 09cm | 0.8cm | 0.7cm | 0.5cm
Vertices 39K 49.5K 62K 79K 115K
Mesh data size (bytes) | 624K 792K 992K 1264K 2.4M
Execution Time (ms) 16 23 32 45 118
Point Cloud Vertices &~ 167000
Step 1cm 09cm | 0.8cm | 0.7cm | 0.5cm
Vertices 40K 52K 67K 85K 155K
Mesh data size (bytes) | 640K 832K 1072K | 1.36M | 2.67M
Execution Time (ms) 19 26 38 55 145
Table 1

IMPLEMENTATION STATISTICS FOR THREE SAMPLE TESTS

Execution time indicates the frames per second rate that
can be supported. For example, in order to achieve 30 FPS
rate the execution time must be at most 1/30 = 33.33ms.

B. Experimental Results

Experimental results from the proposed system are dis-
played in the figures 6 and 5. Fig. 6 shows two final meshes
in front and side view. The step and camera resolution used
were 1lcm and 1280x720 respectively. Fig. 5 depicts the final
rendering on the receiving side, in an AR environment.

Figure 5.

Final rendering in an AR enviroment

Figure 6. Mesh results with lem step and 1280x720 texture resolution,
in front and side view

V. CONCLUSION

We have presented an end-to-end, one way, real-time
3D reconstruction system of the human body’s upper part.
The proposed system allows a more direct and realistic
display of the user in mixed reality environments, requiring
only a RGB-D camera on the capture side. With the huge
development of augmented and virtual reality applications
in recent years, we hope that live 3D capture will be a
major way of human communication in the near future.
Such tele-immersion systems prove to be valuable during
periods where face-to-face communication is obstructed due
to unforeseeable circumstances, as has unfortunately been
the case with the Covid-19 global pandemic.

ACKNOWLEDGMENT

This work has been supported by the EU Horizon2020
funded project “Smart, Personalized and Adaptive ICT So-
lutions for Active, Healthy and Productive Ageing with
enhanced Workability (Ageing@Work)” under Grant Agree-
ment No. 826299

REFERENCES

[1] H. Fuchs, G. Bishop, K. Arthur, L. McMillan, R. Bajcsy,
S. Lee, H. Farid, and T. Kanade, “Virtual space teleconfer-
encing using a sea of cameras,” in Proc. First International
Conference on Medical Robotics and Computer Assisted
Surgery, vol. 26, 1994.

[2] T. Kanade, P. Rander, and P. Narayanan, “Constructing virtual
worlds from real scenes,” in ACM Multimedia, vol. 1, 1997.

[3] S. J. Gibbs, C. Arapis, and C. J. Breiteneder, “Teleport—
towards immersive copresence,” Multimedia Systems, vol. 7,
no. 3, pp. 214-221, 1999.

[4] H. Towles, W.-C. Chen, R. Yang, S.-U. Kum, H. F. N.
Kelshikar, J. Mulligan, K. Daniilidis, H. Fuchs, C. C. Hill,
N. K. J. Mulligan et al., “3d tele-collaboration over internet2,”
in In: International Workshop on Immersive Telepresence,
Juan Les Pins. Citeseer, 2002.

(3]

(6]

[71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh,
and T. A. DeFanti, “Advances in the dynallax solid-state dy-
namic parallax barrier autostereoscopic visualization display
system,” IEEE transactions on visualization and computer
graphics, vol. 14, no. 3, pp. 487-499, 2008.

G. Kurillo, R. Bajcsy, K. Nahrsted, and O. Kreylos, “Immer-
sive 3d environment for remote collaboration and training of
physical activities,” in 2008 IEEE Virtual Reality Conference.
IEEE, 2008, pp. 269-270.

M. Gross, S. Wiirmlin, M. Naef, E. Lamboray, C. Spagno,
A. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang
et al., “blue-c: a spatially immersive display and 3d video por-
tal for telepresence,” ACM Transactions on Graphics (TOG),
vol. 22, no. 3, pp. 819-827, 2003.

T. Tanikawa, Y. Suzuki, K. Hirota, and M. Hirose, “Real
world video avatar: real-time and real-size transmission and
presentation of human figure,” in Proceedings of the 2005
international conference on Augmented tele-existence, 2005,
pp. 112-118.

A. Maimone and H. Fuchs, “Real-time volumetric 3d cap-
ture of room-sized scenes for telepresence,” in 2012 3DTV-
conference: the true vision-capture, transmission and display
of 3D video (3DTV-CON). IEEE, 2012, pp. 1-4.

S. Beck, A. Kunert, A. Kulik, and B. Froehlich, “Immersive
group-to-group telepresence,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 19, no. 4, pp. 616-625,
2013.

D. S. Alexiadis, D. Zarpalas, and P. Daras, “Real-time,
realistic full-body 3d reconstruction and texture mapping from
multiple kinects,” in [VMSP 2013. 1EEE, 2013, pp. 1-4.
C. Zhang, Q. Cai, P. A. Chou, Z. Zhang, and R. Martin-
Brualla, “Viewport: A distributed, immersive teleconferencing
system with infrared dot pattern,” IEEE MultiMedia, vol. 20,
no. 1, pp. 17-27, 2013.

S. Orts-Escolano, C. Rhemann, S. Fanello, W. Chang,
A. Kowdle, Y. Degtyarev, D. Kim, P. L. Davidson, S. Khamis,
M. Dou et al., “Holoportation: Virtual 3d teleportation in real-
time,” in Proceedings of the 29th Annual Symposium on User
Interface Software and Technology, 2016, pp. 741-754.

P. Stotko, S. Krumpen, M. B. Hullin, M. Weinmann, and
R. Klein, “Slamcast: Large-scale, real-time 3d reconstruction
and streaming for immersive multi-client live telepresence,”
1IEEE transactions on visualization and computer graphics,
vol. 25, no. 5, pp. 2102-2112, 2019.

“Api documentation: Api reference.” [Online]. Available:
https://www.stereolabs.com/docs/api/

L. Ladicky, O. Saurer, S. Jeong, F. Maninchedda, and
M. Pollefeys, “From point clouds to mesh using regression,”
in 2017 IEEE International Conference on Computer Vision
(ICCV), Oct 2017, pp. 3913-3922.

E. Piazza, A. Romanoni, and M. Matteucci, “Real-time cpu-
based large-scale three-dimensional mesh reconstruction,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, pp.
1584-1591, 2018.

W. Lorensen and H. Cline, “Marching cubes: A high reso-
lution 3d surface construction algorithm,” ACM SIGGRAPH
Computer Graphics, vol. 21, pp. 163—, 08 1987.

https://www.stereolabs.com/docs/api/

	Introduction
	Related Work
	Proposed system
	Scene capture and user extraction
	Geometry Processing
	Data Transmission
	Texture Mapping
	Display

	Results
	Implementation statistics
	Experimental Results

	Conclusion
	References

