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a b s t r a c t

This paper presents an extensive study on prehension-based dynamic features and their use for
biometric purposes. The term prehension describes the combined movement of reaching, grasping and
manipulating objects. The motivation behind the proposed study derives from both previous works
related to the human physiology and human motion, as well as from the intuitive assumption that
different body types and different characters would produce distinguishable, and thus valuable for
biometric verification, activity-related traits. A novel approach for analyzing such movements is
presented herein, based on the generation of an activity related manifold, the Activity hyper-Surface.
The authentication capacity of the extracted features on the activity hyper-surface is evaluated in terms
of their relative entropy and their mutual information within a complete framework targeting user
verification. Experimental results on two datasets of 29 real subjects each and a third one of 100 virtual
subjects show that the introduced concept constitutes a promising approach in the field of biometric
recognition.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Biometrics have recently gained significant attention from rese-
archers while they have been rapidly developed for various commer-
cial applications, ranging from access control against potential impos-
tors, to the management of voters to ensure no one votes twice [1].
These systems require reliable personal recognition schemes to either
confirm or determine the identity of an individual requesting their
services. A number of approaches have been proposed in the past to
satisfy the different requirements of each application, such as unob-
trusiveness, reliability, and permanence.

Biometric methods are categorized into physiological and beha-
vioural [2], depending on the type of used features. Physiological
biometrics are usually based on static biological measurements and
inherent characteristics of each human. The most typical example in
this area is the fingerprint [3], which is widely used in law enforce-
ment for identifying criminals [4]. Further, static biometrics include
DNA, facial characteristics [5], iris [6] and/or retina [7], and hand

geometry [8] or palm print [9] recognition. Despite their high accuracy,
a general shortcoming of these biometric traits is the obtrusive process
of obtaining the biometric signature. The subject has to stop, go
through a specific measurement protocol, which can be very uncom-
fortable, wait for a period of time and get clearance after authentica-
tion is positive. Besides being obtrusive and uncomfortable for the
user, static physical characteristics can be digitally duplicated, e.g. the
face could be copied using a photograph, a voice print using a voice
recording and the fingerprint using various forging methods. In
addition, static biometrics could be intolerant of changes in physiology,
such as daily voice changes or appearance changes.

On the other hand, recent technologies in biometrics resemble
more natural ways of recognizing people. Similar to the methods or
techniques humans utilize in order to recognize each other, modern
trends in biometrics focus on the recognition of dynamic face
grimaces, gait, movements, etc. In other words, they tend to
recognize liveness rather than static features as the aforementioned
traits do (fingerprint, iris, etc.). In this respect, behavioural bio-
metrics are related to specific actions and the way that each person
executes them. On the whole, behavioural biometrics are less
obtrusive and simpler to implement [2,10], although they are less
reliable than physiological biometrics. This way, integral drawbacks
of regular biometrics can be lifted; for instance, inborn physiological
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characteristics may be mixed with stylish and behavioural ones, so
that even twins can be separated.

The imposed obtrusiveness by non-behavioural biometrics lies
in both the utilized sensors (e.g. fingerprint or iris reader) and the
authentication procedure to which the users are subjected to.
Contrary to sensor-based recognition [11] using behavioural signals,
recent research trends have been moving towards the vision-based
methods [12]. Additionally, recent work and efforts on human
recognition have shown that there is quite a number of behavioural
traits on which recognition can be based (e.g. extraction of facial
dynamics features [13]). However, the most well-known example of
behavioural biometrics is the human body shape dynamics [14] or
joints tracking analysis [15] for gait recognition. In the same respect,
the analysis of dynamic activity-related trajectories [19] provides
the potential of continuous authentication for discriminating peo-
ple, when considering behavioural signals.

Not rarely, action recognition approaches are utilised in biometric
systems either complementarily [19] or inspirationally. Such a view-,
style- and appearance-invariant enhancement of the well know
Motion History Images concept for action recognition has been
proposed by Vitaladevuni et al. in [46], whereby ballistic dynamics
are utilised in a Bayesian network. Another view-invariant action
recognition algorithm has been proposed by Cuntoor et al. in [44],
whereby the actions are recognised and labelled as abnormal per
case, via the detection of significant spatiotemporal changes by
properly trained HMMs. Similarly, dramatic changes in the speed
and the direction of the trajectory are detected in [45] by estimating
the spatiotemporal curvature of the latter, via a compact and view
invariant representation based on dynamic descriptors. Finally, tak-
ing advantage of the hierarchical decomposition approach of specific
actions based on the detection of notable characteristic changes in
the motion sequence, Tanveer Syeda-Mahmood [43] tried to resem-
ble human perception in the video segmentation process.

In the present paper, the term prehension-based biometric authen-
tication is introduced as the combination of a reaching movement and
a grasping activity. This concept derives from the simple observation
that a person uses/manipulates the objects in the surrounding
environment (e.g. answering a phone call) with his/her own style.
Prehension biometrics belong to the general category of behavioural
biometrics and can also be thought of as a specialization of activity
related biometrics [16,17].

Given that most of the activities performed in everyday life include
the human's physical interaction either with other people or with
objects, the current work attempts to detect and to evaluate a series of
stable, invariant, time lasting and unique activity related biometric
characteristics for each human. In this paper, the focus is on the arm's
movement [19] and on the movement of the fingers. Thus, both
movements are thoroughly studied during specific actions that include
people manipulating objects. Although palm dynamic features have
not been employed in the field of biometrics yet, significant amount of
research has been performed on various aspects of dynamic palm
gestures [28].

The core topic with which this study deals is introduced in
Section 3 and the proposed feature extraction methodology is
described in detail in Sections 4 and 5. The tools used for feature
evaluation are presented in Section 6.1, while the case-study
scenarios, along with the obtained results can be found in
Section 7. Finally, the conclusions follow in Section 8.

2. Motivation

As mentioned earlier, recent trends in biometrics deal with
analyzing the dynamic nature of various biometric traits, targeting
user convenience and optimal performance in various realistic
environments. Activity-related biometrics have been recently

studied in [16,17], where signals from various modalities are
measured, while the subject is performing specific activities. These
signals are then used to create unimodal or multimodal activity-
related biometric signatures of each subject. Moreover, activity-
related biometrics have been proven to have the potential to
discriminate accurately between subjects, while remaining stable
over time for the same subject.

However, not any movement can be seen as a potential
identifier. The requirements that a biometric trait should satisfy
are defined below [2]:

� Universality: Each user should posses it.
� Distinctiveness: The extracted features are characterized by

great inter-individual differences.
� Reproducibility: The extracted features are characterized by

small intra-individual differences.
� Permanence: No significant changes occur over time, age,

environmental conditions or other variables.
� Collectability and automatic processing: It is possible to recog-

nize or verify a human characteristic, which can be measured
quantitatively, in a reasonable time and without a high level of
human involvement.

� Circumvention: It should be difficult to be altered or reproduced
by an impostor who wants to fool the system.

Additionally, there are a number of other issues that should be
considered when designing a practical biometric system, like its
recognition performance (i.e. achievable recognition accuracy and
speed) and the resources required to achieve the desired recogni-
tion accuracy and speed. Further operational and environmental
factors, such as the frequency with which a given activity is
performed on a daily basis and the degree of approval of a certain
technology by the society, are also significant issues to be taken
into account.

In the concept of the current study, the Universality require-
ment is satisfied by definition. Moreover, there are plenty of
models which depict that the user seeks the “most convenient”
and the less effort demanding way of performing each movement.
Specifically, there is the Flash and Hogan's Minimum Jerk Model [29]
which indicates that the hand paths in extrinsic space should be
straight. Curved hand paths can be generated, of course, but
according to this model, they must be produced by concatenating
straight-line segments. Similarly, the Uno, Kawato and Suzuki
Minimum Torque Change Model [30] assumes a hand movement
according to the minimization of the torque during the movement.
Based on these observations, but also on Turvey et al.'s [31] and
Goodman et al.'s [32] findings, it can be claimed that not only the
Distinctiveness, Reproducibility, but also the Permanence require-
ments are also fulfilled, since all these parameters are related to
the user's anthropometric variables, that exhibit significant var-
iance within the population. Of course, like all biometrics, there is
the issue of aging, which can only be overcome via the update of
the biometric signature over time. However, expressions of beha-
viour are less vulnerable to sudden changes (i.e. a fingercut is
much more frequent and has a direct and quick effect on the
authentication than a change in the movement due to arthritis or
other diseases).

Similarly, the Permanence requirement is guaranteed, given
that the human body remains unchanged over the years, in terms
of anthropometric proportions, like the distances between the
joints. Moreover, the proposed approach utilizes a combination of
physiological with stylish and behavioural characteristics. Thus,
the proposed biometric traits are very hard to circumvent, if not
impossible, by an impostor. Furthermore, provided the fact that
recent technological achievements, especially regarding miniatur-
ized sensors and accurate vision-based tracking algorithms, allow
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the unobtrusive application of such biometric technologies. Addi-
tionally, given that the recognition process is incorporated in the
daily activities of the user, it can be stated that the acceptability and
frequency criteria are covered, as well. Finally, the Automatic proces-
sing requirements, including the recognition accuracy and speed, are
highly dependent on the features and algorithms deployed.

Similar to gait, a prehension movement is a very frequent
activity performed in everyday life that describes the sequential
occurrence of two independent and complementary activities.
Namely, it includes the activities of reaching and grasping an object
in the vicinity of a user. Such activities may further involve the
handling of the doorknob in order to enter or to leave a room, the
answering of a phone call by picking up the phone, the grasping of
the wheel when driving, the interaction with the mouse when
working with the computer, etc.

The intuitive assumption is again that all users have their own
characteristic way of reaching, grasping or in general manipulating
specific objects, while performing specific activities. The motiva-
tion behind this assumption stems from the expectation that
different articulated structures (e.g. human body, palm and fin-
gers) and different human behaviours would produce distinguish-
able activity-related traits. In this context, the movement of the
arm towards the object, the positions of the hand, the palm and
the fingertips with respect to the object are analyzed, in order to
extract unique signatures of dynamic nature that would form a
reliable biometric signal for authentication.

The scope of the current paper is the demonstration of the
recognition potential of prehension biometrics. In other words, this
paper forms a study of activity related features that aims to suggest
efficient and robust algorithms for their processing during certain
prehension movements, which resemble the presented ones. The
major improvement over previous works is the framing of the
reaching biometrics in the more generic concept of prehension
biometrics. In this extent, the concepts of Activity Curves and Activity
hyper-Surfaces are both proposed as novel descriptors for prehension
activities and evaluated accordingly. The term Activity Curves (ACs)
describe the angular or spatial transition of a certain joint over time.
Especially, for the case of a joint's spatial transition, ACs can be
extended to a more descriptive activity manifold, the Activity hyper-
Surface (AhS), which encompasses the relative distance between the
joint's location from a moving reference point (e.g. the location of the
head) as a function of time.

3. Related work–theoretical aspects on prehension

Biological systems exhibit complex behaviours of functioning,
which sometimes can not be explicitly explained. Thus, observed

behaviours may be attributed to certain “black boxes”, that optimize
either some activity related criteria or the teleological behaviour of
the whole organism. On the contrary, complex behaviours could
result from observable physical properties of the systems and their
environment, and/or from explicitly expressed common control
principles [31].

In this respect, complex multijoint movements, such as reach-
ing or grasping an object, are planned and executed not only
according to one's exclusive personal behaviour, but also due to
various physical properties and phenomena (e.g. the physiology of
the human body) [31]. According to Goodman et al. [32], some
features, like the ones discussed hereafter (Section 3.1), have been
proven to be independent of movement distance, direction, start-
ing position and external load. Thus, it is reasonable to claim that
by relying on such invariant features, user-specific activity-related
properties can be modeled as biometric signatures for authentica-
tion purposes.

Moreover, according to Hoff et al. [33] a prehension activity can
be divided into two parts: (i) a fast initial movement, whereby the
user moves the arm to transport the hand towards the object and
preshape their fingers (Fig. 1(a)), and (ii) a slow approach move-
ment, whereby the final stage of the grasping scheme takes place
(Fig. 1(b)). In this sense, these two sub-activities are approached in
the current work both as complementary movements, but also as
distinct biometric identifiers. Thus, the current work uses a dual
approach, whereby each part of the prehension activity is studied
separately. At the end, the results are fused in order to provide a
single authentication framework.

In the context of the current study, the features selected for
both phases of a prehension activity are mainly of dynamic nature.
However, it can be claimed that static physiological information is
also encoded (e.g. the relative mean or maximum distance values
between the head and the hands during the reaching movement).
This assumption can be easily extended to the fingers' movement,
whereby the dynamic, pre-grasping movement (opening of the
palm and closing to the object's dimensions) forms the dynamic
part, while the final hand posture is seen as the static, user
oriented one. Thus, the features described next are related to both
the users’ anatomy and their habitual behaviour.

3.1. Theoretical aspects on Reaching

Regarding the reaching task, the most important so-called
invariances have been analyzed in [32] and in [34]. Specifically,
any reaching task of a human arm is characterized by the
following common properties:

Fig. 1. (a) During a Reaching Movement shoulder and elbow angles change in a predefined way. (b) During a Grasping Activity the fingers' and the palm's angles are moving
towards the hand's final posture. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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1. It is equifinal (i.e., the limb end-point reaches the vicinity of a
target under a wide range of external conditions).

2. Most of its path usually lies along a straight line, although it can
be slightly curved and hooked at the end.

3. The time profile of the limb end-point tangential velocity is
approximately bell-shaped, with some distortions at its end.

4. The trajectory reflects speed-sensitive (uniform rates of joint
torque development) or speed-insensitive (variable rates of
joint torque development) movement strategies, depending
upon the specifications of the movement task.

5. In case of a double-step target, the path is curved and the
velocity–time profile is bi-modal.

Several models have been proposed in the past attempting to
describe a reaching movement in a deterministic way. In this
respect, the dependency of the arm's angles is explicitly stated
[35] and the fact that the users seek the “most convenient” and the
least effort demanding way to perform each movement [30,29] has
also been proven.

One of the most important studies has been conducted by
Rosenbaum et al. [34], who came up with the finding that the final
body postures are not simply considered as the results of move-
ments, but as goals that movements serve to satisfy. These notions
were justified as follows.

1. Optimal movements can be generated once initial and final
postures are known. As assumed in several models, knowing
the final as well as initial postures allows the creation of
optimal movements.

2. Memory for final positions is better than memory of move-
ments [36].

3. Variability of end positions is generally smaller than variability
of movements towards those end positions [37].

4. The end-state comfort effect, defined as willingness to adopt
initially uncomfortable postures for the sake of comfortable
final postures, is better predicted by ratings of final-posture
than by ratings of movement ease.

3.2. Theoretical aspects on Grasping

As an extension to the reaching task, the finishing of a
prehension activity involves the grasping of the object. Generally,
the movement of the fingers follows the same basic rules as for
any articulated human model (e.g. Memory for Final Posture).

The authentication capacity of such an action has been initially
presented by Vogiannou et al. in [38], where the whole concept of
grasping-based biometric features, as behavioural, dynamic bio-
metric features related to the dynamic manipulation of objects,
has exhibited promising potential for biometric person identifica-
tion. In this respect, Grasping Biometrics can be seen as a special
case of activity related biometrics, which deal with the character-
istic features of human grasping, including both hand posture and
activity related dynamic traits that contribute to the discrimina-
tion between different subjects.

Additionally, the work that has been performed in [39] showed
significant variance in the movement of the finger joints during
grasping of several objects among a variety of subjects. Inspired
from that, but also based on the physiological differences between
the palms and fingers of different users, it can be claimed that
increased authentication potential is encoded in the way one
grasps an object. This claim can be also supported by Rosenbaum's
model [34], which states, among others, that angular trajectories
demonstrate high variability within a population, although seg-
ments of paths may be relatively straight.

At this point, it is important to point out that grasping-related
features of the hand are not the same as hand biometrics which
have already been employed for human recognition [40]. Although
certain hand characteristics, such as the size of the palm or the
length of the fingers, have an effect on the way humans manip-
ulate objects, grasping biometrics are primarily concerned with
the behavioural features and the dynamics of the specific action.
Thus, descriptors invariant to palm sizes are going to be exploited
herein (e.g. angular acceleration and total angular distance cov-
ered by the fingers). Similarly, given the fact that the final hand
gesture is dependant on the object involved, the measurements
performed in the current study are grouped with reference to the
same activity-experiment (e.g. the picking of a phone).

3.3. Context dependencies in activity-related biometrics

As suggested in several works of Rosenbaum et al., the context
(i.e. both the environmental setting and the temporal order of
ongoing events), in which a movement based human identification
takes place, may significantly affect its outcome, either by influen-
cing the perception of the identifier [24] or by affecting the
planning and execution of the prehension movement of the
person to be identified [25,26].

Following this, it becomes evident that behaviour analysis and
context are in close relation with each other. Thus, in order to
proceed with the analysis of someone's behaviour, the context has
to be known, in which the observed behavioural signal has been
displayed. In this respect, the definition of the context should be
provided either via the W4 (where, what, when and who) or even
better via the W5þ (where, what, when, who, why and how)
methodology.

However, provided that the problem of context-sensing is
extremely difficult to solve, especially for a general case, answer-
ing the “why” and the “how” questions in a W4-context-sensitive
manner is virtually unexplored area of research [27]. Thus, without
loss of generality, in the current work only the apparent percep-
tual aspect of the context (W4), in which HCI takes place, will be
dealt with.

Based on the W4 approach, in order to design a prehension-
based recognition system that will work circumventing the con-
text dependency of prehension, the following requirements should
be fulfilled:

1. The relative position of the actor performing the prehension
movement should be fixed with respect to the interaction
object (i.e. object to be reached and grasped).

2. The space between the actor and the interaction object should
remain similar as during the registration procedure (e.g. no
obstacles should interfere).

3. The actor should be at a similar affective state, as the time he/
she has been registered to the system.

4. The interaction object should remain the same, in terms of
shape and size.

5. The order of the movements in a specific scenario should stay
unchanged, so as the initial and the final position of the body
parts that participate in the prehension movement are the
same as during the registration.

To this extent, possible applications where such application
specific scenarios can be successfully designed include restricted
areas in military bases, sensitive infrastructures where classified
data are stored (e.g. personal data, medical data, and war plans),
highly secure areas in nuclear power plants (e.g. control rooms),
control rooms of surveillance/security companies and administra-
tor rooms in the central servers of companies managing big
amounts of data.
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4. Reaching–feature extraction using Activity hyper-Surfaces

A novel descriptor for the reaching part of a prehension
movement is presented herein. Specifically, the arm's movement
will be described via the novel concept of Activity hyper-Surfaces
(AhS). However, in order to introduce the AhS, the concept of
Activity Curve (AC) has to be defined. In particular, an AC describes
the spatial displacement of the head or an arm's joint during the
prehension movement. Thus, an AC is defined for a certain limb
l as the curve made up by the point with position vector slðtÞ of the
limbs in the 3D space:

slðtÞ ¼ ðxlðtÞ; ylðtÞ; zlðtÞÞ ð1Þ

As time t is sampled with N points, this curve is made up from N
consecutive points.

Similarly, the series of points shðtÞ ¼ ðxhðtÞ; yhðtÞ; zhðtÞÞ of the
position of the head h makes up the AC of the head.

An Activity hyper-Surface (AhS) is defined as the surface made
up from the points with position vectors rA ¼ ð1�μÞshþμsl, where
0rμr1 (see Fig. 2(a)).

The area A of such a surface is given by

A¼
Z
AhS

ð1�μÞshðtÞþμslðtÞ
� �

dA ð2Þ

where dA¼ dt dμ stands for the infinitesimal surface element.
In this respect, three AhSs can be extracted from an arm's

movement: (a) the head-to-shoulder AhS, (b) the head-to-elbow
AhS and (c) the head-to-palm AhS. From now on, the term AhS
will refer only to the head-to-palm for the rest of the paper. This
simplification is justified by the facts that the movement of the
elbow's joint is significantly correlated with the palm's movement
([35] and Section 7.4) and that the shoulder's and head's move-
ments exhibit high dependency on each other.

The proposed AhS is quite a complicated manifold to be used
directly. However, it has been reported that during a prehension
activity, the movement is mainly concentrated on a 2D plane [29].
Thus, dimensionality reduction principles can be applied in order
to simplify the calculations. In this respect, axis rotation is
performed in the ðx; y; zÞ subspace of the AhS via Principal
Components Analysis (PCA) and the eigenvector with the smallest
eigenvalue is removed. The remaining two dimensions plus the
time axis form a 3D space in which the original AhS manifold is
represented by a surface, characteristic of the ongoing activity, as
illustrated in Fig. 2(b).

Definition. The simplified Activity Surface (AS) comprises the
union of all points that lie on the lines connecting the correspond-
ing representative points of the head and hand trajectories.

Geometrically, the surface is defined as the area within the spatial
bounds of the head's and hand's Activity Curves and the temporal
limits of the activity's duration (Fig. 3).

As time increases monotonically, this definition means that the
Activity Surface is made up by a series of line segments, parallel to
the plane defined by the spatial coordinates. So this representation
explicitly encodes the relative distance between the head and the
hand during the ongoing activity, additionally to the information
provided by the original shape of the motion trajectories.

The head is considered as a direct extension of the human
torso. Provided the restricted range in the angles within which the
neck can bend/rotate and especially under the assumption that the
full face can be simultaneously recognized, the head can be
utilized as a very robust reference point for the rest of the body
[21]. In the same respect, head pose has been extensively studied
in [22] and in end-effector of the whole arm. In this context, a
strong dependency and thus a high correlation between the
movement of the hand to the rest arm joints during a prehension
movement are not only supported in [38] but also experimentally
proven in the mutual information confusion matrices.1 In this
respect, it is assumed herein that combination of these two salient
points (i.e. head and hand) does not only represent the prehension
movement to a significant extent, but also reveal a great amount of
biometric information for the user. Finally, the use of the hand
(i.e. position of the palm/wrist) is justified since it is considered as
the end-effector of the whole arm.

Moreover, the movements' velocity distribution is also encoded
implicitly by this representation, given that the movement's dura-
tion is mapped on a separate axis. In Fig. 3, the intra-similarities and
the inter-variances of the Activity Surfaces between several users
are visually illustrated.

In the following, a series of activity related features will be
extracted based on several subspaces of the introduced AhSs. In
particular, each consisting Activity Curve will form both a set of
features itself and the basis for further feature extraction, while
the Activity Surfaces will be processed, so as to produce novel
features in terms of Spherical Harmonic Analysis (SHA) [41]. In
particular, SHA have been chosen, so as to preserve the view
invariance of the AS, which is a combination of two trajectories.

4.1. Spherical harmonic coefficients as biometric descriptors

As any surface in a 3D space, the generated Activity Surfaces
can be uniquely described in terms of Spherical Harmonic

Fig. 2. (a) Construction of an activity surface. O is the origin of the axes. The two black curves represent the trajectories of vectors shðtÞ and slðtÞ parameterized by time t.
Point A is any point of segment HL defined by the position of the head H and the limb L at a specific time, with position vector rA . (b) Trajectories of the head and the palm in
space and time after dimensionality reduction via PCA of the spatial coordinates. Joining the corresponding points of the two curves forms the characteristic surface.

1 http://www.iti.gr/�drosou/PrehensionBiometrics/MIConfusionMatrices.pdf
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Coefficients (SHCs) via Spherical Harmonic Analysis (SHA). For
their calculation, surface AS has to be expressed in terms of
spherical coordinates ðρ;θ;ϕÞ, triangulated and resampled with a
constant sampling density ds ¼ ðdϕs ; dθs Þ in the two angular coordi-
nates. The reference point R, i.e. the origin of the spherical
coordinates, for which ρ¼0, has to be carefully selected. Given
the limitations of the SH algorithm, that only one value of r can be
assigned to a ðθ;ϕÞ pair, it is critical to select an R point in our
coordinate system, that minimizes the number of multiple inter-
sections of the various radii with the surface. Since no special
method is available for defining such an optimal origin point,
multiple reference points (R¼ fRijiA ½1;7�g) are proposed for the
optimal description of the whole surface, as shown in Table 1. This
way, the uncertainty introduced from a single-view SH coefficient
extraction will be minimized.

Let f Ri
: R3-S2 denote the function that performs the mapping

of the surface to the corresponding Ri. Specifically, f Ri
ðωÞ :

fωAR3 : f Ri
ðωÞAS2Þg, whereby ω is a point fP1; P2; tg of the AS

in spherical coordinates:

f Ri
ðθ;ϕÞ ¼ min

k ¼ 1;…;K
fdðRi; vkÞg ð3Þ

whereby vk ¼ vkðRi;θ;ϕÞ is the kth intersection of the AS with the
ray that starts from the Ri point for a given pair of values of θ and
ϕ. K is the total number of intersections in the particular direction,
while dðRi; vkÞ stands for the Euclidean distance between Ri and vk.

The Spherical Harmonic Coefficients cl
m for each f Ri

ðθ;ϕÞ can
then be easily calculated by utilizing the orthonormalized sphe-
rical harmonics, multiplying them with the aforementioned func-
tion, and integrating the product over the solid angle dθ dϕ:

cml ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1
4π

ðl�mÞ!
ðlþmÞ!

s Z 2π

0

Z π

0
f Ri

ðθ;ϕÞPm
l ð cosθÞejmϕ dθ dϕ ð4Þ

whereby Pl
m is the associated Legendre polynomial. As it can be

seen, the Legendre polynomial takes two integer arguments l and
m. In particular, l is used as the Spherical Harmonic Band (SHB)
index to divide the class into bands of functions, resulting in a total
of (lþ1)l polynomials for a lth band series, while mA ½� l; l�. It
should be noted that between any Pl

m and a Pm0
l0 for different m

values on the same band, the polynomials are orthogonal with
each other, unless neither m¼m0 nor l¼ l0 holds.

Next, in order to transform the extracted harmonics to compar-
able, rotation- and thus, view-invariant indicators, the following
normalizations should be successively applied:

cnl ¼ ∑
Kl

m ¼ �Kl

jcml j ð5Þ

whereby cnl denotes the lth SHB coefficient, that is rotation
invariant by definition, and Kl stands for the total number of SHs
for the given SHB index l, while m¼ 2l�1. For more details
regarding the spherical harmonic analysis, the reader is referred
to the report of Schonefeld [41].

4.2. Orientation as biometric descriptor

By further studying the previously constructed Activity Surface,
the state vectors θarm;l and ϕarm;l, for each limb l of the arm that
performs the movement, can be extracted, as well. These two state
vectors describe the orientation of the limb l with respect to the
head of the user, for the whole duration of the movement, as
shown below:

θðtÞ ¼ arctan
yheadðtÞ�ylimbðtÞ
xheadðtÞ�xlimbðtÞ

� �
ð6Þ

φðtÞ ¼ arccos
zheadðtÞ�zlimbðtÞ

rðtÞ

� �
ð7Þ

where

rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxheadðtÞ�xlimbðtÞÞ2þðyheadðtÞ�ylimbðtÞÞ2þðzheadðtÞ�zlimbðtÞÞ2

q
and t a certain time instance within the duration of the movement.

The meaning of this transformation is graphically explained in
Fig. 4(b). Thereby, the straight line that connects the points H
(i.e. the position of the head at time t) and L (i.e. the position of
limb l at time t) has a certain orientation in the 3D space. In
particular, it forms the relative angle with which the limb l is
positioned in the space that has its origin in the current position of
the head. The orientation of the axes θ0 and ϕ0 is selected so that
they are aligned to the direction, where the limb l is found at the
beginning of the movement.

Fig. 3. Eight activity surfaces exhibiting visually intra-similarity and inter-variances. The surfaces in different columns correspond to different people, all executing the same
action. The PCA based dimensionality reduction is only used to produce the simplified activity surface (AS), that is then used for the extraction of the spherical harmonics
related features.
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4.3. Speed, acceleration and jerk

In [35] it was reported that fluctuations of hand's speed during
a prehension activity are generally described by a bell shaped
distribution and that the movement is independent from the
speed. Yet, speed, acceleration and jerk are not only affected by
behavioural habits of the user, but also contribute in describing the
temporal dimension of the activity. Thus, they will be included as
indicative, behavioural traits in the evaluation performed within
the current study.

In particular, by utilizing each bounding AC of the aforemen-
tioned AhS, a notion of the movement's speed and the instant
speed variances at which an activity has been performed can be
obtained as the distance between two successive sampling points.
Given the spatial transitions and the temporal information, the
speed, acceleration and jerk vectors of the head and palm during a
prehension movement can be trivially calculated using the central
differences of the well-known formulae:

vx;y;zðtÞ ¼
sx;y;zðtþ1Þ�sx;y;zðt�1Þ

2Δt
ð8Þ

αx;y;z ¼
vx;y;zðtþ1Þ�vx;y;zðt�1Þ

2Δt
ð9Þ

jx;y;z ¼
αx;y;zðtþ1Þ�αx;y;zðt�1Þ

2Δt
ð10Þ

4.4. Curvature & torsion trajectories

Working with the bounding ACs of the Activity hyper-Surface, a
further set of four characteristic view invariant traits can be
extracted. Namely, they are the curvature κ, torsion τ and their
first order derivatives (κs and τs) with respect to the Euclidean arc-
length parameter which is expressed by the position vector sðtÞ of

the points along the curve, as follows:

κðtÞ ¼ sðtÞ � €sðtÞ
‖_sðtÞ‖3 ; τðtÞ ¼ ðsðtÞ � €sðtÞÞ � s…ðtÞ

‖_sðtÞ � €sðtÞ‖2 ð11Þ

for tA ½1; T �, where T is the total number of samples of the curve.
Similarly, the corresponding derivatives are employed to construct
the signature

κsðtÞ ¼
dκðtÞ
ds

¼ dκðtÞ
dt

dt
ds

¼ dκðtÞ
dt

1
J _sðtÞJ ð12Þ

τsðtÞ ¼ dτðtÞ
ds

¼ dτðtÞ
dt

dt
ds

¼ dτðtÞ
dt

1
J _sðtÞJ ð13Þ

The intra-similarities and the inter-dissimilarity of some
extracted curvature and torsion traits from three arbitrary experi-
ments (Section 7.4) are illustrated in Fig. 5(a) and (b) respectively.

The analytical methodology, that has been followed herein
for the estimation of the aforementioned quaternion of activity-
related traits (i.e. curvature, torsion and the corresponding deri-
vatives), is based on differential invariants. In particular, the
signature components that depend on high order derivatives are
sensitive to noise and round-off errors. In order to reduce this
effect and to make the extracted traits robust, the straight-forward
calculation of the high order derivatives (i.e. single point calcula-
tion) is avoided by involving multiple neighboring points. In other
words, the aforementioned traits are numerically approximated
from sðtÞ by using the joint Euclidean invariants (inter-point
Euclidean distances), as described in [42].

4.5. Dynamic spatial cost

According to Rosenbaum et al. [34], motion planning and
especially human movements are governed by two task-relevant
costs; the spatial error cost and the travel cost. The travel cost,
which depends on the changes in the angles at joints, cannot be
applied as a descriptor for the arm's movement, since the joint
angles are not provided by the tracker. However, the spatial cost
dscp can be extended so as to form a useful descriptor that
describes the total distance that is covered by the limb l during
the activity. Originally, the travel cost was defined as

dscp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXo�XcÞ2þðYo�YcÞ2þðZo�ZcÞ2

q
ð14Þ

where ðX0;Y0; Z0Þ and ðXc;Yc; ZcÞ are the Cartesian coordinates of
the target object o and the contact point c, respectively. In other
words, this feature describes the absolute distance between the
initial and the final position of a joint during a movement.
Although this distance metric is of limited discrimination capacity,
it can be easily extended to a valuable and meaningful dynamic
trait, the Dynamic Spatial Cost (DSC), which indicates the covered

Table 1
(P1P2t) coordinates of each utilized reference point. CoGP2 t , CoGP1 t and CoGP1P2

stand for the Center of Gravities for each of the following planes P2�t, P1�t and
P1�P2, respectively. minðASP1 Þ, minðASP2 Þ, minðASt Þ and maxðASP1 , maxðASP2 Þ,
maxðASt Þ denote the minimum and maximum value of the AS in the corresponding
dimension, respectively.

Point no. P1-location P2-location t-location

R1 CoGP2 t CoGP1 t minðASt Þ
R2 CoGP2 t minðASP2 Þ CoGP1P2

R3 minðASP1 Þ CoGP1 t CoGP1P2

R4 CoGP2 t CoGP1 t CoGP1P2

R5 CoGP2 t CoGP1 t maxðASt Þ
R6 CoGP2 t maxðASP2 Þ CoGP1P2

R7 maxðASP1 Þ CoGP1 t CoGP1P2

Fig. 4. The extraction of the orientation vectors of each joint of the arm is calculated with reference to the user's head. The origin of the axis is aligned with the initial pose of the user
(i.e. Hx0 // OHOL ). As such, two orientation vectors (θ;ϕ) are generated for each joint of the arm, describing the changes of the movement's orientation in the 3D space. The
distinctiveness between different users is clearly exhibited via (a) the θ-angle vectors than (c) the vertical ϕ-angle vectors.
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distance at a given time-instant, is described by the following
recursive equation:

dscpðtÞ ¼ dscpðt�1Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxlðtÞ�xlðt�1ÞÞ2þðylðtÞ�ylðt�1ÞÞ2þðzlðtÞ�zlðt�1ÞÞ2

q
In this respect the dscp(T) stands for the total distance covered

by the joint during the activity.
Under these observations, it can be concluded that the motion

towards an object is context specific, when described by the
spatial error cost of Eq. (15) and thus, depends on the surrounding
environment. Thus, the repeatability can be considered valid only
for a fixed environment, which will be the case in the performed
experiment (Section 7). On the contrary, the end position and
posture of the user's hand is reported to be governed by the target
and exhibits very low variation over time for the same user,
therefore satisfying the Permanence requirement.

4.6. Activity Curves

Last but not least, all extracted Activity Curves sðtÞ are con-
catenated, so as to form a single state vector:

SðtÞ ¼ ðsheadðtÞ; sshoulderðtÞ; selbowðtÞ; shandðtÞÞ ð15Þ
The full set of extracted features, regarding the reaching

movement, consists of the activity curves, the 7 sets of Spherical
Harmonic coefficients, the speed, acceleration and jerk vector, the
curvature, torsion and derivatives vector, as well as the dynamic
Spatial Cost vector as functions of time (V¼ fSðtÞ; cnl ; vðtÞ;αðtÞ;
θarm;l;ϕarm;l; cðtÞ;dscðtÞg).

5. Grasping—feature extraction using Activity Curves

The most relevant scientific field to grasping analysis can be
regarded as the Sign Language Recognition (SLR) and gesture
recognition (GR) approaches, which can be divided into two types:
the probabilistic [49–51] and geometric ones [48]. The latter, to
which the proposed scheme belongs, usually deal with static
gestures. However, one of the novelties of the proposed approach
is that it manages to transform a dynamic gesture into a static
hyper-surface and can thus apply geometric techniques.

Furthermore, SLR approaches have been found as inappropriate
for utilization in the current framework due to the fact that their main
target is to diminish and discard the intra-class (class¼action X)
variability of an activity, with respect to the users and therefore many
recent approaches deal with ‘subject independent recognition’ pro-
blems. On a totally different perspective the proposed approach
aims to pronounce and detect intra-class variability for biometric

recognition purposes. Therefore the approaches used for SLR are in
general case not well suited and cannot be used directly for prehen-
sion biometrics.

In the respect, the most typical geometric feature regarding
grasping is the posture of the user's hand after the grasping
equilibrium has been reached. The posture P is then defined as
the set of angles θj of each joint j with respect to the predefined
reference angles in the equilibrium position. Thus, the posture
feature space can be defined as P¼ fθ1;θ2;…;θNg, where N stands
for the total number of the utilized fingers' joints.

However, the grasping biometrics introduced herein aim to
encode the habitual behaviour of humans performing grasping
actions (i.e. how they are used to grasp objects), along with the
corresponding anatomical characteristics (i.e. the grasping posture
depends on the shape, size and kinematics of each individual's
palm). Following this, the aforementioned static features P can be
extended to biometric features of dynamic nature by defining a
sequence of successive postures over time PðtÞ. In this respect, the
feature space of the dynamic hand posture PðtÞ can be described
by a set of N Activity Curves and can now be written as

PðtÞ ¼ fθ1ðtÞ;θ2ðtÞ;…;θNðtÞjtA ½te�t0; te�g ð16Þ
where te refers to the grasping equilibrium time and t0 is a timing
offset appropriately defined and sufficiently large, so as to include
the transitional motion of the hand just before grasping, but also
relatively small, so that the corresponding motion in the interval
½te�t0; te� should not be prone to variance due to environmental
parameters, such as interfering objects. Because we have 4 Degrees
of Freedom (DoF) for each finger and another 3 for the palm's base
(Section 7.3), N¼23.

5.1. Angular speed, angular acceleration and angular jerk

The 1st, 2nd and 3rd time derivatives of each angle θi,
iAf1;…;22g between the finger phalanxes describe the angular
velocity ωθ , the angular acceleration αθ and the angular jerk,
respectively:

ωθ ¼
dθ
dt

; αθ ¼
dω
dt

¼ d2θ
dt2

; βθ ¼
dαθ

dt
¼ d2ω

dt2
¼ d2θ

dt2
ð17Þ

5.2. Dynamic travel cost

Rosenbaum et al. [34] introduced in their study the total travel
cost dtcpðtÞ ¼∑N ¼ 23

j ¼ 1 dtcjðθjðtÞ; TjÞ, where θj is the angular displa-
cement of the jth joint from its starting to its end angle posture
p and Tj denotes the time needed for the absolute angular

Fig. 5. (a) Curvature (Phone Conversation experiment), (b) Torsion (Reach & Grasp experiment) traits from different users.
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displacement. In addition, the Dynamic Travel Cost (DTC)
dtcjðθjðtÞ; TjÞ is going to be utilized as a descriptor of the hand
movements.

Specifically, the cost dtcjðθj; TjÞ of moving joint j through an
angle of size θj in a time Tj that may or may not equal the joint's
optimal time, Tn

j ðθjÞ, for that same angular displacement is defined
as

dtcjðθjðtÞ; TjÞ ¼ kjθjð1þ½Tj�Tn

j ðθjÞ�2Þ ð18Þ
where θj is measured in degrees, Tj in ms2, while the optimal time
is defined as

Tn

j ðθjðtÞÞ ¼ kjlnðθjþ1Þ; kjZ0 ð19Þ
whereby kj is the joint expense factor that is assigned a value from
0 to 1, according to the angles' relative entropy value (see Section 6.1).

It is expected that distinctive variations will be extracted by
Eq. (18) due to the unique finger size and articulation character-
istics of each user. Thus, the Hard to circumvent requirement will be
also satisfied (see Section 3). More evidence on this issue will be
also presented in the recognition capacity analysis that follows in
Section 6.1.

The total set of extracted features, regarding the grasping
movement, consists of the angle vectors for each finger, the
angular speed, angular acceleration and angular jerk vector
and the Dynamic Travel Cost vector as functions of time
W¼ fθðtÞ;ωðtÞ;αθðtÞ;βθðtÞ;dtcðtÞg.

6. Feature selection and classification

This section deals with the evaluation of the authentication
potential of the extracted features (Section 6.1) that will then be
used as input in the utilized classifier, so as to proceed with the
user authentication step (Section 6.2).

6.1. Evaluation of prehension related features authentication
potential

Herein, two measures are presented that will quantify to a
certain extent the features’ authentication capacity, in terms of
both their distinctiveness and their mutual dependency. These are
the Relative Entropy, a metric for distinctiveness, and the Mutual
Information, a metric for independency between distinct distribu-
tions. The outcomes of this analysis will lead to the final selection
of the most independent features that exhibit high authentication
capacity for the proposed biometric system.

6.1.1. Relative entropy and mutual information
Initially, it is assumed that for each of the aforementioned

dynamic biometric features i there are two different probability
density functions f intrai ðrÞ and f interi ðrÞ for the intra- and inter-
variances of the discrete random variables Fintrai and Finteri , respec-
tively. In this context, the relative entropy [52] between the inter-
individual (finteri ) and intra-individual (fintrai ) probability distribu-
tions of an entire population S is defined as follows:

Dðf intrai

������f interi Þ ¼
Z

f intrai log
f intrai

f interi

dr ð20Þ

For the relative entropy, also known as Kullback and Leibler
divergence [52], Dðf intrai jjf interi Þ is describing the “distance” of
fintrai from finteri . However, the term “distance” is not intended to
be taken in its most literal sense, since is not a metric. From the
information theory viewpoint, Dðf ijjf jÞ can be interpreted as a
measure for the expected discrimination information for fi over fj.

Still, since relative entropy is asymmetric i.e.
Dðf intrai J f interi ÞaDðf interi J f intrai Þ, a notion of symmetry is usually

inserted by the mean relative entropy:

Dsymðf intrai J f interi Þ ¼Dsymðf interi J f intrai Þ

¼Dðf intrai J f interi Þþðf interi J f intrai Þ
2

Mutual information measures the information that is shared
between two distributions. It is expected that the mutual informa-
tion of independent distributions is zero. On the contrary, the
mutual information between two identical distributions is as high,
as the actual entropy HðFiÞ �HðFjÞ of each.

The mutual information value for each possible pair of features
is calculated and normalized over the sum of both features'
entropies, in order to obtain a standardized measure for the
features’ intra-dependency:

InormðF interi ; F interj Þ ¼ IðF interi ; F interj Þ
HðF interi ÞþHðF interj Þ

ð21Þ

whereby Iðf interi ; f interj Þ is calculated as

IðFinteri ; Finterj Þ ¼ ∑
f interi AR

∑
f interj AR

f interi;j log
f interi;j

f interi f interj

ð22Þ

6.2. Classification and user authentication

The format of the extracted features is a set of M state vectors
obtained via frequent measurements of the interaction, whereby
M is the number of simultaneously observed features. Although
these state vectors provide quantitative snapshots of the interac-
tion, only a subset M0 of the total number of features will
contribute towards the users’ final verification.

Given that all features, apart from the Spherical Harmonics
Coefficients (SHCs), exhibit a strong dependence on temporal
relations and ordering, it is essential that classification is performed
via some appropriate spatiotemporal means. The Dynamic Time
Warping (DTW) algorithm [53] has been utilized as the classifier in
the present scheme, since it sufficiently manages to capture the
spatiotemporal information of the biometric traits. The SHC-related
features are compared with each other via the L1-norm.

The DTW algorithm has been widely used in a series of mat-
ching problems, varying from speech processing [53] to biometric
recognition applications [54]. Its main advantages are its simple
implementation and its satisfactory performance given the
required processing time. A possible implementation basis on
estimating the closed area formed by the path around the diagonal
of the rectangular DTW-grid (Fig. 6(a)). The total dissimilarity dDTW
between the vectors under comparison is defined as the product of
the area Ac and the minimum difference cost DminðT ; TÞ, that are
calculated via dynamic programming [53]:

dDTW ¼ Ac � DminðT ; TÞ ð23Þ
The general process that is followed is that each “probe” feature

vector or feature vector set is compared with the “gallery”
template of the claimed ID that is stored in the database. In order
to combine authentication scores from different modalities so as to
derive an authentication metric for the full prehension movement,
the scores from each tracking device have to be fused. It should be
noted that the camera-based and sensor-based tracking devices
are used in turns, in combination with the glove-based tracking
device. The fusion of scores from different tracking devices is
performed via score-level fusion:

Dtot ¼ ∑
jA fC;M;Gg

wjdj;DTW ð24Þ

whereby dj;DTW stands for the score provided by each tracking
device j (C:Camera; M:Magnetic; G:Glove), while wj is the
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corresponding weight coefficient and is proportional to the total
number of bits of information of the utilized features:

wj ¼
bits of information for all features of device j
total number of bits for all utilized features

ð25Þ

7. Case study—prehension movements experimental
evaluation

Following the analysis presented above regarding the reaching
and grasping activities, two separate experiments have been
conducted, in order to study the movement of the arm and the
finger in practice. Thereby, each user was instructed to perform
both a simple Reaching and Grasping activity and a more complex
one, a short Phone Conversation. The complete framework that is
proposed herein includes the tracking of the user's head, arm's and
fingers' joints via special equipment (Section 7.2).

7.1. Integrated system architecture

The system that has been set up for the experiments' execution
is a three-layered system (i.e. Tracking, Feature Extraction and
Decision Taking), which consists of two trackers for the arm
movement and one tracking device for the movement of the
fingers, as shown in Fig. 7.

As it can be easily noted, the proposed framework aims at
exploiting a series of motion-related features for user authentication.
Following both Hoff's assumption [33] about the two distinct phases
of a prehension movement and the theoretical background provided
in Sections 3.1 and 3.2, a two-fold approach is followed here.

7.2. Tracking module

In this section, the methods utilized for tracking the humanmotion
during a prehension movement are described. Specifically, two
methods are outlined regarding the arm movement, a camera based
and a (magnetic) sensor based, which also forms the ground truth.
Further, the finger movements are tracked by the CyberGloves, a
dataglove,2 which converts the deformations on its surface into real
angle values (Fig. 8).

7.2.1. Tracking of reaching movement
The core of the utilized vision-based upperbody tracking3 is

presented in [19] and is briefly described in the following, so as to
make the paper self-contained. The user's movements are recorded
by a stereo camera and the raw captured images are processed, in
order to track his/her head and hands via the successive application
of filtering masks on the captured image. Specifically, a skin-colour
mask combined with a motion-mask can provide the location of the
palms, while the head can be accurately tracked via a combination
of a Viola–Jones face detection algorithm and a mean-shift object
tracking algorithm. The 2.5D information can be easily derived,
performing disparity estimation from the input stereoscopic image
sequence.

Real 3D data are acquired from the disparity values. The origin
of the axes at each repetition is the head's initial location. In order
to reduce the effect of noise in the calculation of sensitive high
order derivatives and to make the signature robust, the differential
invariants in the signature undergo a preprocessing, which con-
sists of smoothing via Kalman filtering.

The accuracy of the proposed vision-based tracker was eval-
uated via the Magnetic Motion Tracker of Ascension Technology
Corp. Specifically, two small magnetic sensors were mounted on
the user's head and hand as indicated by the coloured spots in
Figs. 1 and 8, during the execution of the experiment. Simulta-
neously, the user's head and hand were tracked by the stereo-
scopic camera. A series of post-processing algorithms [19]
applied to the raw tracked points of both trackers, extracted
smooth motion trajectories which were then used as biometric
signatures. The comparison between the derived motion trajec-
tories (Fig. 9(a)) demonstrates the capabilities of the proposed
tracker.

The small offset that can be seen in the trajectories of the
camera tracker was mainly caused by the fact that the magnetic
tracker was mounted at the user's wrist, while the camera tracker
detects the gravity center of the palm. It turns out that, although
not being able to capture the motion in a detail as the magnetic
tracker, the performance of the proposed visual tracker is satis-
factory enough for the needs of the current experiment, as it will
be proven by the authentication results (Section 7.4).

7.3. Tracking the grasping movement

In order to cover the second part of a prehension movement, the
tracking of the fingers during the grasping activity is required. The
device that has been utilized for this scope is the CyberGloves.
It provides the angles between the phalanxes of the hand by
translating into current changes caused by the deformations of
integrated thin metallic layers. In this respect, the 3D reconstruction
of the hand is possible for visual verification of the tracking.
Specifically, each finger has been assigned 4 Degrees of Freedom
(DoF), while it consists of 3 phalanxes (Fig. 8(a)). Similarly, another
3 DoFs have been assigned to the palm's base.

At this point, it should be noted that according to the authors
knowledge, there is no available vision-based tracker for detecting

Fig. 6. Estimation of the matching score between the “gallery” and the “probe”
vectors using a DTW-Grid. The plotted diagonal presents the (optimal) path with
the least difference cost, i.e. “gallery” and “probe” vectors are identical. The value
for Ac is calculated as the area enveloped between the optimal and the actual path
on the DTW-Grid, as described in [53].

2 The utilization of the glove significantly reduces (if not eliminates) the
unobtrusiveness offered by activity-related (and vision-based) biometric

(footnote continued)
approaches. However, the scope of the current paper is the demonstration of the
recognition potential of prehension biometrics. In other words, this paper forms a
study of activity related features that aims to suggest efficient and robust
algorithms for their processing during certain prehension movements, which
resemble the presented ones. The major improvement over previous works is the
framing of the reaching biometrics in the more generic concept of prehension
biometrics.

3 Contrary to the finger tracking device, the tracking of the upperbody is
achieved via the incorporation of a vision based head/hand tracker has been
studied, which is able to produce acceptable recognition accuracy, although slightly
lower that its magnetic (more obtrusive) alternative.
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and recognizing the palm gestures accurately over time. Moreover,
the development of such a tracker is a complicated task that is out
of the scope of the current work. Thus, the dynamics of the palm
and finger movements will be studied only via the utilization of
the CyberGloves sensor. However, this fact does not reduce the
level of unobtrusiveness in future prehension based biometric
systems, when appropriate trackers will become available. Last but
not least, it should be noted that finger based biometrics are

studied hereby, for reasons of completeness of the prehension
based movements and act supportively to the already proven
authentication potential of the arm based movements [19].

Herein, a set of postprocessing actions is performed on the data
derived by the CyberGloves device. In particular, the raw data
underwent some filtering and processing on the timeseries infor-
mation, such as resampling, smoothing via low-pass filtering for the
removal of artificially generated peaks.

Fig. 7. Overview of the proposed system: Regarding the upperbody movements, the Magnetic and the Camera trackers track the 4 (i.e. head, shoulder, elbow and wrist) and
the 2 (i.e. head and wrist) points of interest of the human body , respectively, and thus, both the Activity hyper-Surface and the simplified Activity Surface are generated. Two
complementary sets of activity related features are extracted then by each of the aforementioned descriptors, as shown in the ‘Feature Extraction’ building block in the top
right corner of the image. Regarding the movement of the fingers, 23 angles in total are tracked by the CyberGlove device and the corresponding Activity Curves for the
angles are produced. Then, the indicated features are extracted. Finally, the DTW classifier forwards a matching probability for each feature separately in the fusion module,
which produces the final recognition result, by taking into account the distinctiveness and the uniqueness/redundancy of each feature. Some more detailed views of the
proposed architecture can be found in http://www.iti.gr/�drosou/PrehensionBiometrics/SystemArchitecture.pdf.

Fig. 8. Simultaneous data recording from three tracking sources during (a) a Reach and Grasp activity and (b) a Phone Conversation. (For interpretation of the references to
colour in this figure caption, the reader is referred to the web version of this paper.)

Fig. 9. (a) Comparison between vision-based tracker and ground truth (magnetic tracker). (b) Finger phalanxes' angles. (c) Notation of finger names.
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7.4. Experimental evaluation of the extracted features in a lab-
environment database

The experimental setup includes one testing action that is
performed by 29 subjects, as many as the population of the dataset
in [19]. In particular, each user has been asked to perform an
activity denoted as a raw “Reaching and Grasping” task (Experi-
ment 1): the user had to lean forward and grasp a lamp standing
on the desk. The second activity was a short “Phone Conversation”
(Experiment 2). In particular, the user had to pick up the ringing
phone with his/her right hand, bring it next to the ear, hold a short
conversation and put it back on its base.

Each experiment was repeated by each user 6 times. The first
3 were used for the enrollment of the user (gallery), while the 4th
and the 5th repetitions were used for testing. The 6th repetition of
each user was kept as backup for corrupted recordings. The users
had been advised to act free and no special constraints were
imposed. Repetition 4 was recorded immediately after the enroll-
ment sessions. As such, there is a high resemblance in both the
attitude and the movement of the user. On the contrary, the 5th
repetition was recorded in a different time session (i.e. after a day),
in order to test the permanence of the proposed traits over time.

Regarding Experiment 2, a post-processing algorithm was
applied on the extracted trajectories in order to compensate for
the following issue. Given that the duration of a phone conversa-
tion may be of arbitrary length, the meantime between the
moment the phone reaches the ear and the moment the phone
leaves the ear is rejected from the trajectory.

7.4.1. Feature evaluation
Provided the features extracted as described in Sections 4 and 5

and the evaluating tools presented in Section 6.1, an analysis was
conducted in order to investigate the content of a biometric feature
representation of each single individual, with respect to the whole
population. More specifically, the general distribution fintrai was
constructed, by using all measurements of feature i from all users.
Similarly, finteri was constructed by using all measurements of feature i
from the training sessions of a single user.

The extracted biometric traits were grouped with reference to
the tracker used for each experiment. The relative entropy values
are exhibited in Figs. 10 and 11.

One can notice the high discriminative capacity of most of the
novel Spherical Harmonic Coefficients as activity-related features.
Given the low relative entropy values (in bits) of specific reference
points, one can conclude that these views of the Activity Surfaces are
characterized by a large number of intersections (see Section 4.1).
Equally interesting is the fact that the spatial cost of the hand is of
high discriminative capacity. Intuitively, it can be claimed that the
larger the total spatial cost, the larger the user and vice versa.

Regarding the Cybergloves features, one can see that the most
indicative features are the angles and the Dynamic Travel Costs (DTC)
of each finger, while angular velocity and acceleration of some
phananxes may provide enhanced distinctiveness among users. The
red line stands for the total DTC, summed up over all fingers.

Still, among the most indicative features, there may still be
redundancy, given that it is very likely that some features are not
independent. In order to detect them, the extracted features are
evaluated with respect to their inter-dependency, via their mutual
information IðFinteri ; Finterj Þ.

Given the vast number of utilized features, the confusion
matrices4 are difficult to be read, the most important findings are
discussed hereby. First, a high dependency value is exhibited
between the features associated with elbow and hand movement.
Similar quite high dependence has been detected between the
shoulder's and the head's movement, as it is expressed via the
extracted features (i.e. activity curves, orientation vectors, curvature,
etc.). These findings verify Lacquaniti et al.'s assumption [35] about
the strong correlation of all the joints of the arm during a prehension
movement. Finally, the full spatial cost is highly related with the
hand's spatial cost, especially in the Phone Conversation experiment.

Regarding the fingers' movement, let us first assign the follow-
ing identification letters to each finger: a-thumb, b-pointer,
c-middle, d-ring and e-pinky. During both experiments, it was
noticed that there was high dependency in the angles' movement
of all joints of fingers d and e. An equally high dependency was
detected in the movement of the base's angles of fingers b, c, d and
e during the Reaching and Grasping movement, while the move-
ment of the pointer's base was differentiated significantly during
the Phone Conversation experiment. Similarly, to the above, the full
travel cost of all fingers was roughly the same.

Finally, in order to estimate the optimal number of most
indicative features that should be used for authentication, the
following process was attempted. In particular, an alternative
approach to a classification problem following the basic principles
of typical classification techniques (e.g. minimum redundancy
maximum relevance (mRMR)) is utilized herein, taking into
account both the Kullback–Leibler divergence (i.e. relative entropy)
for evaluating each feature individually and the mutual entropy for
co-evaluating the correlations between all features.

For each experiment (i.e. Reach and Grasp and Phone Conversation)
and for each tracking device (i.e. Camera Tracker, Magnetic Tracker
and CyberGloves) the Equal Error Rate value was calculated, as a
function of utilized features (Fig. 12), starting from 1 to the total
number of extracted features Nmovement;tracker , with respect to the
tracker and the movement studied. Based on the confusion matrix
with the mutual entropies, the ni

movement; tracker features are preserved

Fig. 10. Relative entropy values from features extracted by (a) Camera Tracker, (b) Magnetic Tracker, (c) CyberGloves for the “Reaching and Grasping” experiment. (For
interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

4 www.iti.gr/�drosou/PrehensionBiometrics/MIConfusionMatrices.pdf
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that have the highest relative entropy value and are not strongly
correlated with others. The index i denotes the number of the current
iteration of the algorithm (i.e. niþ1

movement;tracker ¼ ni
movement; trackerþ1).

Each utilized feature had undergone a min–max normalization,
while the classification at this stage was performed with the
Dynamic Time Warping Algorithm (see Section 6.2). This way an
EER score is estimated in the testing dataset and noted down, while
the algorithm proceeds to the next iteration.

As it has become evident up to now, during the carried out
experiments, reaching and grasping movements have been
recorded separately by two autonomous monitoring devices, and
thus, these distinct processing procedures can be regarded as non-
correlated. Following this, in the absence of one monitoring
device, the other is not affected, while the recognition potential
of the latter remains the same. An improvement in the biometric
recognition occurs due to the combination of two distinct traits
(see Table 2), as it is the general case in multi-biometric
approaches that are properly fused, in the absence of redundancy
between the features.

It has been noted that after a certain number of utilized
features nmovement; tracker , the authentication performance decreases
(i.e. EER score increases accordingly in Fig. 12), since the use of less
distinctive or redundant features has a negative effect to the
authentication performance of the system. Thus, the indicated
unimportant features will be discarded from the authentication
procedure, since their utilization has a negative contribution. In
this respect, features with high mutual information values with
others can be discarded, without serious loss in the overall
discrimination capacity of the system. Thus, the table in Fig. 13
includes the features per activity that are maintained, as the most
valuable ones (a description of the notations used in this figure can be
found in Fig. 10(a) and (b) for the joints of the arm and in Fig. 13(c) for
the joints of the fingers).

Additionally in Fig. 12, the reader can notice that the minimum
authentication error of the camera tracker is significantly larger

than the one derived from the magnetic tracker. This is to be
explained by the fact that sometimes the camera tracker fails to
capture accurately the velocity and acceleration information of the
movement, by being more sensitive to noise from variable illumi-
nation and shadows. Although this does not affect the general
form of the trajectory, it causes some unavoidable flickering
around the tracked point (head and hand) along the frame
sequence, which is crucial for capturing the velocity, acceleration
and jerk information.

In order to verify the Permanence in Time requirement of our
biometric approach, the same users were asked to perform the
same activities in a different time session (i.e. after a day). The
aforementioned findings regarding the optimal number of pre-
served, most discriminative features, were utilized herein and the
authentication and identification results are shown with the help
of ROC and CMS curves, respectively (Fig. 14). Similar ROC curves
generated from non-optimal amounts of indicative features are
suggestively illustrated, as well, in order to exhibit the system's
non-optimal performance.

The reader can notice a degradation of o5%, for the optimal
number of features per tracking device. However, this performance
is improved when the authentication scores of both phases of the
prehension movement are used simultaneously (see Table 2), as
expected.

Fig. 11. Relative entropy values from features extracted by (a) Camera Tracker, (b) Magnetic Tracker, (c) CyberGloves for the “Phone Conversation” experiment. (For
interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

Fig. 12. The equal error rate value as a function of the number of the utilized most indicative features—applied in the decreasing order of relative entropy—for (a) Camera
Tracker, (b) Magnetic Tracker, (c) CyberGloves .

Table 2
Overall authentication errors after final fusion.

Experiment Name Session1 (%) Session2 (%) Virtual subjects (%)

Phone Conversation
Camera Tracker & CyberGlove 1.1 3.9 4.7
Magnetic Tracker & CyberGlove 0.8 3.3 3.6

Reaching and Grasping
Camera Tracker & CyberGlove 6.8 7.7 8.2
Magnetic Tracker & CyberGlove 2.6 6.2 6.4
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7.5. Experimental evaluation in a realistic environment
with the ACTIBIO database

The findings of the previous section were applied to the real
environment of the ACTIBIO database [19], where similar record-
ings regarding the reaching movement were included. More
specifically, the ACTIBIO database consists of another 29 subjects
performing everyday office activities, such as a phone conversa-
tion and an interaction with a microphone. The second activity
includes the leaning of the user towards a microphone, the talking
and the getting back in his/her original position. This activity was
selected for evaluation because it resembles the reaching phase of
a prehension movement.

In order to verify the robustness of the proposed method in the
real environment of the ACTIBIO database, the most significant
features (see Fig. 13 in Section 7.4.1) were extracted. Fig. 15
illustrates the variations of the system's performance in terms of
EER scores for different numbers of the most indicative features
(table in Fig. 13). Unfortunately, the ACTIBIO database does not
include measurements with CyberGlove. Thus, the evaluation of
our framework was based only on the proposed camera tracker
(Section 7.2.1).

There was an improvement in the system's performance
compared to the results reported in [18], whereby the simple

utilization of the Activity Curves exhibited an EER of 415% and
10% for the two activities.

7.6. Experimental evaluation in a large synthetic database

Finally, in order to study the performance of the proposed
method in larger population, it was evaluated in another database
of 100 virtual subjects that was created as follows. Let us define the
“mean” trajectory and the “mean” velocity for each limb as the
average trajectory-velocity of all available enrollments (black line in
Fig. 16). Given the estimated first and second order statistics among
all users' activity curves (minterðtÞ, σinterðtÞ) from the proprietary
dataset (Section 7.4), 100 new “base-features” were created. We used

snl ðtÞ ¼minter
s;l ðtÞþns;lðtÞ; ð26Þ

where ns;lðtÞ was a random number drawn from a normal distribution
with 0 mean and standard deviation σinter

s;l ðtÞ, regarding the lth joint.
In order to minimize the effect of flickering along a feature

signal, generated this way, we used a low-pass filtering method via
a moving average window. Finally, new “Repetitions” (see Fig. 16)
of each virtual subject were generated by using the detected intra-
variance (mintraðtÞ, σintraðtÞ) of each subject. Similarly, virtual
velocity vectors can be generated, i.e. vn

v;lðtÞ ¼minter
v ðtÞþnv;lðtÞ

and the corresponding intra-parameters.

Fig. 13. Summary of the initially extracted and the remaining (i.e. most valuable, in terms of authentication capacity, features per tracking device) features. The notations for
the finger joints are explained in Fig. 9(c).

Fig. 14. ROC curves for the performed activities in Session 5 sorted by tracking device: (a) Camera Tracker, (b) Magnetic Tracker, (c) CyberGlove. The corresponding CMS
curves can be found in http://www.iti.gr/�drosou/PrehensionBiometrics/CMSGraphs.pdf.
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This way, given a set of virtual activity curves and the
corresponding velocity vector, one can easily estimated the virtual
activity's duration tn. The rest of the features were then extracted
for each subject as described in Sections 4 and 5. In Fig. 16, one can
see some samples of virtual features from different users. It can be
noticed that the physical notion of the activity curves is preserved.

Similar to the experiments performed in the previous two
databases, the changes of the EER scores for different number of

utilized features are presented in Fig. 17 for the two proposed
activities.

It should be noted that the results from the synthetic database
should be compared with the ones of Session 2 (Fig. 14), given that
the generated trajectories for the virtual subjects were based on
statistics from all sessions.

Finally, it is expected that by fusing the outcomes of the two
phases for each activity, the overall authentication performance of
the system will be improved. The fused results of the proposed
framework are presented in Table 2. It should be noted that the
fusion was performed as described at the end of Section 6.2.

8. Conclusion

In this paper, a novel descriptor for prehension movements was
presented. Based on this, a series of activity related features were
extracted which capture the dynamic characteristics of reaching
and interacting with objects to be used for biometric authentica-
tion. The authentication potential of these features was estimated
according to their relative entropies, with inter-dependencies
detected via the mutual information of the systems.

Although the presented study has shown promising results
regarding the authentication potential, the application of such
biometrics in real case scenarios, as well as the level of unobtru-
siveness it offers is highly dependent on the quality of tracking, as

Fig. 16. Multiple repetitions of virtual subject's features.

Fig. 17. ROC curves for the performed activities in the synthetic database sorted by tracking device: (a) Camera Tracker, (b) Magnetic Tracker, (c) CyberGlove. The
corresponding CMS curves can be found in http://www.iti.gr/�drosou/PrehensionBiometrics/CMSGraphs.pdf.

Fig. 15. ROC curves for the performed activities in the ACTIBIO Database, as they
were recorded by the Camera Tracker. The corresponding CMS curves can be found
in http://www.iti.gr/�drosou/PrehensionBiometrics/CMSGraphs.pdf.
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it has been observed from the comparison between the vision-
based and the sensor-based arm tracker. Thus, future trackers are
expected to be significantly valuable for the actual incorporation of
the proposed modality in actual biometric systems.

The proposed features were tested in two scenarios of three
databases (i.e. two medium sized and a large one) and the
experimental results showed that the proposed method can
achieve high rates of authentication performance. The proposed
method can be integrated along with other types of features in a
user authentication system, so as to improve its overall efficiency.
For instance, prehension biometrics can offer a robust modality for
both those who are unwilling to be exposed to inconvenient
processes (e.g. iris scan and fingerprint scan), as well as an integral
part of an “on-the-go” authentication system [20]. Last but not
least, prehension biometrics are recommended for continuous,
transparent authentication, so as to renew the validity of the
claimed ID of the user transparently.
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