
www.ietdl.org
Published in IET Computer Vision
Received on 30th September 2010
Revised on 11th April 2011
doi: 10.1049/iet-cvi.2010.0166

Special Issue: Future Trends in Biometric Processing

ISSN 1751-9632

Unobtrusive multi-modal biometric recognition
using activity-related signatures
A. Drosou1,2 G. Stavropoulos2 D. Ioannidis2 K. Moustakas2 D. Tzovaras2

1Department of Electrical Engineering, Imperial College London, London SW7 2AZ, UK
2Informatics and Telematics Institute, Hellas 57001, Thermi-Thessaloniki, Greece
E-mail: drosou@iti.gr

Abstract: The present study proposes a novel multimodal biometrics framework for identity recognition and verification
following the concept of the so called ‘on-the-move’ biometry, which sets as the final objective the non-stop authentication in
an unobtrusive manner. Gait, that forms the major modality of the scheme, is complemented by new dynamic biometric
signatures extracted from several activities performed by the user. Gait recognition is performed through a robust scheme that
is based on geometric descriptors of gait energy images and is able to compensate for undesired gait behaviour like walking
direction variations and stops. On the other hand, the biometric signatures, based on the user activities, are extracted by
tracking of three points of interest and are seen to provide a powerful auxiliary biometric trait. Finally, score level fusion is
performed and the experimental results illustrate that the proposed multimodal biometric scheme provides very promising
results in realistic application scenarios.
1 Introduction

Biometrics have recently gained significant attention from
researchers, while they have been rapidly developed for
various commercial applications ranging from surveillance
and access control against potential impostors [1] to medical
analysis purposes [2]. A number of approaches have been
described in the past attempting to fulfil the different
requirements of each application, such as reliability,
unobtrusiveness, permanence etc. Generally speaking,
biometric methods are categorised to physiological and
behavioural [3], depending on the type of used features.

On the one hand, physiological biometrics are based on
both biological measurements and inherent characteristics of
each individual. Fingerprint is a typical example of
physiological biometric traits that is widely used in law
enforcement for identifying criminals [4], whereas other
recent applications are based on iris- [5] or face-
identification [6]. Despite their high recognition
performance, they all demonstrate a very restricted
applicability to highly controlled environments.

On the other hand, behavioural biometrics are related to
specific actions and the way that each person executes
them. They can potentially allow the non-stop (on-the-
move) authentication or even identification in an
unobtrusive and transparent manner to the subject and
become part of an ambient intelligence (AmI) environment.
Behavioural biometrics are the newest technology in the
field biometrics and they have yet to be researched in detail.
Even if physiological biometrics are considered more robust
and reliable, behavioural biometrics have the inherent
advantage of being less obtrusive [3, 7].
IET Comput. Vis., 2011, Vol. 5, Iss. 6, pp. 367–379
doi: 10.1049/iet-cvi.2010.0166
Recent work and efforts on human recognition have shown
that human behaviour (e.g. extraction of facial dynamics
features [8]) and motion (e.g. human body shape dynamics
during gait [9]) provide the potential of continuous on-the-
move authentication, when considering activity-related
signals.

1.1 Related work

Regarding gait recognition, significant advances have been
lately achieved [9, 10]. Most of the recent gait analysis
methods can be divided into two categories of
complemental nature [11], the model-based and the feature-
based ones.

Model-based approaches study static and dynamic body
parameters of the human locomotion [12], like stride length,
stride speed and cadence [13]. A noise resistant method has
been presented in [14], whereby the model-based gait
signature is extracted by applying Fourier series and
temporal trait gathering techniques. In general, model-based
approaches [12–14] create models of the human body from
the input gait sequences. Previous work on these
approaches has shown that they can guarantee good degrees
of view- and scale-invariance. However, experimental
evaluation in larger, publicly available databases is still
required, to compare their performance to that of feature-
based methods.

On the contrary, feature-based techniques do not rely on
the assumption of any specific model of the human body
for gait analysis. They usually employ simple methods,
such as temporal correlation, linear time normalisation [15],
full volumetric correlation on partitioned silhouette frames
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[16] and dynamic time warping (DTW) [17]. In [16], the
extraction of features was performed on whole silhouettes;
in [10], an angular transform was applied on silhouette
sequences, whereas in [18, 19] gait recognition based on
hidden Markov models (HMM).

Contrary to the fronto-parallel view assumption or other
view dependent approaches like [20], some recent
approaches deal with non-canonical view gait recognition,
or view-invariant recognition of gait sequences, including
model-based schemes with self-camera calibration [21].
Similarly, view transformations based on planar silhouette
approximation are presented in [22] while tracking of body
parts’ trajectories are studied in [23] that can be also used
to reconstruct the articulated full body motion [24].

Extending the concept of behavioural biometrics, ‘reach
and interact’ biometrics can also been thought as a
specialisation of activity related biometrics [25]. In this
concept, an interesting biometric characteristic can be the
user’s response to specific stimuli within the framework of
an AmI environment.

Such an approach of using biometric traits from everyday
activities for biometric authentication purposes has been
presented in [26]. Apparently, the use of motion trajectories
towards biometric recognition/authentication exhibited
significant potential towards unobtrusive user authentication
[27, 28].

It is a common place that the combination of more
biometric traits of the same identity not only improves the
recognition performance of the biometric systems, but also
provides reduced discrimination to people, whose
biometrics cannot be recorded well (i.e. owing to certain
disabilities etc.). In particular, multimodal biometric
systems, that capture a number of unrelated biometrics
indicators, are seen to have several advantages over
unimodal systems. Specifically, they are much more
invulnerable to fraudulent technologies, since multiple
biometric characteristics are more likely to resist to spoof
attacks than a single one [29].

In this respect, a lot of work has been carried out in the last
decade by the scientific community on multimodal biometrics.
Recent research activities in multimodal biometrics evaluate
the use of gait as a promising stand alone biometric modality
or even in combination with other complimentary modalities
[30] like face. A gait ‘on-the-move’ recognition system has
been proposed in [31], whereby gait traits have been
combined with face recognition in a controlled environment
with fixed cameras. Other multimodal approaches have
combined face images and speech signals [32, 33], while
face and fingerprint have been combined [34]. In a similar
manner, soft biometrics is fused with other biometrics such
as face recognition [35] and fingerprint [36].

1.2 Contribution

The present paper proposes a novel scheme for the integration
of two activity-related traits in a multimodal biometric
recognition system, using a score level fusion of the
individual modalities. The selected modalities are chosen so
as to satisfy the unobtrusiveness constraints of the framework.

The novelty aspects introduced within the current work lie
in the following issues. First, it is the first time that a
multimodal biometric system is totally based on dynamic
biometric traits that provide fully unobtrusive, on-the-move
recognition, since nor are any sensors or markers attached
to the users, neither are they asked to undergo any special
recognition procedure, other than they would have normally
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been doing. Last but not least, the proposed framework
significantly provides added value in terms of invariance
with respect to the environment, since no constraints in the
users’ movements, such as specific standing position or
continuous walking on a fixed line, are set.

Regarding the gait recognition module, a feature-based
recognition system is proposed that can handle realistic
events, such as user stops and random walking paths. Thus,
the gait system can be adopted for environments, where the
user can freely move within the working space and perform
everyday activities.

Further, the proposed activity related traits are associated
with activities including reaching and interacting with
objects. This concept is based on the assumption that each
user has a characteristic way of reaching and interacting
with objects, while performing specific activities [37]. The
position of the body, and the relative movement of the head
and the palms with respect to the object are analysed
towards the extraction of unique signatures of dynamic
nature, that form a reliable biometric signal for
authentication, since it is more difficult to imitate one’s
behaviour during time than falsify a static biometric pattern
once (e.g. fingerprint). The problem of small variances in
the interaction setting, which may be introduced by the
arbitrary position of the environmental objects with respect
to the user at each trial is handled via a spatial warping
method, which compensates for all small displacements of
the environmental objects. Finally, fusion that is optimally
parameterised by a genetic algorithm (GA) is applied at the
score level.

Among others, the current work utilises the concept of the
so-called ‘on-the-move’ biometry [38], which sets as the final
objective the non-stop authentication in a very unobtrusive
and transparent manner, where the user is not requested to
perform any special action.

2 Overview of the proposed framework

In the current framework, a bi-modal system is presented that
efficiently manages to fuse complementary information from
two uncorrelated activity related traits.

2.1 Scenario

The application scenario expects that the user walks along a
corridor in arbitrary walking paths, as shown in Fig. 1. In
the middle of the path, there exists a control panel, where
the user is supposed to stop, to insert his authorisation card
and to type his personal pin. Then, the user continues his
way to the door at the other end of the corridor. The whole
scene is constantly recorded by two stereoscopic cameras,
as shown in Fig. 1.

2.2 Proposed approach

The architecture of the proposed biometric recognition
framework is illustrated in Fig. 2. Initially, the moving
silhouettes are extracted from the captured gait image
sequence, the shadows are removed and the gait cycle is
estimated using state-of-the-art (SoA) algorithms [9, 39].
Using a stereoscopic camera, those frames in the sequence
are initially detected, whereby the user is not walking, and
then removed from those where the user is walking. Then
the visual hull of the moving silhouette is extracted using
disparity estimation. Once view normalisation is applied by
rotating the silhouette, the 3D reconstructed silhouettes are
IET Comput. Vis., 2011, Vol. 5, Iss. 6, pp. 367–379
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Fig. 2 Architecture of the proposed gait recognition framework

Fig. 1 Scenario setting
denoised via spatiotemporal filtering, to improve their quality.
Finally, two novel geometric descriptors are extracted based
on the sequence gait energy image (GEI).

In parallel, the user’s activities are captured, and after
tracking only specific points of interest, the extracted
trajectories are post-processed, so as to filter out tracking
errors, to smooth and homogenise them in terms of vector
length. Finally, after they have been warped-normalised to a
common reference, they are used as input to a HMM
algorithm, either for training or for classification.

Moreover, a linear fusion mechanism is proposed, so as to
perform score-level fusion of the two biometric traits
incorporated. The optimal weights are selected utilising a
GA instead of a typical Bayesian classifier owing to the
lack of the knowledge of the distribution of the estimated
distances. In the following section, the individual modules
of the proposed framework are described in detail.

3 Gait recognition

A robust gait recognition framework, that employs novel
methods for denoising and post-processing the gait
silhouette sequences, is proposed in the context of the
proposed framework. As of today, most of the automated
gait recognition systems cope with various gait scenarios
considering changes either in the subject appearance (e.g.
carrying an object, clothing etc.) or in other covariate
factors, such as time or view angles between the camera
and the moving subject. However, in more complex
environments (i.e. security control rooms, workplace
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environments with authorised employees, such as nuclear
plant personnel etc.), there is obvious need for continuous
gait recognition systems that can handle difficult scenarios,
such as sudden subject stops and engagement in various
everyday activities. For these cases, online estimation of the
gait direction with respect to the observing camera local
coordinate system is needed. In the following paragraphs,
the proposed event-based recognition approach is presented
that can also compensate for significant variations in the
walking direction between the testing and the stored
sequences.

3.1 Detection of stops in a gait silhouette sequence

Initially, the walking human binary silhouette is extracted as
described in [9]. Let Ii denote the ith binary human
silhouette (second row in Fig. 3). To detect the stops during
a gait sequence, motion estimation through the calculation
of a motion history image (MHI) [40] is performed in the
silhouette image sequence. Motion history template Mt at
time instance t is estimated by counting the number of non-
zero pixels in the difference image D(I ) of two sequential
silhouette frames (Ii,Ii21), as indicated by (1).

Mt(x, y) = b, if D(I(x, y)) = 1
max(0, Mt−1(x, y) − 1), otherwise

{

(1)

where in the context of the proposed framework the value
of b is experimentally chosen to be b ¼ 2.
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Fig. 3 First row: the user walks along the corridor, makes a short stop (two frames in the middle) and walks on – second row: silhouette
extraction for the corresponding frames – third row: MHI of two sequential silhouette images

Area of interest is restricted to the lower 25% of the image height. The upper region which covers 10% of the image, is considered to include the head, which is
used for the estimation of the walking angle
The recording phase starts with the detection of silhouette
motion in the scene that is when the motion indicator function
is over a fixed threshold 11

fmotion =
∑Nx

i=0

∑Ny

j=0

Mt . 11 (2)

whereby Nx and Ny are the resolution dimensions of the image
Mt and 11 the noise threshold of a non-motion image.
Similarly, stops in the user’s walking are detected, when the
motion indicator fmotion regarding the lower 25% of
the silhouette image height – the part of the legs below the
knees [41] – falls below 12 (third row in Fig. 3). The
values of both 11 and 12 have been experimentally defined.

Once the stop and (re)start frames are detected, the whole
gait cycles that include stop frames are removed from the
recorded sequence. Thus, a new set of silhouette sequence Ĩ
is derived. In the following, the gait periods are extracted,
as described in [9], and the gait cycles indexes are
estimated accordingly.

3.2 Walking angle estimation and compensation

Let the term ‘gallery’ refer to the set of reference sequences,
whereas the term ‘probe’ sequence stands for the test
sequences to be verified or identified. As reported in the
literature, the gait recognition systems achieve high
recognition rates when the gallery and the probe sequences
demonstrate similar walking angles [16], with respect to the
observing camera local coordinate system. On the contrary,
in cases whereby people walk with arbitrary view angles or
different model-based types of angle transformations are
applied [42]. However, the accuracy of angle view
transformations at model-based approaches relies on small
angle variations that are easily affected by slightly noisy
images.

Thus, a novel feature-based method is introduced within
the proposed framework that applies, prior to the feature
extraction phase, 3D reconstruction on the silhouette itself,
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encoding at the same time shape information about the
user’s body. Specifically, range data are utilised for the
compensation of angular variation in the walking direction.

The first step is to estimate the relative walking angle. The
walking direction with respect to the camera (Fig. 4) can be
estimated in a straight forward manner under the
assumption of straight gait within each gait cycle. Given
that the head of the silhouette image can be trivially
detected within the highest part of the silhouette (Fig. 3),
the gait direction v1 in the 3D space can be explicitly
estimated from the position of the subject’s head in the first
h0 and last frame hL of the respective gait cycle
v1 ¼ h0 2 hL. It should clarified that the variance of the
walking direction within the same cycle is very rare in
practice and thus, it is not taken into consideration in the
current context.

Thus, the walking angle, which is considered constant
through each gait cycle, is calculated using the equation
below

q = arccos
v1†v2

|v1||v2|

( )
(3)

Fig. 4 Walking angle determination is calculated by the across
of the inner product of the walking direction vector and the
parallel to image plane vector
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where v1 denotes the walking direction vector and v2 the
parallel to the image plane vector.

After estimating the walking angle, the silhouettes are
rotated, so as to register to the fronto-parallel view. This is
achieved by extracting the 3D coordinates of each silhouette
pixel, using the disparity data from the stereoscopic camera.
This way, a 3D cloud of points pi is generated and their
rotation is performed as follows

p̃i = pi ·
cos(q) sin(q) 0
−sin(q) cos(q) 0

0 0 1

⎡
⎣

⎤
⎦ (4)

The points p̃i of the rotated point cloud are now reprojected on
the camera to create a new silhouette. The gait features are
then extracted from the new set of silhouettes I′.

Despite the notable simplicity of (4), its direct application
in the generation of the virtual view includes some inherent
problems, that is the reconstructed point clouds could
generate non-consistent surfaces, including holes and non-
realistic edges, when projected on new virtual views
(Fig. 5c). Figs. 5a and b depict the input and the depth
silhouette of the user.

Therefore in the proposed framework a 3D surface is
initially formed from the 3D point cloud, so as to generate
a consistent surface and silhouette image in the synthesised
virtual view (Fig. 5d). The surface is created using only a
subset of the points of the image, so as to reduce the
redundancy and size of the triangulated surface to be
generated. Then, the silhouette for a particular view is
generated by re-projecting it using the Z-buffering principle
so as to rapidly perform depth culling in the new rendered
image.

At this point, it should be noted that the acceptable changes
Du in the user’s waking angle are restricted within a range
2208 ≤ Du ≤ 208 with respect to the front parallel view.
This restriction is imposed by both the relatively coarse
precision in the depth information provided by the
stereoscopic camera, but also by the fact that for wider
angle changes significant part of the user’s body is
occluded. In the same respect, it has been observed that the
average gait cycle direction never exceeded an angle u of
308. Thus, whenever u ≥ 208 the corresponding gait cycle
was discarded.

3.3 Signature extraction and matching

The feature extraction process of the gait sequences is based
on the radial integration transformation (RIT) and the
Krawtchouk moments (KRM) [9]. These two features have

Fig. 5 Several types of extracted silhouette images

a Original silhouette
b Depth image of the silhouette
c Rotated silhouette
d Rotated silhouette after refinement
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been utilised because of a series of advantages they exhibit.
In particular, they provide compact feature representation of
high discriminative power. Moreover, they are scale
invariant, which means that the different resolutions of the
recorded images in gallery and probe are allowed. Last
but not least, RIT and KRM features provide extensive
analysis of the users’ biometric characteristics, by merging
spatiotemporal information along with shape analysis of
their body shape. Instead of applying those transforms on
the binary silhouette sequences themselves, the GEI is
utilised, which has been proven not only to achieve
remarkable recognition performance, but also to speed up
the gait recognition [43, 44].

Given the extracted binary gait silhouette images I′ and the
gait cycles, the GEI is defined over the kth gait cycle
according to equation

GEIk = 1

CL

·
∑n0+CL−1

j=n0

I ′j (5)

where n0 and CL are the first frame and the length of the
current gait cycle, respectively, while k is an index to the
gait cycles extracted in the current gait image sequence.

The RIT transform is applied on the GEI, to construct the
gait template for each user, as shown below

RIT(tDu)

= 1

J

∑J

j=1

GEIk (x0 + jDu ·cos(tDu),y0 + jDu ·sin(tDu))

for t=1, ...,T with T =360 8/Du (6)

where Du and Du are the constant step sizes of the distance u
and angle u, while J is the number of the pixels that coincide
with the line that has orientation R and are positioned between
the centre of gravity (x0, y0) of the silhouette and the end of
the image in the direction of u.

In the same respect, the KRMn,m of order (n + m)
transform is applied as follows

KRMn,m =
∑Nx−1

x=0

∑Ny−1

y=0

�Kn(x; p1, Nx − 1)

· �Km(y; p2, Ny − 1) · GEIk(x, y) (7)

whereby �Kn(x; p, N ) = Kn(x; p, N )













w(x; p, N )

r(n; p, N )

√
.

Correspondingly, Kn(x; p, N) are the Krawtchouk
polynomials, while the variables w(x; p, N ) and r(n; p, N) are
given by the two following equations

w(x; p, N ) = N
x

( )
px(1 − p)N−x (8)

r(x; p, N ) = (−1)n 1 − p

p

( )n n!

(−N )n

(9)

whereby the symbol (–N )n in is the Pochhammer symbol given
by (−N )n = −N (−N + 1)(−N + 2) . . . (−N + n + 1) =
(G(−N + n))/(G(−N )), whereby G(n) ¼ (n 2 1)! denotes the
gamma function.
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In the proposed framework the weighted 3D KRMs are
estimated using the recurrent relations suggested in [45],
since their direct estimation is of heavy computational
complexity O(n6).

The comparison between the number of gallery GGEI and
probe PGEI gait cycles for a specific feature E [ {RIT,
KRM} is performed through the dissimilarity score dE.

dE = min
i, j

(||sG
i − sP

i ||) ∀i, j; i [ [1, GGEI] and j [ [1, PGEI]

(10)

‖.‖ is the L2-norm between the sG and sP values of the
corresponding extracted feature for the gallery and the
probe collections, respectively.

4 Activity-related recognition system

The proposed framework extends the applicability of activity-
related biometric traits [26], and investigates their feasibility
in user authentication applications.

In [25, 26], it is observed that the traits of a user’s
movements during an activity, that involves reaching and
interacting with an environmental object, can be very
characteristic for recognition of his/her identity. Indeed,
given the major or minor physiological differences between
users’ bodies in combination with their individual inherent
behavioural, habitual or stylish pattern of moving and
acting, it has been reported that there is increased
authentication potential in common everyday activities such
as answering a phone call etc.

In the following, an improved activity-related recognition
framework is proposed, that employs a novel method for
the normalisation of the trajectories of the user’s tracked
points of interest. The proposed algorithm also introduces a
warping method that compensates for small displacements
of the environmental objects without affecting the
behavioural information of the movement at all.

Contrary to [26], where a fixed environmental setting was
assumed, in real life scenarios, significant performance
degradations can be observed because of the small
variances in the interaction setting. These variations are
mainly introduced by the arbitrary position of the
environmental objects with respect to the user at each trial.
Thus, a post-processing algorithm towards the improvement
of the overall authentication performance that can be
employed into biometric systems, which utilise the reaching
and interacting concept, is presented in the following.

4.1 Motion trajectory extraction

Following the scenario of Section 2.1, the user’s movements
are recorded by a stereoscopic camera that is placed on top of
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the control panel and the raw captured images are processed,
to track the users head and hands. Robust tracking (Fig. 6) is
performed via the successive application of image masks on
the captured image.

In particular, given the nth frame Fn of the recorded image
sequence, a skin-colour mask S(Fn) [46] combined with
background extraction Bhead(Fn) with respect to the head’s
position can offer an initial approximation of the possible
palms’ location. The head can be efficiently tracked via the
head detection algorithm based on [47] and mean-shift
object tracking [48]. Given the pre-calibrated set of change-
coupled device (CCD) sensors mounted on the stereo
camera, the real depth information can be easily derived,
first by performing disparity estimation from the input
stereoscopic image sequence. Thus, it can be written that
the derived filtered image D(Fn) is given as
D(Fn) ¼ S(Fn) > Bhead(Fn).

Then, by defining as M(Fn) the pixel-wise subtraction
of the two sequential filtered images D(Fn) and
D(Fn+1):M(Fn) ; D(Fn) 2 D(Fn+1), the remaining blobs on
the image In

f provide a good estimation of the palms’ positions

In
f (x, y) = 2, if M (Fn(x, y)) = 1

max(0, In−1
f (x, y) − 1), otherwise

{

(11)

After post-processing [26] that is applied on the raw tracked
points, based on moving average window and Kalman
filtering, smooth 3D motion trajectories (Fig. 7), which are
then used as activity related biometric traits for proposed
modality. The users’ intra-similarity and inter-variance, as
expressed by their motion trajectories are illustrated in
Figs. 7 and 8, respectively. All drawn trajectories refer to a
combined activity, which includes the inserting of a card (left
hand) and the typing of a pin (right hand), while standing in
front of a control panel.

A motion trajectory for a certain limb l (head or palms) is
described in the current work as a 3D N-tuple vector
sl(t) ¼ (xl(t),yl(t),zl(t)) that corresponds to the x, y, z-axes
location of limbs centre of gravity at each time instance t of
an N-frame sequence. The x, y and z data of the trajectories
sl, are concatenated into a single vector and all vectors,
produced by the limbs that take part in a specific activity C
form the trajectory matrix SC. Each repetition of the same
activity by a user creates a new matrix. The set of matrices
for each user for a specific activity are subsequently used to
train a stochastic model for each class as explained in
Section 4.3.

4.2 Trajectory warping

The environmental invariance of the extracted trajectories in
slightly different interaction settings between separate trials
Fig. 6 Snapshots of the tracking during the performance of an activity
IET Comput. Vis., 2011, Vol. 5, Iss. 6, pp. 367–379
doi: 10.1049/iet-cvi.2010.0166



www.ietdl.org
Fig. 7 Extracted motion trajectories from (a) User 1 and (b) User 2 during the combined movement of insterting a card and typing a pinword

a Extracted motion trajectories of User 1 during the combined movement of inserting a card and typing a pinword
b Extracted motion trajectories of User 2 during the combined movement of inserting a card and typing a pinword
(different positions of the interaction objects) is of high
importance, since it is very difficult and practically
impossible to observe exactly the same relative user-object
position between consecutive trials even for the same
subject. Lack of environmental invariance could result in an
increase in the false rejection rate.

The relative distance between the initial hand position and
the panel is not expected to remain fixed, either owing to a
shift of the users body or owing to small displacements of
the panel. Thus, to provide enhanced invariance of the
extracted trajectories, with respect to such environmental
variables, the concept of spatial warping is introduced,
following the principles of DTW [49].

Without loss of generality, the movement of the user’s palms
(end-effectors) is considered, while the panel remains fixed. In
the current scenario, where the user is asked to type a pin on a
panel (left hand) and to insert an authentication card (right
hand), a starting and an ending position in the hand’s
movements is assumed (Fig. 9a). They can both be seen in
Fig. 9b at location Rpanel, when the user has touched the
panel just before he starts typing and at location RHand and
P′

Hand, when the hand hangs relaxed at the user’s side in the
enrollment and the classification stage, respectively. The

Fig. 8 Differentiations in the trajectories’ shape between two
different users
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distance between these two ‘extreme’ spots may vary even
between the same user from trial to trial, since it depends on
the slight variations of the environmental setting. This can
lead to unexpected deformations of the extracted motion
trajectories, resulting to false rejections. However, since the
main interest lies in the shape of the motion pattern of the
trajectories and not in their length, the warping method is
applied on the motion trajectories.

Specifically, the exact location of these two locations in the
3D space is automatically stored in the database for each user
during the enrollment procedure. Accordingly, in the
authentication process, the trajectory is warped to the
environmental characteristics of the enrollment sequence.

In other words, the hand-to-panel distance d is used for the
warping (stretching/compression) of an incoming set of
trajectories, according to the claimed ID. Specifically, the
solid line in Fig. 9 (right) indicates the actual extracted
trajectory in the authentication stage. RPanel and RHand are the
stored locations of the user’s head and the phone,
respectively, obtained in the enrollment phase. The suggested
method indicates that RHand and P′

Hand are mapped onto each
other, whereas all other locations RD of the XYZ signature in
between are linearly transformed to the new location P′

D as

Fig. 9 Probe trajectories are mapped onto the gallery trajectories
of the user, whose ID is claimed, towards enhanced invariance in
respect to the environmental objects

a Different initial position of the user may result to longer or shorter motion
trajectories
b Probe trajectories are mapped onto the gallery trajectories of the user,
whose ID is claimed, towards enhanced invariance in respect to the
environmental objects
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indicated below by the normalisation factor q

RD′ = qP(D)

where

q = ||RHand − RPanel||
||RHand′ − RPanel||

4.3 Model-based recognition – HMMs

Given that the extracted trajectories sl(t) exhibit a strong
dependence on temporal ordering, HMM have been utilised,
as a multiple-state Gaussian Mixture Model (GMM)
algorithm, for both the training and the authentication/
recognition session of the current recognition module.
A modelling alternative could have also been based on
simple GMMs; however, GMMs have been proven
inadequate for capturing the temporal relations and ordering
of the successive limbs locations in the course of limb
movements [27].

The first parameter specified for an HMM is the number of
states. The number of states of the utilised HMM has been set
equal to the mean number of changes in the direction of each
of the palms and the head during the performance of any
activity. Thus, a five-state, left-to-right, fully connected
HMM is trained from several enrollment sessions of the
same user for the given activity. Once the number of states
is fixed, the complete set of model parameters describing
the HMM is given by

l = {pj, aij, bj} (12)

where pj is the probability of the jth state being the first state
among all the trajectories, aij denotes the probability of the jth
state occurring immediately after the ith state and bj denotes
the probability density function (pdf) of the jth state.

Given that a single GMMz is completely specified by
parameters Qz = {wk , mk , Sk}K

k=1, with mean vector mk and
covariance matrix Sk, each GMM-based representation,
used a state pdf that is calculated as

P(SC |Qz) =
∑K

k=1

wtN(SC ; mk , Sk ) (13)

whereby SC denotes the input trajectory signal, K is the
number of mixing Gaussian components, wk are the mixing
weights for which

∑K
k=1 wk = 1, and N(SC ; mk , Sk )

denotes the multivariate Gaussian function.
Then, the state variable qt which corresponds to the tth state

of the utilised HMM, takes one of T values qt [ {s1, . . . , sT}.
Since a Markovian process is assumed, the probability
distribution of qt+1 depends only on qt. This is described
by the state transition probability matrix A whose elements
aij represent the probability that qt+1 corresponds to state sj

given that qt corresponds to si. The initial state probabilities
are denoted by pj – the probability that q1 corresponds to
state s1.

The observational data Ot from each state of the HMM are
generated according to a PDF dependent on the instant of tth
state, denoted by bj(Ot). This state-conditional observation
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PDF is modelled as a Gaussian mixture as indicated below

bj(Ot) =
∑Z

z=1

wjz
1

(2p)P/2|Sjz|1/2

× exp − 1

2
(O − mjz)

TS
−1
jz (O − mjz)

{ }
(14)

whereby wjz, mjz and Sjz denote the scalar mixing parameter,
p-dimensional mean vector and p × p covariance matrix of
the zth Gaussian component in the jth state. Here, each
Gaussian component is a multivariate normal distribution of
the same dimensionality, since all trajectories are described
with three dimensions. The parameters of the HMM are
initialised to random values and the Baum–Welch
algorithm is used for estimation using the forward–
backward procedure [50].

Once the training phase has been completed, new
trajectories are categorised as one of the learned users for
the specific activity based on the maximum likelihood
criterion principle. Given the HMMs for the L enrolled
subjects, l1,l2, . . ., lL, and a probe trajectory matrix Sl

C(t)
of the incoming trajectory vectors from the new recording
(i.e. the observation sequence) O1,O2, . . . , Om, we assign
user’s label m as the HMM that maximises the likelihood [50]

m = ∗arg maxi[[1,...,L]

∑
j

P(Ot+1:z|qi
t = j, O1:t)P(qi

t = j, O1:z)

(15)

The above computation can be efficiently performed using
the forward recursion procedure in the Baum–Welch
algorithm [50]. The distance metric dH for the current
HMM classifier is defined as the value of the probability Pm

that corresponds to the user’s label m.

5 Multi-modal biometric fusion scheme

5.1 Datasets

The proposed methods were evaluated on two datasets: the
proprietary 29-subject ACTIBIO-dataset and a 14-subject
custom dataset. The ACTIBIO-dataset was captured in an
AmI indoor environment and is extensively described in
[26]. Both datasets include recordings from multiple
repetitions of each subject performing the same activity (i.e.
gait and activity). Regarding the ‘reach and interact’
scenario, the average frame rate at 15 fps for high resolution
images (1280 × 960 × 24 BPP), while regarding the gait
scenario the camera recorded images of 640 × 480 × 24 BPP
resolution with 48 fps.

The workplace recordings, used for gait recognition,
include people walking in various paths within the
environment, while performing various activities. The main
course of walking is around 6 m and the distance from the
stereoscopic camera varies from 2–6 m. The maximum
detected intercycle angle differentiation with respect to the
front-parallel view was found at 268, while the intracycle
walking angle variations ranged from 08 to 528. Among
other experiments recorded for 29 subjects, such as the
‘normal’, the ‘briefcase/bag’, the ‘coat’ experiments, the
‘view-stop’ condition is mobilised, whereby the subject
performs a random path and stops to do specific work
activities (e.g. operate the main room panel, press buttons
etc.).
IET Comput. Vis., 2011, Vol. 5, Iss. 6, pp. 367–379
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In the custom dataset, each of the 14-subjects included is
walking again in a random path and stops for performing a
dual activity. Specifically, each user should type a pin in a
panel and then apply a card on a card reader. Both the gait
sequences and the rest activities have been captured by
stereo cameras. In this dataset, the size and quality of the
gait recording were identical to the ACTIBIO-dataset,
whereas the recorded images were of lower resolution
(320 × 240 × 24 BPP) with 15 fps regarding the ‘reach and
interact’ scenario.

Unfortunately, it was not possible to benchmark the
proposed algorithms on public databases, since they do not
include depth data.

5.2 Fusion algorithm

Towards fusion, the scores are normalised to a common basis
according to the following equation

dnorm = 0.5

TL

( )
e(−(d/dmax)) (16)

where dnorm is the normalised score value, d the non-
normalised score, dmax the maximum possible score value
and TL an experimentally set threshold for the modality L.
Variable d refers to both dE for the RIT and KRM, as well
as for dH for HMM classification scores.

Given the absence of a priori knowledge regarding the
distribution of the estimated similarity scores, a GA has
been utilised to do the fusion between the proposed
biometric modalities. In general, GAs are very efficient
optimisation methods, since they are capable of detecting
near global optimum solutions without the need of a priori
knowledge of the premise space and of any non-convexities
within it. Thus, to optimise the performance of the
multimodal gait biometric system and supplementary fuse
the activity-related biometric traits, the GA described in
[51] is utilised for the estimation of the optimal weights for
the three biometric descriptors.

In particular, the optimal weights used for score fusion
based on a simple weighted averaging scheme are estimated
using the GA described in Appendix. For the training of the
fusion algorithm the 14-subjects custom dataset (Section
5.1) has been utilised. Specifically, the used gallery and the
corresponding probe sequences stem from different
repetitions than the ones that have later been used for the
actual recognition purposes.

The experimental tests resulted in the following optimal
weighted values

wRIT = 0.34075, wKRM = 0.21425, wHMM = 0.445 (17)

The final weighted distance between the probe x and the
gallery y is estimated as Dtotal(x, y) = 1/Sim(x, y), whereby
Sim(x, y) is defined as

Sim(x, y) =
∑
n[T

wn

Dn

= wRIT

DRIT(x, y)
+ wKRM

DKRM(x, y)
+ wHMM

DHMM(x, y)
(18)

whereby x ranges from 1 to NP number of probes to identify, y
denotes all the subjects in the training database y ¼ {1, . . . ,
NG} and Dn(x,y) ¼ 1/Simn(x,y) denotes the total
dissimilarity, between the probe subject x and the gallery
IET Comput. Vis., 2011, Vol. 5, Iss. 6, pp. 367–379
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subject y given the feature set n [ Efull, where Efull ¼ {RIT,
KRM, HMM}.

The proposed fusion method is only used to estimate the
optimal weights once and then the trained algorithm is
applied as is, for the online identification of individuals
with no further training or altering of the weights.

6 Experimental results

6.1 Experiments

The experiments that have been carried out on both databases
include subjects walking in random paths with a stop for
performing a specific activity. All users walk along a
corridor in random paths, until they stop for interaction with
a device (e.g. to type a password on a panel or to speak to
a microphone-bell on the wall), as shown in Fig. 6, and
then they walk away to any direction.

As far as the gait recognition in the 29-subject dataset is
concerned, the ‘normal’ set that corresponds to fronto-
parallel sequences has been used as the gallery set, while
the ‘view-stop’ condition scenario is utilised for the
authentication measurements. The activity selected from the
same database is the ‘talking to a microphone panel’.

6.2 Gait recognition results

The pixel-wise differences in the extracted GEI images
between the non-stop-detection approach and the proposed
framework are demonstrated in Fig. 10. The reader can
notice the significant denaturation of the GEI image in the
absence of the stop detection, owing to the contribution of
those frames, whereby the user has been standing still. The
proposed gait recognition system has been tested on the 29-
subject ACTIBIO dataset.

The improvements of the proposed gait recognition
modality (i.e. stop detection and silhouette rotation) when
the RIT and KRM algorithms are utilised as classifiers can
be seen in Fig. 11.

Specifically, the reader can notice the significant
contribution of the rotation-algorithm to the method
proposed in [9]. In particular, the identification rates (red
line in Fig. 11) are increased by a mean ratio of 20% (peek
ratio improvement 35%) in the case of the RIT-classifier.
Similarly, as far as KRM features are concerned, an
improvement of a mean ratio of 10% (peek ratio

Fig. 10 First row: great variations between the gallery and the
probe even between a client user, when stop detection is disabled;
Second row: low denaturation rate of the probe GEI, when stop
detection is enabled at the probe sample
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Fig. 11 Improvements in gait because of silhouette rotation and stop detection algorithm (29 subjects) – left: (RIT classifier)/right: (KRM
classifier)
improvement 23%) can be observed. In addition, when stop
detection algorithm was enabled, the identification rates
increased even more by a mean ratio value of 25 and 20%,
in both the RIT and KRM classifier cases, respectively.

The proposed algorithms have been also tested in terms of
their resistance against noise. For this reason, additional white
Gaussian noise (AWGN) with a peak signal-to-noise ratio
(PSNR) of 24.1237 dB has been added to the extracted gait
silhouettes, by the successive down-scaling to 25% of the
original size of their resolution and up-scaling them back
[52], prior to the generation of each GEI (see Fig. 12). The
derived results (Fig. 11) caused only a small degradation in
the module’s recognition performance, which proved the
robustness of the proposed approach under noisy environments.

In the same respect, the proposed enhancements exhibit
significant improvements regarding the authentication
performance of the gait module, as indicated by the equal
error rate (EER) results in Table 1. Similarly, the
degradation caused by noised insertion can be considered
rather low.

6.3 Activity-related recognition results

The contribution to the framework of [26], regarding the
activity-related biometric trait, is presented here. Given
the 29-subject database, the corresponding improvements in
the recognition performance, as well as in the EER score
can be seen in Fig. 13 and in Table 2, respectively. The
reader can notice an improvement of more than 25% in the

Fig. 12 Noise free versus noisy (PSNR ¼ 24.1237 dB) silhouettes

Table 1 Activity (ACTIBIO dataset) – EERs

RIT,

%

KRM,

%

RIT (AWGN),

%

KRM (AWGN),

%

EER (29 subjects) 15.9 16.5 16.8 17.7
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Rank-1 identification rate, and a simultaneous fall of 1.5%
in the EER authentication score of the trajectory-based,
activity-related system.

The improvements exhibited in the current activity
trajectory-based module can be justified because of the
enhanced invariancy added with respect to the small
arbitrary environmental variations in the interaction setting
(i.e. slight displacements of the environmental objects,
different stop position of the user etc.).

The robustness of the proposed system against noise has
been extensively tested in [26], whereby only a slight
overall degradation of 1.5% has been noticed.

6.4 Fusion results

The score level fusion between the three classifiers (RIT–
KRM–HMM) is performed, as described in Section 5. The
recognition and verification performance of the final
improved multimodal system, as they have been derived
from tests carried out on the 29-subject ACTIBIO database,
can be seen in Fig. 14a and in Table 3, respectively.

Fig. 13 Improvements in activity-related recognition modality
because of the warping algorithm (29 subjects)

Table 2 Activity (ACTIBIO dataset) – EERs

Non-warped

trajectory, %

Warped

trajectory, %

EER (29 subjects) 14.7 13.3
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Table 3 Multimodal system (ACTIBIO dataset) – EERs

RIT, % KRM, % HMM, % Fusion, % Fusion (noise), %

EER (29 subjects) 15.9 16.5 13.3 9.6 10.8

EER (14 subjects) 14.3 17.2 12.1 8.9 9.7

Fig. 14 CMS diagram of the final multimodal system – left: (29-subjects dataset)/right: (14-subjects dataset)
Specifically, the significantly increased Rank-1
identification rate of the multimodal system has reached a
score of 83%, while at Rank-5 the identification rate has
correctly recognised all the users. Additionally, the score-
level combination of the two activity related traits (i.e.
trajectory-based activity recognition and gait recognition)
has managed to decrease the overall EER score of the
system to 9% as indicated in the last column of the Table 3.
In the same respect, the system exhibited strong resilience
in both authentication and identification performance, even
during the ‘noisy’ experiment, as shown in the Fig. 14 and
in Table 3.

Similarly, the corresponding CMS curves and the EER
scores for the custom dataset including 14-subject are
depicted in Fig. 14b, and along the second row of Table 3,
respectively.

The utilisation of the GA algorithm (see Appendix),
towards weighted fusion, has driven to an overall
performance improvement of the system of 5%, compared
with the case, where uniformly distributed weights
(wRIT ¼ 0.33, wKRM ¼ 0.33, wHMM ¼ 0.33) have been
assigned to each of the derived modality scores.

6.5 Discussion

Given that no human performs exactly the same activity
identically twice, it can be claimed that the proposed
enhancements provided additional invariance to the
extracted features of each of the described recognition
modules. Specifically, arbitrary, not deterministic, slight
changes in the walking angles along the same path or even
different standing distances, in respect to the control panel
can now be compensated towards more robust ‘on-the-
move’ recognition performance.

In addition, the identification performance and the
authentication EER of the proposed multimodal system are,
as expected, significantly improved compared with the
recognition potential of each single biometric trait. Despite
the fact that such an improvement is relatively expected, the
tuning of a multimodal system is not always a trivial task.
In this context, apart from the utilised GA, great
IET Comput. Vis., 2011, Vol. 5, Iss. 6, pp. 367–379
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improvement has also been imposed by the fact that the
proposed biometric traits are totally uncorrelated.

Moreover, the performed experiments proved the system’s
resilience against noisy environments or low quality
recordings (tested with PSNR ¼ 24.1237 dB). Regarding
the noise suppression or the compensation for occluded
information, that is introduced by rotation, the proposed
algorithm has shown significant improvements within a
range of 208 with respect to the front-parallel view. For
wider walking angles a degradation of the recognition
performance has been noticed and thus, the corresponding
gait cycles were discarded.

To handle larger changes in the users’ walking direction, a
multi-camera system is suggested. Specifically, a set of at
least five cameras, whereby each camera would cover an
angle of 308. The presented algorithm would be
significantly augmented by the utilisation of a time-of-light
(ToF) camera, which would offer high accuracy resolution
images.

Regarding the ‘reach and interact’ activity-related scenario,
it has been observed that there is an upper bound in
recognition potential provided by the three-point tracking.
A full body model would significantly improve the
recognition performance, since it would take into account
not only dynamic information about the users’ movements,
but also their static anthropometric profile. However, such a
body model would require high accuracy and real-time
processing, that is not yet available in SoA.

Despite the fact that no comparison with SoA methods was
able to be performed, owing to lack of public databases that
include depth data, it has been shown that the proposed
preprocessing algorithms significantly improve the current
recognition methods. Thus, it is expected to offer
advantages if they are applied to any gait or activity-related
recognition algorithm.

7 Conclusion

In this paper, a multimodal biometrics scheme that is based on
two unobtrusive modalities is presented. Gait, that forms the
major modality of the scheme, is complemented by new
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dynamic biometric signatures extracted from several activities
performed by the user. The proposed framework is seen
experimentally to provide very promising recognition and
verification rates, even under noisy environments. Moreover,
taking also into account that no hard constraints are forced
during the capture of the input signals, the proposed approach
makes a step forward in the context of the very challenging
problem of unobtrusive on-the-move-biometry.
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10 Appendix

Genetic fusion algorithm, the genotypes or chromosomes for
the current GA are provided by the concatenation of wRIT,
wKRM and wHMM. An initial population of m chromosomes
is generated. Each of them denotes the weight for the gait
features scores (RIT, KRM) and for the activity-related
recognition scores (HMM), respectively. They all range
between 0 and 1, similarly to the training patterns, which
stand for the dissimilarity scores of the extracted feature.
Then, the total similarity Sim(x,y) of each person (gallery)
in the database to the client (probe) is given by (18).

The user’s ID that achieves the greatest matching score is
notated as as

C = ∗ arg max
y[R

Sim(x, y) (19)

Following, the quality of a specific chromosome for the
subject C is measured with respect to its ‘fitness’ function
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ffitness, as follows

ffitness =
∑Np

x=1

correct idx (20)

where x denotes the probe id. In this context, the correct_idi is
given by the following

correct idi

=
1, if Sim(x, C) = max(Sim(x, y)), y = {1, . . ., NG}

0, if Sim(x, C) , max(Sim(x, y)), y = {1, . . ., NG}

{

(21)

The final weight scores have been taken after the generation
of 300 new generations of chromosomes, since thereafter
the algorithm converged sufficiently. Seemingly, the fitness
maximises through the evolution of the population and so
does the number of correctly identified individuals in the
database, as well.

To avoid overfitting and database-dependent weights, the
proposed fusion method was only used to estimate the
optimal weights for each modality. After their calculation,
the weights have directly applied for the online
identification of individuals and no further training or
altering of the weights occurred for the database. Hence,
here we only introduce a fusion at the score level whereas
leaving our feature extraction algorithms to execute without
any additional training procedures.
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