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Abstract—The increasing interest for reliable generation of large scale scenes and objects has facilitated several real-time
applications. Although the resolution of the new generation geometry scanners are constantly improving, the output models, are
inevitably noisy, requiring sophisticated approaches that remove noise while preserving sharp features. Moreover, we no longer deal
exclusively with individual shapes, but with entire scenes resulting in a sequence of 3D surfaces that are affected by noise with different
characteristics due to variable environmental factors (e.g., lighting conditions, orientation of the scanning device). In this work, we
introduce a novel coarse-to-fine graph spectral processing approach that exploits the fact that the sharp features reside in a low
dimensional structure hidden in the noisy 3D dataset. In the coarse step, the mesh is processed in parts, using a model based
Bayesian learning method that identifies the noise level in each part and the subspace where the features lie. In the feature-aware fine
step, we iteratively smooth face normals and vertices, while preserving geometric features. Extensive evaluation studies carried out
under a broad set of complex noise patterns verify the superiority of our approach as compared to the state-of-the-art schemes, in

terms of reconstruction quality and computational complexity.

Index Terms—Spectral Smoothing, Orthogonal Iteration, Spectral Denoising Filtering, Feature Extraction, Level Noise Estimation

1 INTRODUCTION

N RECENT years, an increasing demand for acquiring,

processing and streaming 3D models representing real
world objects is observed. These models usually come as
very dense and noisy meshes that stand in need of solu-
tions capable of distinguishing noise from local geometric
features. Similarly, the surfaces extracted from volumetric
data (e.g., MRI and CT devices) contain topological and
geometric noise that needs to be removed before further pro-
cessing. Although there are several methods in the literature
for performing feature preserving mesh denoising, there are
still challenges that need to be addressed, especially if we
take into account that the scale of acquired data in real
time scanning operations is growing very fast. We no longer
deal exclusively with individual shapes, but with entire
scenes, possibly at the scale of entire cities with many objects
defined as structured shapes (e.g., aerial scanning [1], [2],
slam scanning [3], underwater scanning [4], scalable multi-
object scanning [5], large-scale terrestrial scanning [6], large
statues scanning [7]) resulting in a sequence of 3D surfaces
that are affected by noise with different characteristics.

Throughout the years, numerous approaches have been
proposed improving more or less some of the key feature
preserving denoising characteristics [8], [9], [10]. Though,
recovering the structure of large scenes is still without a
doubt a stimulating challenge. To the best of our knowledge,
none of the approaches is capable of identifying accurately
(i) the subspace where the features of each surface part lie,
(ii) the noise characteristics on the different parts of the sur-
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face. Those requirements become more essential in scenarios
where large 3D models are scanned in parts, generating
a sequence of 3D surfaces that arrive sequentially in time
and require fast and accurate feature preserving surface
denoising. In those cases, the denoising method should
be also capable of mitigating dynamic noise with varying
characteristics per surface part. This effect is attributed to
the fact that several environmental factors that affect the
surface noise pattern of each part may also change in time,
e.g., variable lighting conditions and orientation of a hand
held scanner, standing in need of solutions that are capable
of identifying the noise and the geometry characteristics.
To deal efficiently with the aforementioned challenges we
suggest applying a coarse-to-fine denoising approach.

We initially decompose the original mesh in a number
of registered 3D patches. In the coarse step, each part
is treated individually. The coarse denoising approach is
capable of identifying both i) the spectral subspace size
where the features lie and ii) the level of noise, using a
model based Bayesian learning scheme. In order to reduce
the required complexity for evaluating the spectral subspace
for each part of the surface, we adopt a subspace tracking
approach that exploits potential coherences between the
spectral subspaces of adjacent parts. In the fine step we
eliminate the small amount of remaining noise. To that end
we apply a feature aware guided normal filtering (GNF)
method. More specifically, the application of the coarse step
allows the accurate identification of the geometric features,
which are then used to accelerate the execution time of
the conventional GNF approaches. To summarize, the main
contributions of this work are:

o We provide a novel coarse denoising step that filters out
a significant amount of noise without affecting geomet-
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ric features under non stationary noise scenarios. This
approach is essential for denoising large scale meshes
representing complex 3D scenes, that are reconstructed
in parts, affected by noise with different characteris-
tics. To achieve that, we developed: i) An approach
that automatically identifies the subspace size where
sharp and small-scaled geometric features lie. Then,
the subspace of interest is evaluated using orthogonal
iterations, an efficient subspace tracking approach that
exploits the spatial coherences between different parts
of the surface, and results in very fast execution times.
ii) A method which is capable of identifying the pat-
tern of noise, using a model based Bayesian learning
scheme. The identified subspace and the evaluated
noise patterns are then used to mitigate variable noise
patterns that are added in different surface patches that
are processed individually.

o The use of the coarse step allow us to accurately iden-
tify geometric features, which are then used by the
proposed feature aware GNF approach that achieves
faster execution times as compared to the conventional
GNF approach. More specifically, on contrary to GNF
scheme, the iterative process for searching the ideal
patches is not applied to the whole mesh but only in
these vertices that have been classified as features.

e We prove that the fine step can be also considered
as a graph spectral method and we provide extensive
simulations carried out using several scanned and CAD
models under a broad set of noise configurations show-
ing that: i) The coarse scheme can be also adopted by
any SoA denoising approach accelerating its execution
time and allowing them to efficiently mitigate noise
patterns that vary between different parts of the sur-
face. ii) The combination of the proposed coarse and
the fine graph spectral processing steps offers both
enhanced robustness and low complexity requirements
when dealing with anisotropic and non stationary noise
patterns.

An extensive performance assessment using a large col-
lection of different 3D models, including both CAD and
scanned models, under a broad set of noise patterns, in-
cluding: i) non isotropic Gaussian noise [11] ii) real scan
noise introduced by a variety of 3D scanning devices [9]
iii) staircase effects caused by MRI and CT devices [12] and
iv) complex noise patterns that may vary significantly over
the different parts of the scanned surface, clearly shows the
benefits of our coarse-to-fine method as compared to the
state-of-the-art (S0A) approaches in terms of reconstruction
accuracy and complexity.

The paper is organized as follows: Section 2 reviews
prior art in detail. Section 3 presents the preliminaries nec-
essary for our method. Section 4 presents our contributions
and demonstrates how these techniques are capable to im-
prove the final execution time such as the appearance of the
final results. Section 5 presents the qualitative, quantitative
and comparative results of our method, and discusses the
advantages and limitations of the proposed method, while
Section 6 draws conclusions and identifies future directions.

2 RELATED WORK

Mesh denoising aims to decrease or eliminate the noise, pre-
serving all useful information such as geometric details of
different scale. It is a vital pre-processing tool for improving
imperfect meshes obtained by scanning devices and digiti-
zation processes. During the last years several methods have
been proposed, yet, despite the significant improvement, the
main need for a robust and fast algorithm that can manage
large meshes with persistent noise still remains a challenge.
The existing approaches can be classified in two core groups
that treat differently noise and salient features, known as
isotropic and anisotropic respectively.

Isotropic Methods

The most well known isotropic method is the Laplacian
smoothing [13] that has the mesh shrinkage as a major
disadvantage. In order to solve this limitation, Taubin [14]
proposed a two-stage approach where two sequential filters
are applied iteratively: the first one performs Laplacian
smoothing while the second is used to prevent shrinkage.
The accurate reconstruction depends on the shrinkage and
inflation parameters, which are selected empirically and
in many cases suffer from stability issues. Desbrun et al.
extended this approach to irregular meshes by using the
mean curvature flow analogy to rescale the mesh preventing
shrinkage [15]. Several surveys that cover basic definitions
and applications of the graph spectral methods have been
introduced by Gotsman [16], Levy [17], Sorkine [18] and
more recently by Zhang et al. [19]. All these surveys classify
the spectral methods according to several criteria related to
the employed operators, the application domains and the di-
mensionality of the spectral embeddings used. Graph spec-
tral processing of 3D meshes relies on the singular/eigen-
vectors and/or eigenspace projections derived from appro-
priately defined mesh operators [20]. A summary of the
mesh filtering approaches that can be efficiently carried
out in the spatial domain using convolution approaches is
given by Taubin in [21]. Computing the truncated singular
value decomposition, can be extremely memory-demanding
and time-consuming. To overcome this limitations, subspace
tracking algorithms have been proposed as fast alternatives
relying on the execution of iterative schemes for evaluating
the desired eigenvectors per incoming block of floating
point data corresponding in our case, to different surface
patches [22]. The Orthogonal iterations is the most widely
adopted subspace tracking method, due to the fact that it
results in very fast solutions when the initial input subspace
is close to the subspace of interest [23].

Anisotropic methods

Most feature preserving mesh denoising approaches locally
adjust vertex positions while respecting the underlying fea-
tures and can be classified in four major categories.
Anisotropic Geometric Diffusion: The first one is based
on anisotropic geometric diffusion [24], [25]. In [26] the new
vertex position is estimated by a nonlinear weighted mean
of local neighborhood vertices. The method is simple and
can be easily reproduced but its computational complexity is
quite high. In [27] sharp features are removed while preserv-
ing small-scale features of the geometry of the original mesh.
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The main limitation of these approaches is the distortion of
the geometric features, that is attributed to the fact that all
the vertices are handled in the same manner.

Bilateral Filtering of Vertices and Normals: These itera-
tive methods use normals to estimate the weights of the fil-
ters. However, the accurate reconstruction of the geometric
features strongly depends on the effect of noise in the weight
estimation [28], [29]. The authors in [30] present a robust
approach for denoising triangular surface meshes using a
combination of bilateral filtering, feature detection, surface
fitting and projection techniques. An extended version of
bilateral filtering is based on normal filtering and vertex
position update [8], [31], [32], [33], [34]. These methods
are described as two-stage iterative approaches. Firstly, the
face normals are filtered and then the vertex positions are
updated based on the filtered face normals. The authors
in [35] propose a two stage processing method for mesh
denoising. Initially, part of the noise is removed so that
the features of the mesh are preserved. A fine denoising
step is applied on the points that are classified as features.
Although the aforementioned methods preserve most of the
sharp features, they fail to preserve features of different
scale, such as medium or small scale features.

Sparse Optimization and Tensor Voting: The third cat-
egory includes surface reconstruction and decimation ap-
proaches that regularize both vertices and normals [36].
These type of methods minimize the energy of both vertex
position and normal error. The authors in [10], propose
an lp minimization approach that provides accurate sur-
face reconstruction in Gaussian noise cases, however its
performance is significantly deteriorated when considering
complex noise patterns (e.g., anisotropic noise, real scan
noise). Despite the good surface reconstruction results they
cannot always preserve sharp features well [37] while in
other cases [38] the execution time is high. The authors
in [39] present a cascaded denoising framework composed
of a multiscale tensor voting step, a vertex clustering step
for detecting sharp features and a piecewise fitting step for
preserving the identified features, dealing efficiently with
challenging situations, such as irregular surface sampling. In
[40] a vertex classification step of noisy meshes takes place
before applying the denoising process. In [41] the usage of
consistent sub-neighborhoods is used for vertex classifica-
tion. The method of [42] is an iterative approach combining
pre-filtering, feature detection, and [;-based feature recov-
ery. The main limitation of the presented approaches is the
increased required computational complexity and the fact
that in many cases irregularly highlight the identified sharp
features.

Data-driven Approaches: The authors in [9] suggest a
method for mesh denoising which uses training sets of
noisy objects, scanned by the same devices, and extract
information that are used for denoising meshes with similar
noise type. While many geometric features are reconstructed
adequately, geometric details are limited to those not in-
cluded in the training set.

3 PRELIMINARIES ON GRAPH SPECTRAL PRO-
CESSING

In this section we present the basic definitions and well
known preliminaries related to graph spectral processing.

3.1 Polygon Models

In this work we focus on triangle meshes, which are the
most common polygon models. Triangle meshes M with
k vertices can be represented by two different sets M =
(V, F) corresponding to the vertices V and the indexed faces
F of the mesh. Each vertex can be represented as a point
v; = (¢i,¥i,2i) Vi = 1,k. In this case we create a vector
of vertices v = [, y, z] in a 3D coordinate space such as
x,y,z € RF*! and v € R¥*3. This means that we have a
set of k points such that V = {v1, va,...,v;}. Additionally,
each face is defined by a set of 3 indices to vertices f; =
[Vi1, Vi2, Vi3] Vi =1,k where k; > k, so we have kj faces
F = {f1.f2,.-., fr; }- Bach face constitutes a triangle, the
simplest surface unit, that can be represented by its centroid
point ¢; and its outward unit normal n; Vi = 1, ks. The
vertices of a noisy mesh M = (V, F) satisfy the following
identity:

where v; are the noise free vertices and z; representsa 1 x 3
noise vector.

3.2 Spectrum of a Graph

The spectrum of a graph is defined in terms of the eigenval-
ues and eigenvectors of the Laplacian matrix. The Laplacian
matrix of a graph G, assuming that a set of edges £ can
be directly derived from V and F, which correspond to the
connectivity information, is defined as:

L=D-C @)

where C € RF** is the connectivity matrix of the mesh with

elements: | i
I
Cy = {e Y oifijee &)
0 otherwise

D = diag{dy,ds,...,ds} is a diagonal matrix with d; =
Z?=1 C;; and « is the variance that sets a threshold to
edge existence. The weighted adjacency matrix is ideal for
emphasizing the coherence between Laplacian matrices of
different submeshes by providing geometric information;
on the contrary, the binary provides only connectivity in-
formation. The normalized form of the Laplacian is a non-
negative matrix given by £ = D~'/2LD~'/2 that can be
diagonalized as:

L£=UAU" )

where U = [uj,uy,...,u;] is an orthonormal matrix with
the eigenvectors and A = diag {\1, A2, ..., \x} is a diago-
nal matrix with the corresponding eigenvalues. The eigen-
vectors and eigenvalues of the Laplacian matrix £ provide
a spectral interpretation of the graph signals. The Graph
Fourier Transform (GFT) of a vector v is defined as its
projection onto the eigenvalues of the graph v = U”'v, and
the inverse GFT is given by v = UV. In the following part
of our work, we will apply GFT for both filtering out and
attenuating higher frequencies of vertices and face normals.

3.3 Cutting off Higher Frequencies & Attenuating Fre-
quencies

At any noisy mesh M, the vertices and face normals that
correspond to the sharp features ‘lie” in a low dimensional
subspace of size m, while noise usually has a flat spectrum
that is easily identifiable at the higher £ — m frequencies.
Therefore, one way to mitigate the noise effects is to perform
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spectral smoothing by filtering out the higher frequencies.
In mathematical terms, the subspace decomposition of the
normalized Laplacian matrix defined by the vertices of the
mesh can be re-written as:

L= [Uim Un) [A’H” Aom} (Ui Un]" )

where U,,, = [uy,us,...,u,,]. Then a smoothed version of
the noisy vertices can be generated by performing low pass
spectral filtering of the Cartesian coordinates v = U,,, UZ v.

Normals n can be considered as a signal defined on an
undirected graph G = (V, £) where the signal value at each
node equals the corresponding normal vector coordinates.
In order to average the normals that belong to a common
smooth region, one could potentially perform a graph filter-
ing operation by substituting the normal at each node by a
weighted average of the normal values of its neighbors. In
matrix form, this operation may be written as:

ng = D !Cn
— D YV2p-12cD"V2DYV2, —

DY?n, = (I-£)DY?n (6)
By denoting the normalized versions fi;, = D'/2n;, and

n=D2n Eq. (6) can be re-written as:
n,= U (I-A) U'a @)

rarr Spectral Grr
Response

Eq. (7) shows that any averaging filter on the normals
is a frequency selective graph transform with a spectral
response h (A;) = 1—\; which corresponds to a linear decay
and I represents the identity matrix. An averaging filter tries
to preserve the low frequency components and attenuate the
high frequency ones.

4 OVERVIEW OF OUR METHOD

The coarse denoising approach suggests decomposing a
mesh into smaller submeshes using a fast graph partitioning
method, and reducing the amount of artifacts and noise
within each patch by cutting off the higher frequencies.
To fine tune the smoothing operation and preserve corners
and sharp edges, we propose a novel noise level estima-
tion scheme which dynamically evaluates the subspace size
where the features 'lie’ using a model based Bayesian learn-
ing approach. One of the major limitations of graph spectral
processing (GSP) is the required computational complexity,
since it involves the evaluation of the singular vectors of a
matrix (spectral coefficients) with size equal to the number
of vertices in the patch. To overcome this issue we propose
a fast and efficient way for evaluating the GSP coefficients
of the different patches by using an approach that is based
on subspace projections.

The proposed coarse denoising approach allows us to
accurately cluster the face normals into features (edges,
corners) and flat areas and then apply a fine denoising
operation based on a graph spectral filter that averages
normals that belong to a common smooth region, while
preserving sharp changes of normals that are indicated as
features. The processed normals are then used to update
the corresponding vertex positions. In addition, this process
significantly accelerates the convergence of the following
process. Finally, for a given feature face we search among

a set of candidate patches that contain the feature face and
pick the one with the most consistent normal directions
(ideal patch selection). The average normal of the chosen
patch is then used as the normal of the selected face. Such
guidance provides a robust estimation for the true normal
in the presence of noise, enabling our denoising algorithm
to handle highly noisy meshes. The proposed two stage
graph spectral processing architecture (TSGSP) is illustrated
in Fig. 1, while in the rest part of this section we provide a
detailed description of the different parts that increase the
robustness of the graph spectral based denoising.

4.1 Fast Sequential Processing of 3D Patches Using
Orthogonal lterations

Calculating the graph Laplacian eigenvalues of the mesh
geometry can become restrictive as the density of the models
increases. To overcome this limitation, several approaches
suggest processing large meshes into parts [43], [44]. In the
proposed scheme, we initially separate the whole mesh to
submeshes and then we replace SVD with an approximate
iterative method that is much more computational efficient.

Processing of Registered 3D Patches

The noisy 3D mesh is partitioned into s submeshes that
are reconstructed individually, using the METIS method
described in [44], [45]. Each submesh M; consists of k;
points, where Y"7_, k; = k. The Cartesian coordinates of the
k; points included in the i*" submesh are represented as a
vector v; € R%*3. To avoid the problem of edge effects we
process overlapped submeshes and estimate the weighted
average of vertex positions for the overlapping nodes. The
weights that are assigned to each point are proportional to
the degree of the node (e.g., number of neighbors) in the
corresponding submesh. For example, in Fig. 2 we present
the weights assigned to a point (highlighted in red) that
participates in three overlapped submeshes.

@ ) ©
Fig. 2: The red point has different degree in each submesh, the
corresponding weights a are: (a) a = 5, (b) a = 4, (c) a = 3.

The ideal number of submeshes depends on the total num-
ber of points of a mesh, however, an extensive evaluation
study shows that submeshes with 500-800 points provide
the best results in terms of both execution time and visual
error.

Fast Spectral Smoothing Using Orthogonal Iterations

A direct application of spectral method to the vertices of
each submesh M; individually would result in a complex-
ity of the order O(>_;_, k?). To minimize this complexity,
we suggest exploiting the coherence between the spectral
components of the different submeshes using orthogonal
iterations (OI).
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Fig. 1: Sequential diagram of the procedure. The proposed framework is separated into a coarse denoising stage and a fine
denoising stage. The proposed methods are represented with red boxes.

Proposition 1. We estimate the U,, [i] Vi = 1, s according
to the next equation:

U,, [i] = Orthonorm {Rﬂ [(]Up, [i — 1}} (8)

where R[i] = (L[i] + 6I)7?, 4 is a small positive scalar
value that ensures positive definiteness of R[i] and L][i]
is the graph Laplacian of the vertices of the submesh
M. Depending on the choice of R” [i], we obtain al-
ternative iterative algorithms with different convergence
properties. The convergence rate of Eq. (8) depends
on [Ant1/ Am|? where A, 11 is the (m + 1)-st largest
eigenvalue of R [46].

The projection of the raw geometry data in the domain
defined by the graph Laplacian eigenvalues U,, allow ef-
ficient representations that can be exploited by a number
of applications such as, in our case, denoising. However,
in order to avoid smoothing any potential feature point we
need to accurately identify the size m of the subspace where
the edges and corner points lie. The following subsection
provides a dynamic scheme that can successfully identifies
the optimal subspace size m.

Dynamic Identification of m and o2

We start by assuming that the observed noisy vertices can
be separated into two quantities, namely the clean vertices
and the external noise, as follows:

Vi = VejtZ 9

where m} represents the optimal length of features sub-

space size, V; = UL .v.; is projected clean vertices and
J

z; is the vector of noise coordinate j = {z,y,z}. If we

assume that m;‘ is known, then the v; can be modeled as a

parametrized multivariate Gaussian distribution:
p({’]) ~ N(07 Hoj)z HO]‘ = ’YJ'EJ' Jj= {J"v Y, Z}

where «; is a scalar parameter and £; € R™I*™ s
a positive definite matrix. By using the Bayes rule and
assuming that the noise vector z; has distribution with
zero mean value then z; ~ N(0,0,,I). However, in the
general case, the optimal feature subspace size value of m;
is not known. A non optimal choice of m;, would lead
either to the exclusion of some feature components or the
inclusion of noisy components. In this case, the /5 norm of

(11)

the vector ||v;—Unm, V;||/k will be a value outside the region

[afj —¢, afj +¢], where ¢ is a negligible threshold. Motivated

by this observation we propose an iterative scheme that

either increases or decrease the feature subspace size, so that
the aforementioned termination condition is satisfied. For
each choice of m the following Bayesian learning scheme
is executed in order to identify the projected clean coeffi-
cients and the level of noise. In particular, the following

Proposition 2 presents the Bayesian learning steps for the

identification the of projected clean coefficients per submesh

i =1, s and per coordinate j = {z,y, z}.

Proposition 2. Assuming that the posterior density of v;;, is
also Gaussian p(Vi;|Vij; 04, ¥ij Bij) ~ N (Hgj, Ii;) we
can estimate its mean and covariance matrix as follows:

-1
H;; = Io;; UL, (UmUHOUUgij +azij1ki) vij

ij

(12)

- T T —1
;= Mo — Moij U, (Umij Toij U, + o5y I, ) Um,; Tloi;  (13)

For finding the parameters o, ., 7i;, 2;; we employ the
expectation-maximization (EM) algorithm to maximize
the p(vij;04,;,7ij2i;) per coordinate, meaning that
j = {=,y, z}. For the estimation of the model parameters
that maximize the aforementioned likelihood we use
iteratively the following learning rules:

IVij = Um; ¥ijl13 + oy, [mij — Tr(I;T05;5)]

e = 14
oa, - (14

71’1“(2-_-1 (HZ] + HZJHZ;))

*J

Yij = p— (15)
1]
IL;; + Hy; HE

.. —
Y Vij

(16)

The performance of the proposed algorithm can be further
improved by constraining the matrix X;; in order to have
a Toeplitz symmetric structure with elements (3;5)(g,w) =
rL?iw‘, V ¢,w € [1,---,my;]. This form is equivalent to
modeling the elements in the non-zero block as a first order
auto-regressive process, where 7;; can be estimated by:

ri; = sign(ql/q0)min{|q1/q0[,0.99}

where ¢0 is the average of the elements along the main
diagonal, g1 is the average of elements along the main sub-
diagonal of X;; and the value 0.99 is a bound selected by
the user. The proposed scheme suggests executing the afore-
mentioned methods iteratively, initializing the m,; and Ui:]-

17)
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to any arbitrary value, until the following stopping criterion
is satisfied 02 — ¢ < [[vij — Um,;Vjl3/ki < 02 + e
In each iteration ¢, if ||[vij — Um,; Vij[3/ki < 02, — € then
the length of m;;[l] = m;;[l — 1] — 1 is decreased by one,
otherwise the length of m;;[l] = m;;[l — 1] + 1 is increased
by one. For the initialization, arbitrary values of m;;[0] and
o'zzij [0] could be used. However, to avoid exhaustive search,
we suggest an optimal initialization strategy presented in
the following subsection. In Algorithm 1 we briefly describe

the steps of this iterative procedure.

Algorithm 1: Identification of the optimal Subspace
Size m;; per submesh and per coordinate, using Model
based Bayesian Learning (MBL).

1 Initialize the values of m;;[0] and 0'5,”- [0], according to
Egs. (18) and (22) ;

2 fori=1,sdo

3 forj € {z,y,z} do

4 while |||Vij — Um”\Af”H%/kz — 0-221'3" < edo

5 forg=1,bdo

6 Estimate the non zero values of H;; via
Eq. (12);

7 Estimate the corresponding variances IT;;
via Eq. (13) ;

8 Update the values of Oz;55 Yijs Ei]', rij
according to Egs. (14) - (17) ;

9 end

10 if |[vij — Um,, Vi ||5/ki > o-fij + € then

m”[l] = mij[l - 1} +1;

1 else

12 vmg;[l] = mg[l —1]—1;

13 l=1+1;

14 end

15 end

16 end

Initialization of Parameters m and o2

The convergence speed of the aforementioned scheme
strongly depends on the initial value of m,;[0]. An extensive
simulation study using different models with geometric fea-
tures of different scale, showed that the subspace size where
the feature lie is strongly dependent to the level of noise and
the values of the geometric Laplacian. Motivated by this
observations we decided to use the following initialization
strategy. An initial value that significantly accelerates this
approach is the following one:

el €ij |

m;; [O] = k)i(l - 5'2[0]

) Vi=1s , Vj €{z,y,2} (18)

where 62[0] is the noise variance vector and 'evij is the nor-

malized value of smoothing factor e;; [47], [48], expressed
in mathematical terms as:
2
ei = [L20vi| = vILlvi, vi=1,...s (9
2
where e; = [e;, e;, e;,]. Small values of €;; represent
smooth areas while large values represent rough areas. For
the estimation of the initial noise level 62[0], we start by
assuming that the geometry data and the noise are uncorre-
lated, so the variance of the projected vertices of mesh can
be expressed as [49]:
o(vu) = o(vu) + o2 (20)
where o(vu) represents the variance of vertices v in the
u € R3*! direction, v are the affected by the noise vertices

and o, is the standard deviation of the noise. The direction
of minimum variance can be calculated by applying the
PCA on different equalized patches of the mesh. For this
reason we start by separating the mesh vertices v into
¢ overlapped patches. Each patch consists of kg vertices
based on their relative distance which are estimated using k-
nearest neighbor (k-nn) algorithm, so that the i*" patch can
be represented by the V; = [Vi,, Vi,, ..., V;, |7 € RFX.
The minimum variance direction can be estimated by the
eigenvector associated to the minimum eigenvalue of the

covariance matrix Ry, = %Zf’:l v;vI. The variance of
the vertices projected onto the minimum variance direction
equals the minimum eigenvalue of the covariance matrix
R(, Py ie.

)\min(R\'ld,) = )\mzn(Rv) + 03

where A,in(R) represents the minimum eigenvalue of the
matrix R. Vertices of smoothed patches, span a subspace
whose dimension is smaller than k4 x 3. These patches are
low-rank and they can be used for the estimation of 52
taking advantage of the fact that the minimum eigenvalue of
their covariance matrix A,,;,(Ry) can be assumed as zero.
Since Gaussian noise has the same power in every direction
and all eigenvalues are the same, we can estimate the noise
variance from the subspace spanned by the eigenvectors of
the covariance matrix Ry, with zero eigenvalues, i.e.:

(1)

62 = Amin(Ra,). (22)

Therefore by substituting Eq. (22) in Eq. (18) we can evaluate
the subspace size m; that can be used for smoothing the
noisy mesh without affecting noticeably the feature points.

4.2 Feature Preserving Surface Reconstruction

The coarse denoising step presented above, generates a
smooth version of the normal vectors without deteriorating
features. Although, the smoothed normals of the surface
provide a more accurate representation of the original nor-
mal vectors; further processing is still required in order to: i)
better highlight specific local characteristics, like edges and
corners and ii) provide a more smooth version of the flat
areas. To that end, the main goal is to accurately classify
face normals into features and flat areas. Then we focus on
finding the most representative normals for each face, based
on the identified features across different neighborhoods.
After identifying the ideal neighbors and weights, we apply
a two stage graph spectral processing scheme that iteratively
reconstructs the normals (e.g., each face normal is replaced
by an average face normal across the ideal neighborhood)
and then the vertices are updated accordingly.

Identification of Features

For each face ¢ of the mesh we create a patch P; =
{firs firs---, fi,} that consists of the closest faces selected
by the k-nn algorithm. We consider different neighborhoods
by generating k; sets of p face normals:

Ne, = [Beiy, eigy ... yhie,]” Vi=1,... ks (23)

After defining the covariance matrix for each vector Nci S
RPX3 as:

Ry, = NJN,, € ®*7°

e

(24)

we perform the following eigenvalue decomposition:
RNci = UAUT , where the columns of U are the eigen-
vectors of RNrL € R and A = dz’ag()\il, )\Z'Q, )\13)
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is a diagonal matrix with the corresponding eigenvalues
Aij V j = 1,3 . Building on the same line of thought with the
authors in [50], we can distinguish the following three cases:
(a) corner (Ai1 = Az = Aj3), (b) edge (M1 = iz < Ai3)
and (c) flat area (A\;; < A2 = Ai3). As a next step we
use a k-means (k = 3) clustering to the eigenvalues in
order to classify each face as a corner, edge or flat area.
Since our focus is only on faces that represent potential
features, we merge the other two cases (edge, corner) to
one class (features) and another one, characterized as faces
of flat areas (non-features). The described scheme is easily
adaptable and can be used for the estimation of both small
and large-scale features. In Fig. 3 we present a 3D model
with geometric features of different scale, highlighted with
red dots. By inspecting this figure it can be easily seen that
our algorithm is capable of identifying both small and large
scale features by simply modifying the patch size.

Fig. 3: 3D m(a())del (Tyra) wit}(:) a lot of smallmand large-scale
features. Feature classification using patch area of (a) 10, (b)
20, (c) 40 neighbors.

Selecting the Best Neighborhoods and Weights

In this subsection, we present a spectral method, similar
to the one presented in Sec. 3.4, for estimating the repre-
sentative face normal vectors, using an adjacency matrix
of the face normals that can be considered as neighbors.
To build this adjacency matrix it is important to identify
the best neighborhood of each normal and then assign
the appropriate bilateral weights. Our goal is to construct
neighborhoods by identifying the faces that have common
geometric properties. We initially execute the k-nn for each
face of the mesh. The neighborhood of a non feature face 4
is formed by the % nearest neighbors P;. The k, candidate
neighborhoods of the a i feature face are all the patches,
where the face 7 is participating as a nearest neighbor
defined as B; = {Pi1,Pi2, ..., Pir,}, where the gt
didate area of i‘" face is represented as P;y. Our purpose
is to find which of the candidate patches P;, is the ideal
representative area for i'" feature face.

Three parameters are investigated in order to identify the
desirable connected areas: (a) the normalized difference 7,
between Ag3 and )41 eigenvalues (defined in the previous
subsection) (b) the inner product between the face normal
and the average normal of the patch and (c) the maximum
distance between the face normal and the other face normals

belonging to the same patch. The best neighborhood of a
feature face ¢ is the area that maximizes Eq. (25):

feature Vi=1ky

_ Py | mam(TE2e)) fi =
A { e Vg=1rk 2

P otherwise

where T4 7”\!71_/\93' (26)
Ag3
~ ﬁc'
Gy = (e 30 ) 27)
jEPig "I
wig = maz(|fie; — Ncjl2) Vj € Pig (28)

Aj; represents the area where each faces have similar ge-
ometric characteristics with the face ¢. In Fig. 4 we illus-
trate different candidate areas of the selected face, which
is highlighted with blue color. After identifying the most

o =14,055.9 =0.28900

Patch 1 Patch 2 Patch 3
=0.26603 «=027223 a=027223

Patch 4

Fig. 4: Candidate areas for the blue face

a=0.26398

representative area we focus on the estimation of the ideal
values for the weighted adjacency matrix. Each connected
face has different weights, similar to the bilateral weights,
which are evaluated using the following equation:

Co=W.oW,0C, (29)

where o denotes the Hadamard product, C, is the binary
adjacency matrix constructed using the k-nearest neighbors
and W, W, € Rkr>ks are estimated according to:

_ exp(chifc'Hzﬂaf) if Cq,, =
W, = { 0 ’ othem]mse 30)
_ Jexp(— Hﬁci_ﬁc'||2/2a.§) if Cayy
Weis { 0 ’ otheriuzse (1)

Two Stage Processing of Normals and Vertices

The ideal neighborhoods and weights are then used to fine

tune the normals according to:
= (D 'Cw) 4. (32)

where 1. represents the smoothed normals, ¢ is an integer
that represents a denoising factor. The fine tuned normals
are then used to update the vertices according to [31]:

S jew, Ber (e, (e —v{))
£

vty (33)

= vgt) +

ot = (34)

(Vi Vit V)8 Y e
where (a, b) represents the inner product of a and b, ()
represents the number of iteration and the matrix ¥; is the
cell of vertices that are directly connected with the vertex
v;. This iterative process can be considered as a gradient
descent process that is executed for minimizing the energy
term 3 g [0 (cgt) fvl(t)) ||? across all faces. An overview
of the proposed method is presented in Algorithm 2.

5 RESULTS

The effectiveness of our approach in terms of both recon-
struction quality and computation complexity is highlighted
by a thorough experimental study, presented in this section.
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Algorithm 2: Two Stage Graph Spectral Processing.

Function: 3D Mesh denoising

Input : Triangle noisy mesh M corrupted by noise.

Output : Triangle denoising mesh.

/* Coarse reconstruction: cutting off
higher frequencies */

Divide M into s overlapped submeshes M using METIS

method described in [44] [45] ;

2 Use steps of Algorithm 1 ;

3 Recreate the whole smoothing mesh;

/+ Fine reconstruction: attenuating higher
frequencies */

Classify each face as feature or non-feature via Eq. (24) ;

Create weighted adjacency matrix A via Egs. (25)-(31) ;

Fine denoising of guided normals 1. via Eq. (32) ;

Update vertices via Egs. (33)-(34) ;

return Triangle denoising Mesh ;

[

@ g S Ul e

5.1 Experimental Setup

To provide an objective comparison between the tested
solutions, we follow the general pipeline of our Two Stage
Graph Spectral Processing (TSGSP) method described in
Section 4. In all the experiments we have used a PC Intel
core i7-2600 CPU @ 3.40GHz 3.70GHz, 10 GB RAM. The
main core of the algorithms is written in C++ and Matlab.

Datasets & Metrics

We have used a wide range of CAD and scanned 3D
models. More specifically, the experiments are carried out
with four different types of datasets. (a) Scanned models
[51] form Stanford dataset e.g. Stanford Bunny, (b) CAD
(computer-aided design) models [52] e.g. Fandisk model
which is provided courtesy of MPII by the AIM@SHAPE
shape Repository, (c) Real scanned noisy models from 3
different devices (Kinect v1, Kinect v2, Kinect Fusion) and
synthetic noise [9] and (d) Real scanned lungs affected by
staircase effect using MRI device [12].

The quality of the denoising results is evaluated using a
variety of different metrics that are shortly presented below:

e 0: represents the angle between the normal of the
ground truth face and the resulting face normals, av-
eraged over all faces.

o NMSVE (Normalized Mean Square Visual Error): has
been shown to correlate well with perceived distortion
by measuring the average error in the Laplacian and
Cartesian domains [53].

5.2 Coarse Denoising Step Evaluation

In this section we evaluate the benefits of the coarse de-
noising step in terms of both reconstruction quality and
execution time. In particular, we explicitly show that it could
be efficiently used by many SoA approaches for improving
their ability to deal with varying noise patterns.

Benefits of Orthogonal lterations

In order to apply the method in the most efficient way, we
have exhaustively investigated a wide range of parameters
that appear in Eq. (8) which are: i) the number of iterations
n, ii) the multiplication factor 3, where R® = (L - LT)?
and iii) the initialization U,,[0] for each submesh. Table 1

illustrates the impact of iterations and matrix multiplica-
tions in both reconstruction accuracy and execution time of
the proposed OI approach. As we expected, OI(f3) is faster
than OI(n) when n = 8 > 1, since a matrix multiplication
requires less computational time than performing one OI.
The multiplication factor significantly affects the iterations
required for convergence, while at the same time is much
more computational efficient and comes at a lower cost than
performing an orthonormalization step, which is required
in each OL

Armadillo Hand
SC1 [ SC2 | SC3 | SC4 SC1 SC2 SC3 SC4
n 0 1 2 3 0 1 2 3
B 8 4 3 2 6 3 2 2
t1 3.02 | 224 2.45 1.35 17.61 11.65 6.69 6.69
to 2.71 5.17 7.37 | 10.99 2341 | 42.04 | 59.20 | 73.30
tiot | 573 | 741 | 9.82 | 12.34 || 41.02 | 53.69 | 65.89 | 79.99

TABLE 1: Different configurations SC1-SC4 of n and § values
in order to attain an almost identical reconstruction accuracy
using the SVD and OI method. ¢1: required time for evaluating
R”, t,: required time for executing 7 iterations and tyor = t1+t2
(in seconds).

Table 2 shows how the initialization for each submesh
affects the convergence rate of the Ol approach. More specif-
ically, we consider three individual initialization scenarios:
(a) Semi-random Initialization using the sequence annotated
by the METIS segmentation, (b) Consistent initialization:
using always U,, [0] and (c) Sequential initialization: The
subspace of each submesh is initialized to the subspace of a
previously processed adjacent submesh.

Sphere Fandisk Tyra
Uplt — 1] t min 0 t min 0 t min 0
Random | 0.163 | 13.75 || 0.135 | 10.91 0.707 | 12.82
U,, [0] 0.162 | 13.81 0.134 | 1091 0.664 | 12.72
Adj. 0.165 | 13.8 0.149 11 0.720 | 12.83

TABLE 2: Execution time for different approach of Up,[i — 1]
initialization.

It can be easily noticed that the results are similar in terms
of both reconstruction quality and execution time. This is
attributed to the spatial coherence that arises when process-
ing small patches of dense 3D meshes, resulting in similar
connectivities, which is also evident from the subspaces of
the matrices R[i]. Due to this effect the OI based algorithm
converges efficiently regardless of the initialization scheme.
This is a very useful observation which can be effectively
exploited in a parallel implementation set up.

Benefits of Dynamic Scheme for the Optimal m Identification

Fig. 5 presents (i) the ideal number k — m of eigenvectors
that need to be removed for minimizing the angle 0, (ii)
the estimated subspace size m using the empirical rule of
Eq. (18) and (iii) the estimated subspace size m using MBL
algorithm. In Fig. 6 we illustrate the accuracy of the noise
level estimation sub-module used for the MBL initialization.
For the experimental results we adopted the following pro-
cess. Firstly, a known Gaussian noise N/ (0, 0,), using a wide
range of noise variances o, = [0.1,--- , 1] with 0.1 step, is
added to each one of the vertex coordinated individually.
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Fig. 6: Level of noise estimation for different noisy 3D meshes.

Although, there is a small deviation depending on the
input model, it constitutes an ideal initial condition for the
Bayesian learning step. In Fig. 7 we present an example of
applying MBL algorithm in a specific submesh 7 = 10 for
identifying the optimal values of m, and o using different
level of noise in each case (¢, = 0.2,0, = 0.5,0, = 0.7
correspondingly).

Benefits of Coarse Denoising as a Pre-Processing Step

We would like to emphasize that the coarse denoising
method can be considered as an out-of-core method that
could be employed by any other SoA method as a pre-
processing step, optimizing both its reconstruction quality
and its computational complexity. The reconstruction ben-
efits can be easily identified by inspecting Fig. 8 which
presents denoising results of SoA methods (first row) and
the corresponding results after using the proposed coarse
denoising approach as a pre-processing step (second row).
Similarly, Fig. 8 shows the effects of the coarse denoising
step in the execution time of the Guided normal approach
[8]. By inspecting the number of iterations required for
achieving a given reconstruction quality, the execution times
of the coarse denoising step and of fine denoising iterations,
it can be noted that the coarse denoising step accelerates
the convergence rate of the fine denoising approach, thus
significantly improving the total execution time of the whole
denoising process.

5.3 Feature-Aware Fine Denoising Evaluation

For the evaluation we use a wide range of alternative
approaches for selecting the best neighborhoods and the
corresponding adjacency weights. More specifically, in Fig.
9 we present the original noisy mesh, the fine denoising
output after using the k-nn patch directly without searching

10x "m_'p
[ Inmalmmx[O]:GB

Optimal Mooy = 75

2
o0y = 0-52007
o3,
1 1 A 1
60 70 80
2
”10x
|Iv U v 2

Il
10x P 10x 2

@ Initial mwx[O] =59

106 m

Optimal Moy = 53
2
Tlox = 0.75947

® (4
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0 10 20 30 40 50 60

Length of M ox

Fig. 7: Optimal values of m10, and o.10, using MBL.

for the ideal area as described in Section 4, the results after
using Gaussian weights and finally the results after using
our proposed approach.

5.4 Comparisons Between TSGSP and SoA

In this section we present the results of our TSGSP method
as compared to other SoA approaches. More specifically,
we present an objective comparison between the tested
solutions and the pipeline described in Section 4.

Computational Complexity Benefits

To highlight the superior performance of the proposed
scheme in terms of computational complexity, we provide
in Table 3 the execution times of the TSGSP approach
as compared to the Guided normal algorithm [8], which
is the dominant among the SoA competitors. Note that
while both approaches, are based on a sequential update
of the face normals and vertices, TSGSP results in lower
execution times (68x-87x). This reduction is attributed to
the application of the coarse denoising approach that filters
out the high frequency components, accelerating the con-
vergence speed of the necessary corrections/adjustments of
the vertex positions. Moreover, it should be also noted that
the selection of the ideal neighborhood for each face normal
correction is also a crucial parameter that contributes to the
reduction of the execution time required for readjusting the
mesh faces/vertices during a fine processing step.

Results Assuming Complex Noise Patterns & Geometries

In Figs. 10-13, we present the denoised results of our method
in comparison with other SoA methods. For the experiments

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2802926, IEEE

Transactions on Visualization and Computer Graphics

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

x
1 N
-

(a)

—— Uy =30
4T U, =40
1 1 —— U, =30 with preprocessing
| - -44.5 1 Uier = 40 with preprocessing
\ g sl "\*\”—*
X w —
- g
V 0
S 455
z
ﬂ 1 ‘ i
-46.5
5 10 15 20 25 30 35 40 45 50
(e) i i

—

Number of Bilateral Iterations

Fig. 8: [Left] Reconstruction results with (2nd row) and w1th0ut (1st row) preprocessing step using the following approaches: (a)
[28], (b) [29], (c) [31], (d) [32], (e) [32], (f) [10], (g) [8]. [Right] Coarse denoising step increases the reconstruction quality. In other
words, less iterations are required in order to achieve the same quality (Fandisk).

Guided mesh normal filtering TSGSP
Model Kiter | tkjper | Witer | tujeer N tN tot tea tfd | Uiter | tujer | N tN teot
Block 0=0.4 40 200.31 30 21.88 17550 | 10.63 | 232.82 10.17 | 32.59 20 14.78 | 4457 | 2.68 | 60.32-74%
Twelve 0=0.5 75 273.07 20 7.64 9216 8.11 289.55 4.72 18.67 30 11.54 | 2297 | 231 | 37.24-87%
Sphere 0=0.3 30 106.91 20 17.60 | 20882 6.53 131.05 12.27 | 18.10 12 10.44 | 3635 | 1.22 | 42.03 -68%
Fandisk 0=0.7 50 257.13 20 10.61 12946 | 12.19 | 279.94 10.75 | 44.82 20 10.82 | 4464 | 434 | 70.73 -74%

TABLE 3: Time performance for different models. ki;. presents the number of iterations for bilateral filtering normal executed in

tk;sors Uiter 1S the number of iterations for vertex update executed in t,,

and N is the number of points searched for finding ideal

iter

patches executed in ¢y, t.q corresponds to execution time for coarse denoising, feature extraction and level noise estimation, ¢y,
represents the execution time for fine denoising and ¢, is the total time expressed in seconds. The evaluation has been conducted
by using the following models (V/F): Block (8771/17550), Twelve (4610/9216), Sphere (10443 /20882), Fandisk (6475/12946).
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Fig. 9: Results after using a wide range of alternative ap-
proaches for selecting the best neighborhoods and the corre-
sponding adjacency weights.

two different models are used which are captured by three
different scanning devices (Kinect v1, Kinect-fusion, Kinect
v2) as well as synthetic noise. Additionally, in each figure
the average angular difference (in degrees) is presented. The
results shows that the proposed scheme outperforms the
other SoA with respect to reconstruction quality.

Heatmap visualizations Fig. 14 also highlight the distor-
tion alleviation when both components (coarse and fine) are
used. The staircase effect, caused by MRI and CT devices
[12], is a type of noise that requires more sophisticated
schemes that differentiate staircase noise effects from sur-

face features. In contrast to other methods, which often
mistakenly consider the staircase effect as a mesh feature,
our method effectively handles this case. The features of the
mesh are successfully identified due to the application of the
coarse-denoising step. By inspecting Fig. 15 we see that most
of the SoA approaches mistakenly consider the staircase
effect as geometric features that need to be preserved. The
superiority of our method as compared to the presented
SoA approaches is attributed to the application of the coarse
step that smooths the staircase effects and allows a more
accurate identification of the true features. The heatmap
visualization of the reconstruction error shows that the spe-
cialized method of [12] outperforms our approach, however,
it should be noted that it creates irrational smoothness in the
whole surface as well as a shrinking of the object, destroying
also true features on the surface.

Data Driven Initialization Strategy

One major advantage of data-driven methods, e.g., [9] is
their computational efficiency in online denoising cases.
This attribute makes them capable of handling problems
with tight timing restrictions in real time. However, it
should be noted that for the case of varying or unknown
noise patterns that are not included in the trainning dataset
re-trainning is required that is essentially a very slow and
computationally costly process. More specifically, in the
approach of [9] while the execution time is only 1 second,
the training process, using a dataset of 63 models, takes
more than 720 seconds.

In this section, we study the performance of the pro-
posed scheme when using some fixed pre-identified initial-
ization parameters. Those parameters have been estimated
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Fig. 10: Kinect v1. The 6 metric is: (a) [32] 12.98°, (b) [8] 10.38°, (c) [10] 10.34°, (d) [9] 8.91°, (e) TSGSP 7.98° (cone).
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Fig. 11: Kinect-fusion. The 6 metric is: (a) [32] 9.39", (b) [8] 7.90°, (c) [10] 7.650, (d) [9] 7.790, (e) TSGSP 7‘59O (boy). (a) 9.13°, (b)
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Fig. 12: Kinect v2. The 6 metric is: (a) [32] 8.500, (b) [8] 7.620, (c) [10] 7.74°, (d) [9] 7.680, (e) TSGSP 7.41° (cone).

using a training set of known models and they were kept
fixed for a testing set of 3D objects. This extension is based
on the observation that noisy objects, created by the same
scanner devices or affected by the same type of synthetic
noise, require similar initialization strategies. For the exper-
iments we used the training set, affected by synthetic noise,
provided by the benchmark of [9]. The learning process
showed that besides the level of noise, geometric charac-
teristics of the 3D object is also another factor which affects
the values of the parameters. For this reason we divided
the training set into two new sets (fine geometric & CAD
models). This separation comes from the observation that
fine geometric models need less iterations and higher value
of o, since they contain small scale geometric features. On
the other hand, the noise in CAD models is more easily dis-
tinguishable in flat areas stressing the need for more vertex
update iterations with lower o,. The identified parameters
are then used for evaluating the accuracy of the proposed
scheme on two independent test sets consisting again by
scanned and CAD models individually. The reconstruction
accuracy is evaluated using the average angle difference
between the normals of the original and the reconstructed
object and the results are presented in Table 4. By inspecting
this table it can be observed that the proposed scheme
outperforms the method in [9] in 50% of the cases. Therefore,
we conclude that our approach can be trained to work
as a parameter free method. However, a training set of
objects classified in different categories (e.g., according to
the geometric details or the scanning device) is required in

order to identify a fixed set of parameters for each class of
objects.

Time Varying Noise Effects

The proposed scheme is capable of identifying both the level
of noise and the spectral subspace where the features lie
using a coarse step, while in the fine it identifies features and
flat areas dealing efficiently with the aforementioned chal-
lenges and achieving at the same time, fast execution times.
To investigate the performance of the proposed approach as
compared to the SoA methods, we provide a study, where
different parts of a 3D model have been affected by different
noise patterns. For this experiment we used the dodecahe-
dron model. We initially partitioned the 3D object in twelve
different segments (corresponding to each side) and then we
apply twelve different noise patterns generated assuming
variable noise levels in each segment. The results of the
proposed coarse to fine approach together with the other
SoA approaches are presented in Fig. 16. The superiority
of our method is more obvious when higher level of noise
appears in each area. In this case, all the other methods
fail to mitigate the noise effects, creating deformations and
destroying geometric features.

6 DISCUSSION AND CONCLUSIONS

In this paper, we have introduced a novel approach to sup-
port fast and efficient mesh denoising of both CAD and fine
geometric 3D objects assuming a wide range of noise power
densities. Our main goal was to simultaneously maintain
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Fig. 13: (a) Original 3D model, (b) Noisy model, (c) Guided Normals Bilateral [8], (d) Cascaded Normal Regression [9], (e)
parameter-free TSGSP, (f) TSGSP using ideal parameters.
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Fig. 14: (a) Noisy models and Heatmap visualization of (b) Non Iterative [29], (c) Fast & Effective [31], (d) Bilateral Normal [32],
(e) Lo min [10], (f) Guided Normal Bilateral [8], (g) TSGSP.

three, commonly conflicting, criteria: fast processing times, problems.

plausible reconstruction results and out-of-core behavior.  ii) The fine denoising step requires the initialization of
The proposed two stage graph spectral processing (TSGSP) some parameters, such as the variance o, the factor
approach is composed of the coarse and fine denoising ¢ and the number of iteration u;.,. However, these
modules. However, despite the effectiveness demonstrated parameters can be identified accurately using a data
by a variety of presented experiments and metrics there are driven approach. In this case, we follow similar ini-
still some open issues awaiting investigation: tialization strategies for group of objects with similar

characteristics, which are determined by the scanning
device and the existence of sharp or small scale geo-
metric features.

iii) The presented approaches cannot be used for denoising

i) Recovering the structure of large scale scenes is without
a doubt a stimulating scientific challenge. Several appli-
cations like tele-immersion, real-time surface mapping

and tracking, 'aero—r‘ecc')nstructi(.)n .for disast:er manage- 3D models where poorly-shaped triangles are formed
ment, have tight timing restrictions making an on- by vertices mostly lying on sharp edges, as presented in
line reconstruction system indispensable. Therefore, we Fig. 17. However, all the SoA approaches also fail, thus

foresee a need to extend the presented approaches into

- Ltoe ' rendering this problem as a challenge for the future.
an online-setting, in order to support such challenging
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Fig. 15: (a) Original scanned model affected by staircase effect, (b) bilateral [28], (c) fast and effective [31], (d) bilateral normal
[32], (e) TSGSP, (f) Staircase-Aware Smoothing [12], (Lungs model).
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Fig. 16: Denosing results of Twelve model which have been affected by different noise patterns in each of its twelve sides. (a)
Bilateral [28], (b) Non Iterative [29], (c) Fast & Effective [31], (d) Bilateral Normal [32], () Lo min [10], (f) Guided Normal Bilateral
[8], (g) TSGSP. Sides affected by higher levels of noise.

Name of Cascaded Set of iv) Finally, thre.shol.d p of Eq. (23) should be carefully
Model Our Method Normal Parameters selected taking into account large scale features only,
Regression [9] when the geometry of the processed model consist of
Block 2.3414° 2.3436° Set 2 both large and small scale features.
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Eight 6.0995° 5.8017° Set 1 S ) . - d
Eros100K 8.0866° 8.3486° Set 1 " \f_\ ‘7
Fertility 3.8456° 3.6379° Set 1 &?‘/%
Genus3 2.4576° 2.5751° Set 1
Joint 1.6837° 1.697° Set 2 Fig. 17: TSGSP fails to perfectly denoise models where poorly-
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Part Lp 2.5046° 2.5422° Set 2
Plane Sphere 1.3816° 1.2606° Set 2 ACKNOWLEDGMENTS
Pulley 4.763° 4.5899° Set 1
Pyramid 0.9446° 0.9912° Set 2 This work has been supported by the H2020-PHC-2014 RIA
Rolling stage 4.5187° 4.1767° Set 1 project MyAirCoach (grant no. 643607).
Screwdriver 3.7645° 2.9652° Set 1
Smooth feature 0.9847° 1.0085° Set 2
Sphere 2.5285° 2.3076° Set 2 REFERENCES
o o
Trii;rtlasrtar 163?2150 41162(()526° gg% [1] M. Roberts, D. Dey, A. Tr}lclng, S. N. Sinha, .S. Shah, A.. Kapqor,
Turbine Lp 370950 5 77070 Set 2 P. Hanrahan, and N. Joshi, “Submodular trajectory optimization

for aerial 3d scanning,” CoRR, vol. abs/1705.00703, 2017.
TABLE 4: Average angle 6 using fixed pre-identified parame- [2] B.Hepp, M. Nieiner, and O. Hilliges, “Plan3d: Viewpoint and tra-

ters on the different models included in the test set. jectory optimization for aerial multi-view stereo reconstruction,”
CoRR, vol. abs/1705.09314, 2017.

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2802926, IEEE

Transactions on Visualization and Computer Graphics

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

(3]

(4]

(5]

6]

(71

(8]
(9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

M. Klingensmith, S. S. Sirinivasa, and M. Kaess, “Articulated robot
motion for simultaneous localization and mapping (arm-slam),”
IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 1156-1163,
July 2016.

A. Anwer, S. S. A. Ali, A. Khan, and F. Mériaudeau, “Underwater
3-d scene reconstruction using kinect v2 based on physical models
for refraction and time of flight correction,” IEEE Access, vol. 5, pp.
15960-15970, 2017.

X. Fan, L. Zhang, B. Brown, and S. Rusinkiewicz, “Automated
view and path planning for scalable multi-object 3D scanning,”
ACM Transactions on Graphics (Proc. SIGGRAPH Asia), vol. 35, no. 6,
Nov. 2016.

M. Giorgini, F. Barbieri, and J. Aleotti, “Ground segmentation
from large-scale terrestrial laser scanner data of industrial envi-
ronments,” IEEE Robotics and Automation Letters, vol. 2, no. 4, pp.
1948-1955, Oct 2017.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade,
and D. Fulk, “The Digital Michelangelo Project: 3D scanning of
large statues,” in Proceedings of ACM SIGGRAPH 2000, Jul. 2000,
pp. 131-144.

W. Zhang, B. Deng, J. Zhang, S. Bouaziz, and L. Liu, “Guided mesh
normal filtering,” Pacific Graphics, vol. 34, no. 7, 2015.

P-S. Wang, Y. Liu, and X. Tong, “Mesh denoising via cascaded
normal regression,” ACM Trans. Graph., vol. 35, no. 6, pp. 232:1-
232:12, Nov. 2016.

L. He and S. Schaefer, “Mesh denoising via lp minimization,” ACM
Trans. Graph, vol. 32, no. 4, p. 64:164:8, 2013.

“Noise analysis and synthesis for 3D laser depth scanners,” Graph-
ical Models, vol. 71, no. 2, pp. 34 — 48, 2009, iEEE International
Conference on Shape Modeling and Applications 2008.

T. Moench, S. Adler, and B. Preim, “Staircase-Aware Smoothing
of Medical Surface Meshes,” in Eurographics Workshop on Visual
Computing for Biology and Medicine. The Eurographics, 2010.

D. A. Field, “Laplacian smoothing and Delaunay triangulations,”
Commun. Appl. Numer. Methods, vol. 4, no. 6, p. 709712, 1988.

G. Taubin, “A signal processing approach to fair surface design,”
ACM SIGGRAPH 95, pp. 351-358, 1995.

M. Desbrun, M. Meyer, P. Schroder, and A. H. Barr, “Implicit
fairing of irregular meshes using diffusion and curvature flow,”
in Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques, ser. SSIGGRAPH "99, 1999, pp. 317-324.
C. Gotsman, “On graph partitioning, spectral analysis, and digital
mesh processing,” in Shape Modeling International, 2003.  IEEE,
2003, pp. 165-171.

B. Lévy, “Laplace-beltrami eigenfunctions towards an algorithm
that” understands” geometry,” in Shape Modeling and Applications,
2006. SMI 2006. IEEE International Conference on. IEEE, 2006, pp.
13-13.

O. Sorkine, “Laplacian Mesh Processing,” in Eurographics 2005 -
State of the Art Reports, Y. Chrysanthou and M. Magnor, Eds. The
Eurographics Association, 2005.

H. Zhang, O. Van Kaick, and R. Dyer, “Spectral mesh processing,”
in Computer graphics forum, vol. 29, no. 6. Wiley Online Library,
2010, pp. 1865-1894.

B. Vallet and B. Levy, “Spectral Geometry Processing with Mani-
fold Harmonics,” Computer Graphics Forum, 2008.

G. Taubin, “Geometric Signal Processing on Polygonal Meshes,”
in Eurographics 2000 - STARs. Eurographics Association, 2000.

P. Comon and G. H. Golub, “Tracking a few extreme singular
values and vectors in signal processing,” Proceedings of the IEEE,
vol. 78, no. 8, pp. 1327-1343, Aug 1990.

Y. Saad, “Analysis of subspace iteration for eigenvalue problems
with evolving matrices,” SIAM Journal on Matrix Analysis and
Applications, vol. 37, no. 1, pp. 103-122, 2016.

K. Hildebrandt and K. Polthier, “Anisotropic Filtering of Non-
Linear Surface Features,” Computer Graphics Forum, 2004.

C. L. Bajaj and G. Xu, “Anisotropic diffusion of surfaces and
functions on surfaces,” ACM Trans. Graph., vol. 22, no. 1, pp. 4-
32, Jan. 2003.

S. Yoshizawa, A. Belyaev, and H.-P. Seidel, “Smoothing by exam-
ple: Mesh denoising by averaging with similarity-based weights,”
Proc. IEEE Conf. Shape Model. Appl, p. 9, 2006.

P-S. Wang, X.-M. Fu, Y. Liu, X. Tong, S.-L. Liu, and B. Guo,
“Rolling guidance normal filter for geometric processing,” ACM
Trans. Graph., vol. 34, no. 6, pp. 173:1-173:9, Oct. 2015.

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

(43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

S. Fleishman, I. Dror, and D. Cohen-Ori, “Bilateral mesh denois-
ing,” COMPUTER GRAPHICS.

T. R. Jones, F. Durand, and M. Desbrum, “Non-iterative, feature-
preserving mesh smoothing,” ACM Trans. Graph, vol. 22, no. 3, p.
943949, 2003.

J. Wang, X. Zhang, and Z. Yu, “A cascaded approach for feature-
preserving surface mesh denoising,” Comput. Aided Des., vol. 44,
no. 7, pp. 597-610, Jul. 2012.

X. Sun, P. L. Rosin, R. R. Martin, and F. C. Langbein, “Fast
and effective feature-preserving mesh denoising,” IEEE TRANS-
ACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,
vol. 13, no. 5, p. 925938, 2007.

Y. Zheng, H. Fu, O. K.-C. Au, and C.-L. Tai, “Bilateral normal
filtering for mesh denoising,” IEEE TRANSACTIONS ON VISU-
ALIZATION AND COMPUTER GRAPHICS.

Y. Shen and K. E. Barner, “Fuzzy vector median-based surface
smoothing,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 10, no. 3, pp. 252-265, May 2004.

M. Wei, J. Yu, W-M. Pang, ]J. Wang, J. Qin, L. Liu, and P.-A. Heng,
“Bi-normal filtering for mesh denoising.” IEEE Trans. Vis. Comput.
Graph., vol. 21, no. 1, pp. 43-55, 2015.

L. Zhu, M. Wei, J. Yu, W. Wang, J. Qin, and P-A. Heng, “Coarse-to-
fine normal filtering for feature-preserving mesh denoising based
on isotropic subneighborhoods.” Comput. Graph. Forum, vol. 32,
no. 7, pp. 371-380, 2013.

H. Zhang, C. Wu, ]J. Zhang, and ]. Deng, “Variational mesh
denoising using total variation and piecewise constant function
space,” IEEE Transactions on Visualization and Computer Graphics,
vol. 21, no. 7, pp. 873-886, July 2015.

D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi, “Effi-
ciently combining positions and normals for precise 3D geometry,”
ACM Trans. Graph, vol. 24, no. 3, pp. 536-543, 2005.

J. R. DIEBEL and S. THRUN, “A bayesian method for probable
surface reconstruction and decimation,” ACM Trans. Graph, vol. 25,
no. 1, pp. 39-59, 2006.

M. Wei, L. Liang, W. M. Pang, J]. Wang, W. Li, and H. Wu, “Tensor
voting guided mesh denoising,” IEEE Transactions on Automation
Science and Engineering, vol. 14, no. 2, pp. 931-945, April 2017.

X. Lu, Z. Deng, and W. Chen, “A robust scheme for feature-
preserving mesh denoising,” IEEE Transactions on Visualization and
Computer Graphics, vol. 22, no. 3, pp. 1181-1194, 2016.

H. Fan, Y. Yu, and Q. Peng, “Robust feature-preserving mesh de-
noising based on consistent subneighborhoods,” IEEE Transactions
on Visualization and Computer Graphics, vol. 16, no. 2, pp. 312-324,
2010.

R. Wang, Z. Yang, L. Liu, J. Deng, and F. Chen, “Decoupling noises
and features via weighted l1-analysis compressed sensing,” ACM
Transactions on Graphics, vol. 33, no. 2, pp. Article 18: 1-12, 2014.

F. Cayre, P. Rondao-Alface, F. Schmitt, B. Macq, and H. Matre,
“Application of spectral decomposition to compression and wa-
termarking of 3D triangle meshgeometry,” Signal Processing: Image
Communication, vol. 18, no. 4, pp. 309-319, 2003.

A. Lalos, I. Nikolas, E. Vlachos, and K. Moustakas, “Compressed
sensing for efficient encoding of dense 3D meshes using model
based bayesian learning,” IEEE Transactions on Multimedia, vol. PP,
no. 99, pp. 1-1, 2016.

A.S. Lalos, I. Nikolas, and K. Moustakas, “Sparse coding of dense
3D meshes in mobile cloud applications,” in 2015 IEEE Interna-
tional Symposium on Signal Processing and Information Technology
(ISSPIT), 2015, pp. 403-408.

P. Zhang, “Iterative methods for computing eigenvalues and ex-
ponentials of large matrices,” 2009.

Z. Karni and C. Gotsman, “Spectral compression of mesh ge-
ometry,” in Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SSGGRAPH 00, 2000, pp.
279-286.

G. Lavoué, “A local roughness measure for 3D meshes and its
application to visual masking,” ACM Trans. Appl. Percept., vol. 5,
no. 4, pp. 21:1-21:23, Feb. 2009.

X. Liu, M. Tanakai, and M. Okutomi, “Single-image noise level es-
timation for blind denoising,” IEEE TRANSACTIONS ON IMAGE
PROCESSING, vol. 22, no. 12, 2013.

M. Svub, P. Krsek, M. Spanel, V. Stancl, R. Barton, and J. Vadura,
“Feature preserving mesh smoothing algorithm based on local
normal covariance,” p. FULL Papers, 2010.

“The Stanford 3D Scanning
http://graphics.stanford.edu/data/3Dscanrep/.

Repository,”



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2802926, IEEE

Transactions on Visualization and Computer Graphics

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 15

[52] © MPI by the AIM@SHAPE shape
http:/ /visionair.ge.imati.cnr.it/ ontologies /shapes/.

[53] Z. Karni and C. Gotsman, “Compression of soft-body animation
sequences,” Computers Graphics, vol. 28, pp. 25-34, 2004.

Repository,”

Gerasimos Arvanitis is a Ph.D. candidate at
the Department of Electrical and Computer En-
gineering Department, University of Patras, Pa-
tras, Greece. His main research interest is signal
processing and especially image and 3D mesh
processing.

Aris S. Lalos Electrical and Computer Engi-
neering Department, University of Patras, Pa-
tras, Greece. Aris S. Lalos received the Ph.D.
degree in signal processing for wireless com-
munications from the Computer Engineering and
Informatics Department (CEID), School of Engi-
neering (SE), University of Patras (UoP), Rio-
Patras, Greece, in 2010. He was a Research
Fellow at the Signal Processing and Communi-
cations Laboratory, CEID, SE, UoP, Rio-Patras,
Greece, from 2005 to 2010, with the Signal The-
ory and Communications (TSC) Department, the Technical University
of Catalonia (UPC), from 2012 to 2015 and with the Visualization and
Virtual Reality Group, University of Patras from 2015 until today. He is an
author of 47 research papers in international journals (20), conferences
(24) and edited books (3).

Konstantinos Moustakas Electrical and Com-
puter Engineering Department, University of Pa-
tras, Patras, Greece. Konstantinos Moustakas
(MO07) received the Diploma and Ph.D. degrees
in electrical and computer engineering from
the Aristotle University of Thessaloniki, Thes-
saloniki, Greece, in 2003 and 2007, respec-
tively.From 2007 to 2011, he served as a Post-
Doctoral Research Fellow with the Information
Technologies Institute, Centre for Research and
Technology Hellas, Hellas, Greece. He is cur-
rently an Associate Professor with the Electrical and Computer Engi-
neering Department, University of Patras, Patras, Greece, and Head
of the Visualization and Virtual Reality Group, University of Patras.
He has authored or coauthored more than 120 papers in refereed
journals, edited books, and international conferences.Prof. Moustakas
is a Member of the IEEE Computer Society and Eurographics.

Nikos Fakotakis Prof. Nikos Fakotakis received
the B.Sc. degree from the University of London
(UK) in Electronics in 1978, the M.Sc. degree in
Electronics from the University of Wales (UK),
and the Ph.D. degree in Speech Processing from
the University of Patras, (Greece) in 1986. From
1986 to 1992 he was lecturer in the Electrical
and Computer Engineering Department of the
University of Patras, from 1992 to 1999 Assistant
Professor, from 2000 to 2003 he has been Asso-
ciate Professor and since 2003 he is Professor in
the area of Speech and Natural Language Processing. Prof. Fakotakis is
currently the Director of the Communication and Information Technology
Division of the Electrical and Computer Engineering Dept. (since 2005),
Director of the Wire Communications Laboratory (WCL) (since 2004),
and Head of the Atrtificial Intelligence Group. The results of the scientific
work conducted by Prof. Fakotakis or under his supervision has resulted
in over 400 scientific publications in internationally recognized journals
and conferences, which have been cited more than 3,000 times.

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



