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Abstract—This paper proposes an innovative gait identification and au-
thentication method based on the use of novel 2-D and 3-D features. Depth-
related data are assigned to the binary image silhouette sequences using
two new transforms: the 3-D radial silhouette distribution transform and
the 3-D geodesic silhouette distribution transform. Furthermore, the use of
a genetic algorithm is presented for fusing information from different fea-
ture extractors. Specifically, three new feature extraction techniques are
proposed: the two of them are based on the generalized radon transform,
namely the radial integration transform and the circular integration trans-
form, and the third is based on the weighted Krawtchouk moments. Ex-
tensive experiments carried out on USF “Gait Challenge” and proprietary
HUMABIO gait database demonstrate the validity of the proposed scheme.

Index Terms—Gait authentication, generalized radon transforms,
genetic fusion, 3-D surface silhouette distribution.

I. INTRODUCTION

Gait analysis has recently received growing interest within the com-
puter vision community. Human movement analysis emerged a few
decades ago mainly for medical analysis purposes [1], [2]. The latest
research activities in multimodal biometrics evaluate the use of gait as
a promising biometric modality. From a surveillance perspective, gait
is an interesting modality because it can be acquired from a distance
inconspicuously.

A. Current Approaches in Gait Recognition

Present work on automatic gait recognition has focused on the
development of methods for extracting features from the input gait
sequences. Gait analysis can be divided mainly into two techniques:
model based and feature based (model free). Model-based approaches
[3]–[7] study static and dynamic body parameters of the human
locomotion. In [3], a multiview gait recognition method was presented
using static activity-specific parameters, which are acquired from
automatic segmentation of the body silhouette into regions. In [5],
a gait recognition method has been proposed based on a statistical
shape analysis. Moreover, in [7], a method was presented that extracts
the gait signature from the evidence-gathering process. Experimental
analysis in a dataset of ten subjects exhibited encouraging results.
Conclusively, model-based approaches [3]–[7] create models of the
human body from the input gait sequences. Previous work on these
approaches shows that they are view and scale invariant. However,
experimental evaluation in larger publicly available databases is
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needed in order to compare their performance to that of feature-based
methods.

On the contrary, feature-based techniques used for gait recognition
do not rely on the assumption of any specific model of the human body
for gait analysis. Initially, the binary map of the moving person is esti-
mated and a feature vector is extracted from the silhouette sequences.
In [8], the extraction of features was performed on whole silhouettes;
in [10], width vectors were used; in [11], Fourier descriptors were in-
troduced; and, finally, in [12], angular transform was applied in silhou-
ette sequences. All of the aforementioned techniques employ the use
of gait in a temporal manner. The final stage in the feature-based ap-
proaches is the selection of the matching method to be used for finding
the similarity between two input gait sequences. Proposed methods
for matching are based on simple temporal correlation; full volumetric
correlation on partitioned subsequent silhouette frames [8], [9]; linear
time normalization [13]; and dynamic time warping [14], [15]. In most
cases, Euclidean distance was used as a metric for distance calculation,
but there are also reports on using procrustes distance [5] and sym-
metric group distances [16].

B. Motivation—The Proposed Approach

This paper proposes a novel gait identification and authentication
method based on the use of novel 2-D and 3-D features of the image
silhouette sequence. The proposed algorithm is tested and evaluated in
two datasets and was compared to the state-of-the-art methods in gait
analysis and recognition. Furthermore, the use of a genetic algorithm
is proposed for fusing information from different feature extractors.
Specifically, three new feature extraction techniques are proposed: two
of them are based on the generalized radon transform, namely the ra-
dial integration transform (RIT) and the circular integration transform
(CIT), which have been proven to offer a full analytical representation
of the silhouette image using only a few descriptors, and the third is
based on the weighted Krawtchouk moments that are well known for
their compactness and discriminating power. The use of moments for
shape recognition has recently received great attention [4], [16], [24].
Lee and Grimson computed a set of image features based on moments
[4]. Shutler [24] proposed the use of the Zernike velocity moments
for describing the motion throughout an image sequence. Zernike mo-
ments are based on a set of continuous orthogonal moment functions,
such as Legendre moments. Experimental results on multiple datasets
exhibited improvements in the recognition performance and illustrated
their benefits over Cartesian velocity moments. One common problem
with these moments is the discretization error, which increases as the
order of the moment raises and, thus, limits the accuracy of the com-
puted moments [25]. However, motivated by the successful use of these
moments for gait recognition, this paper introduces the use of a set of
discrete orthogonal moments, which do not involve any numerical ap-
proximation and are based on the weighted Krawtchouk polynomials
[25], [26]. As a result, the error in the computed Krawtchouk moments
is nonexistent and a reliable reconstruction of the original image can be
achieved using relatively low-order moments. By using these weighted
Krawtchouk moments, the recognition performance on the Gait-chal-
lenge database [9] will be seen to improve over the methods in [8], [13],
[14], [32], and [33].

This paper also introduces the use of depth data, captured by a stereo
camera for gait signal analysis. Depth-related data are assigned to the
binary image silhouette sequences using two new transforms: the 3-D
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Radial silhouette distribution transform and the 3-D geodesic silhouette
distribution transform. The proposed 3-D descriptors encode informa-
tion not only about the position of the silhouette points on the image
plane, but also about their 3-D distribution on the hull that represents
the visible surface of the walking subject. The 3-D radial distribution
transform encodes on each pixel of the extended silhouette image, the
distance of the corresponding 3-D point from the center of mass of the
3-D hull. Even if this representation does not have any obvious physical
meaning, it can be very easily extracted and is seen to provide satis-
factory results. On the contrary, the 3-D geodesic silhouette transform
provides very useful information about the degree of protrusion of each
single point on the extended image. In particular, instead of measuring
the distance of each point from the center of mass, the value stored on
each point of the silhouette image corresponds to its degree of protru-
sion. The degree of protrusion is seen to implicitly capture information
directly related to the underlying shape [19] (e.g., the final protrusion
map of the silhouette will be different for subjects with larger main
body or longer hands). Therefore, it is expected that this extended sil-
houette will be more suitable for the static identification of the shape
of the walking subject.

The proposed algorithms are tested and evaluated in two large
datasets and considerable improvements in recognition performance
are seen in comparison to the state-of-the-art methods for gait
recognition.

II. PREPROCESSING OF GAIT SEQUENCES

A. Silhouette Extraction

In order to analyze the human movement, the walking subject silhou-
ette needs to be extracted from the input image sequence. Initially, the
background is estimated using a temporal median filter on the image
sequence, assuming static background and moving foreground. Next,
the binary silhouettes, denoted by BSil

k , are extracted by comparing
each frame of the sequence with the background. The areas where the
difference of their intensity from the background image is larger than
a predefined threshold are considered silhouette areas. The generated
silhouette images are noisy. Therefore, morphological filtering, based
on antiextensive-connected operators [17], is applied so as to denoise
the silhouette sequences. Finally, potential shadows are removed by an-
alyzing the sequence in the HSV color space [18], thus resulting in the
final binary silhouette ~BSil

k .

B. Using Depth to Enhance Silhouette Sequence Extraction

A new technique is introduced that exploits depth data, if they are
available. Let Dk denote the gait disparity data sequence and WC

be a function that converts a disparity value D(x; y) to 3-D coor-
dinates in the world coordinate system using the already calibrated
stereo-camera. At this stage of preprocessing, each gait sequence is
composed of k binary silhouettes ~BSil

k (x; y), x = 0; . . . ; R � 1,
y = 0; . . . ; C � 1, where R and C refer to the number of rows and
columns of the binary silhouette, respectively. The world coordinates
(xWC;k; yWC;k; zWC;k) of the silhouette image of the kth frame are
given by

(xWC;k; yWC;k; zWC;k) =WC (x; y;Dk(x; y)) � ~B
Sil

k (x; y): (1)

Subsequently, the center of mass (xC;k; yC;k; zC;k) of each silhou-
ette image is estimated.

In the following, the 3-D radial silhouette distribution and the 3-D
geodesic silhouette distribution transform are defined. The proposed

Fig. 1. Illustration of silhouette representation utilized by the proposed system.
(a) Binary silhouette, (b) 3-D radial distributed silhouette, (c) range map image,
(d) silhouette triangulation, and (e) 3-D geodesic distributed silhouette.

3-D radial silhouette distribution transform, denoted asRSil

k , is defined
as

R
Sil

k (x; y) = kWC (Dk(x; y))� (xC;k; yC;k; zC;k)k2

� ~BSil

k (x; y)

(2)

R̂
Sil

k (x; y) =
RSil

k (x; y)�min RSil

k (x; y)

max RSil

k (x; y) �min RSil

k (x; y)
� 255

(3)

where k � k2 denotes distance computation using L-2 Norm (Euclidean
distance), k refers to the current frame of the gait silhouette sequence,
(x; y) is the pixel position, and R̂Sil

k (x; y) represents the normalized
3-D silhouette values in the range from m to 255, as illustrated in
Fig. 1(b). In the proposed scheme, m was selected to be equal to 60.

Instead of using Euclidean distance, the use of geodesic distance on
the manifold of the silhouette surface is also proposed, with the intro-
duction of the 3-D geodesic silhouette distribution transform. Initially,
the triangulated version of the 3-D silhouette that also includes depth
information is generated, as illustrated in Fig. 1(c) and (d). Adjacent
pixels of the silhouette are grouped into triangles using Delaunay tri-
angulation. Next, the dual graph G = (V; E) of the given mesh is
generated [20], where V and E are the dual vertices and edges. A dual
vertex is the center of mass of a triangle and a dual edge links two ad-
jacent triangles. The degree of protrusion for each dual vertex results
from the following equation:

p(u) =

N

i=1

g(u;vi) � area(vi) (4)

where p(u) is the protrusion degree of dual vertex u, g(u; vi) is the
geodesic distance of u from dual vertex vi, and area (vi) is the area of
triangle that corresponds to the dual vertex vi.

Let us define G0Sil

k (u) a function that refers to the dual vertices, to
be given by

G
0Sil

k (u) = p(u) � ~BSil

k (u): (5)

The 3-D geodesic silhouette distribution transform for the silhouette
image, denoted as GSil

k (x; y), is simply a weighted average of the dual
vertices that are adjacent to the corresponding pixel (x; y), i.e.,

G
Sil

k (x; y) =

8

i=1

G
0Sil

k (u) � w(x; y;u) (6)

Ĝ
Sil

k (x; y) =m+G
Sil

k (x; y) � (255�m) (7)

where i = 1; . . . 8 denotes the number of adjacent pixels (x; y) to be
weighted, w(x; y;u) is the weighting function, and ĜSil

k (x; y) repre-
sents the geodesic silhouette image at frame k, as illustrated in Fig. 2,
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Fig. 2. Illustration of 3-D geodesic transform. (a) Binary silhouettes and
(b) corresponding 3-D geodesic distributed silhouettes.

with values in the interval of [m; 255]. In the proposed approach, m
was selected to be equal to 60.

C. Normalization

In the final step of the preprocessing stage and before feature
extraction, the preprocessed binary ( ~BSil) or 3-D silhouette images
(R̂Sil); ĜSil) are scaled to the same resolution as in [9] and aligned to
the center of the frame in each frame [9], [13], [14].

III. FEATURE EXTRACTION FROM GAIT SEQUENCES

In this paper, the use of two 1-D radon transformations and the
weighted Krawtchouk moments is proposed for generating the feature
vector. In all cases, the input to the feature extraction system is as-
sumed to be either the binary silhouettes ~BSil

k or the 3-D–distributed

silhouettes R̂Sil
k ; ĜSil

k when the 3-D surface silhouette distribution
transform is used.

A. 1-D Radon (RIT–CIT) Transformations

In this case, the feature extraction procedure transforms the input
silhouette gait sequences using the RIT and the CIT [21]. Generalized
radon transforms are proposed for feature extraction due to their capa-
bility to represent significant shape characteristics [22], [23]. Hence,
it is expected that significant outcomes about a human shape and mo-
tion style can be exploited by studying these two generalized radon
transforms. In particular, during human movement, there is a consid-
erably large diversity in the angles of lower parts of the body (e.g.,
arms and legs), which should be unique among individuals. The pro-
posed radon transforms ensure that these important dynamics of human
shape will be encoded in the corresponding coefficients of RIT and
CIT, thus enabling the classification of individuals using these com-
pact feature transforms. Furthermore, another suitable recognition fea-
ture of the generalized radon transforms (RIT and CIT) is that each
corresponding coefficient is estimated from the summation of several
silhouette pixels and, thus, the proposed methods are less sensitive to
the presence of noise on the silhouette image.

The RIT of a function f(x; y) is defined as the integral of f(x; y)
in the direction of a straight line that starts from the point (x0; yo) and
has angle � with the horizontal axis x. The equation that calculates RIT
for each � is the following [21]:

RITf(�) =
+1

0

f(x0 + u cos �; y0 + u sin �)du (8)

where u is the distance from the starting point (x0; y0).
In order to apply the RIT transform to the gait silhouettes, we assume

that the origin is the center of mass (x0; y0) of the silhouette. Practi-
cally, since there in an infinite number of angles �, the RIT transform is
computed in steps of ��. The angle step �� affects the level of detail
of the transform. The discrete form of the RIT transform is used

RIT(t��) =
1

J

J

j=1

Sil(x0 + j�u � cos(t��); y0

+j�u � sin(t��); )t = 1; . . . ; T (9)

Fig. 3. Applying the (a) RIT and (b) CIT transforms on a silhouette image using
the center of gravity as its origin.

where �u and �� are the constant step sizes of the distance (u) and
angle (�), J is the number of silhouette pixels that coincide with the
line that has orientation � and are positioned between the center of the
silhouette and the end of the silhouette in that direction, Sil represents
the correspondent binary or 3-D silhouette image, and, finally, T =
360�=�� (Fig. 3).

Similarly, CIT is defined as the integral of a function f(x; y) along
a circle curve h(�) with center (x0; y0) and radius �. The CIT is com-
puted using the following equation:

CITf(�) =
h(�)

f(x0 + � cos �; y0 + � sin �)du (10)

where du is the arc length over the path of integration and d� is the
corresponding angle.

The center of the silhouette is again used as the origin for the CIT.
The discrete form of the CIT transform is used, as depicted graphically
in Fig. 3

CIT(k��) =
1

T

T

t=1

Sil(x0 + k�� � cos(t��); y0

+k�� � sin(t��) (11)

where k = 1; . . .K , ��, and �� are the constant step sizes of the
radius and angle variables, K�� is the radius of the smallest circle
that encloses the binary or 3-D silhouette image Sil and, finally, T =
360�=��.

Assume that a silhouette is scaled by � in both directions. Then, the
RIT and CIT of the scaled SilSC(x; y) is easily found to be [21]

RITSil (�) =� � RITSil(�);

CITSil (�) =� � CITSil
1

�
� : (12)

Otherwise stated, the RIT amplitude of the scaled silhouette image
is only multiplied by the factor � while the CIT of the scaled image is
scaled by the � factor and its amplitude is also multiplied by �. There-
fore, image scaling can affect the performance of the proposed method.
For this reason, all gait sequences are normalized before feature extrac-
tion in order to overcome this scaling problem.

In addition, if the silhouette image function Sil(x; y) is written in
polar form Sil(r; �) and SilROT(r; �) = Sil(r; �� ��) is the rotated
silhouette image by �� around the (r; �) coordinate system’s origin,
then the RIT and the CIT of the rotated image are easily computed to
be [21]

RITSil (�) =RITSil(�� ��)

CITSil (�) =CITSil(�) (13)

that is, the RIT of the rotated silhouette image is translated by �� and
the CIT of the rotated image is unaffected.
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Fig. 4. Reconstruction of silhouette images using Krawtchouk moments for
different moment order values (N , M ). (a) Original silhouette (W � H =
188 � 200), (b) N = W=10, M = H=4, (c) N = W=10, M = H=16,
(d) N = W=30,M = H=2, and (e) N = W=15,M = H=3.

According to (13), when the input is rotated by��, the RIT transform
is also rotated with the same angle. This is a desirable feature in our
case since the input gait sequences are captured in a near front-parallel
view and the preprocessing step bounds the silhouette with a bounding
box. Thus, in this case, the suggested Radon transform is not affected.

B. Feature Extraction Using Krawtchouk Moments

At almost all recent approaches on gait analysis, after feature
extraction, the original gait sequence cannot be reconstructed. In the
suggested approach, the use of a new set of orthogonal moments
is proposed based on the discrete classical weighted Krawtchouk
polynomials [25]. The orthogonality of the proposed moments ensures
minimal information redundancy. In most cases, the Krawtchouk
transform is used to extract local features of images [25]. The
Krawtchouk moments Qnm of order (n+m) are computed using the
weighted Krawtchouk polynomials for a silhouette image (binary or
3-D) with intensity function Sil(x; y) by [25]

Qnm =

N�1

x=0

M�1

y=0

�Kn(x; p1; N � 1)

�
�Km(y; p2;M � 1) � Sil(x; y) (14)

�Kn(x; p;N) =Kn(x; p;N)
w(x; p;N)

�(n; p;N)
(15)

where �Kn, �Km are the weighted Krawtchouk polynomials, and (N �

1)� (M � 1) represents the pixel size of the silhouette image. Fig. 4
shows a graphical representation of the reconstructed silhouette images
using different orders of N (for width) and M (for height).

Krawtchouk moments can be used to extract local information of the
images by varying the parametersN andM . ParameterN can be used
to increase the extraction of silhouette image in the horizontal axis.
Larger N provides more information on the silhouette image in the
horizontal axis, whereas the parameter M extracts local information
of the silhouette image in the vertical axis. For the experiments, values
for N = R=15 and M = C=3 were used, where R and C denote
the number of rows and columns of the silhouette image, respectively.
With these parameter values, a satisfactory reconstruction of the initial
silhouette image can be achieved as illustrated in Fig. 4(e). Krawtchouk
transform is proposed for feature extraction, due to its high discrimi-
native power [26]. The benefits of using orthogonal moments for gait
recognition has also been presented by Shutler [24], where Zernike mo-
ments were exploited to describe the shape and motion dynamics of gait
sequences.

In our approach, weighted Krawtchouk moments are proposed for
encoding the shape characteristics of silhouette sequences, which over-
come the problems associated with continuous orthogonal moments,
such as discretization errors and the need to transform coordinate

spaces. The Krawtchouk transform is scale and rotation dependent.
To remedy this problem, in our approach, the silhouette sequences are
prescaled and aligned to the center; thus, the Krawtchouk transform
is unaffected by scaling. However, a new set of Krawtchouk moments
may also be used, which are rotation, scale, and translation invariant
as presented in [25]. Finally, the input gait sequences are captured in a
near fronto-parallel view and, thus, rotation does not affect the results
of the Krawtchouk transform.

IV. SIGNATURE MATCHING BASED ON WEIGHTED

CLASSIFIERS USING A GENETIC ALGORITHM

The following notations are used in this section: the term “gallery”
is used to refer to the set of reference sequences, whereas the test or
unknown sequences to be verified or identified are called “probe se-
quence.” An important step in the recognition system, formally be-
fore the feature extraction stage, is gait cycle [12] detection of the
gallery/probe sequence. In the literature [9], [13], [27], the detection of
periodicity in a sequence is performed using a temporal analysis of the
sequence. Temporal analysis can be applied on a set of different mea-
surements, such as width of the bounding box, sum of the foreground
pixels, etc. In this paper, a similar approach with [14] was followed,
using autocorrelation of the input periodic signal.

A. Template-Matching Approaches

The methods that were exploited for gait template matching are
based on the spatial–temporal correlation [9], [12] and dynamic time
warping [14], [15]. LetFP;T andFG;T represent the feature vectors of
the probe with NP frames and the gallery sequence with NG frames,
respectively, and T denote a specific proposed transform (RIT, CIT,
or KRAWTCHOUK).

In the spatial-temporal correlation method, the probe se-
quence is partitioned into consecutive subsequences of TP ad-
jacent frames, where TP is the estimated period of the probe
sequence. Also, let the kth probe subsequence be denoted as
F
k
(P;T ) = F

kT

P;T ; . . . ;F
(k+1)T
P;T and the gallery sequence of NG

frames be denoted asFG;T = F
1
G;T ; . . . ;F

N

G;T . Then, the distance
metric between the kth subsequence, and the gallery sequence, for a
specific feature transform T is defined as

DistT (k) = min
l

T �1

i=0

S�1

x=0

F
i+k�T
P;T (x)� Fi+lG;T (x)

2

(16)

where k = 0; . . . ;m � 1 and l = 0; . . . ; NG � 1 S denotes the
size of a probe/gallery feature vector F for a specific transform, and
m = NP =TP represents the number of probe subsequences.

For robustness, after computing all distances between probe seg-
ments and gallery sequences of feature vectors, the median [9], [12]
of the distances is taken as the final distance DT (Probe;Gallery) be-
tween the probe and the gallery sequence

DT = Median (DistT (1); . . . ;DistT (m)) ; m =
NP

TP
(17)

wherem denotes the number of distances calculated between the probe
subsequences and the whole gallery sequence. In (17), a smaller dis-
tance means a closer match between the probe and the gallery sequence.

Equation (16) indirectly assumes that the probe and gallery se-
quences are aligned in phase. Alternatively, in order to deal with the
different walking speeds and intravariations of the gait cycles lengths,
a dynamic time warping technique [15] is also examined. Specifically,
the final distance DT between a probe and a gallery sequence is cal-
culated from the estimation of the distances between gait cycles, using
the nonlinear rule as proposed in [14]. Experimental evaluation of this
scheme in USF and proprietary HUMABIO databases exhibits slight
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improvements in the recognition rates (varied from 0 to 1.5%) when
compared to the spatial–temporal correlation approach. This slight
increase was expected since the proposed algorithms are evaluated in
two datasets, in which people are walking at similar speeds.

B. Genetic Algorithm (RCK-G) for Optimal RIT, CIT, and
Krawtchouk Weights Calculation

In this section, a biometric fusion method at score level is proposed
based on a genetic algorithm. Specifically, an optimum linear combina-
tion of matcher scores (distances) is exploited in order to improve the
accuracy of the proposed scheme. A linear method based on a genetic
algorithm is proposed instead of a typical Bayesian classifier due to
the lack of the prior knowledge of the distribution of the estimated dis-
tances. Furthermore, genetic algorithms are very efficient optimization
methods since they are capable of detecting near global optimum solu-
tions without the need of a priori knowledge of the premise space and
of any nonconvexities within it. They are also very scalable in terms
of the number of variables to be optimized and can also be adapted to
several problems with minimal effort. In the following paragraphs, the
genetic algorithm [28], [29] that is proposed for the optimal weighting
of the feature transforms is presented.

Let wRIT, wCIT, and wKR be the weights for the RIT, CIT, and
Krawtchouk, respectively. ThewRIT,wCIT, andwKR weights are con-
catenated in order to form the genotype or chromosome and range be-
tween 0 and 1. The training patterns (distance scores of the feature
transforms) are also normalized within [0; 1]. Initially, a population of
m chromosomes is generated. The quality of a specific chromosome is
measured by calculating its fitness. The chromosome is decomposed to
the weight values set [wRIT; wCIT; wKR]. Given this set, the similarity
of each person (gallery) in the database to the client (probe) is calcu-
lated as follows:

Sim(i; j) =
wRIT

DRIT(i; j)
+

wCIT

DCIT(i; j)
+

wKR

DKR(i; j)
(18)

where i denotes the probe id, i = 1; . . . ; NP (number of
probes to identify), j denotes all subjects in the database,
j = 1; . . . ; NG and DT (i; j) is the final distance value (see
(20), between the probe i and the gallery j for feature T , where
T = fRIT;CIT;Krawtchoukg correspondingly. Then, the subject
id C for which Sim(i; C) = max(Sim(i; j)) is detected and a
correct identification takes place if C = i. The fitness function for the
chromosomes is computed as follows:

FitnessFunction

=

NP

i=1

correct idi

correct idi

=
1; if Sim(i; C) = max(Sim(i; j)); j = 1; . . . ; NG

0; if Sim(i; C) < max(Sim(i; j)); j = 1; . . . ; NG:

(19)

It is obvious that as the fitness maximizes through the evolution of
the population, so does the number of correctly identified individuals
in the database. The GA described in [29] is allowed to run for 400
generations and the training on the proprietary database takes around
10 s for a population of 40 chromosomes (Pentium IV, 3.0-GHz CPU).
The optimal weight set [wRIT; wCIT; wKR] corresponds to the elite
solution obtained by the GA at the final generation.

The GA-based weight optimization was performed using data not
included in the gallery and probe sets of the experiments of Section VI
in terms of different gait sessions. Specifically, the training on the USF
dataset was performed using 30 subsets (each subset from a different

subject) chosen randomly from the left and right camera of the near-
side view (instead of using the frontside view). Similarly, the detec-
tion of optimal weights on the proprietary HUMABIO database was
performed using 20 subsets from the normal and hat covariates of the
available second session of the database (while for evaluation, the first
session was used). For both databases, the optimal weights for the RIT
transform vary from 40% to 42%; for CIT, they vary from 8% to 10%;
and Krawtchouk weights vary from 49% to 51%. For all of the experi-
mental tests, the following optimal weighted values were chosen:

wRIT = 0:4; wCIT = 0:1; wKR = 0:5:

The final weighted distance DW (i; j) between the current probe i
and the gallery j is expressed as

D
W (i; j) =

1

Sim(i; j)
(20)

where Sim(i; j) denotes the maximum similarity between probe i and
gallery j and is calculated using (17). In (20), a smaller weighted dis-
tance corresponds to a closer match between the probe and the gallery
sequence.

Note that the proposed fusion method is only used to estimate the
optimal weights. After the calculation of these weights, the trained al-
gorithm is applied as is for the online identification of individuals and
no further training or altering of the weights occurs. It does not refer
to a training stage where the gallery set is used to estimate the weights
that are optimally fitted to its content. This procedure might increase
the recognition rates, but it would be very dependent to the training
dataset and, thus, the effect of overtraining might appear for some of
the probe sequences (especially for probe sequences captured under
different conditions). Hence, here we only introduce a fusion at the
score level whereas leaving our feature extraction algorithms to exe-
cute without any additional training procedures.

The proposed method was also compared to the simple min Eu-
clidean distance on the matching scores. Using the latter method, a
degradation of performance of about 7% was observed, which confirms
the validity of our approach.

V. DATABASES’ DESCRIPTION

The proposed methods were evaluated on two different databases:
1) the publicly available HumanID “Gait Challenge” dataset and 2)
the proprietary large indoor HUMABIO dataset. The former database
(described in detail in [9]) was captured in an outdoor environment and
consists of people walking in elliptical paths in front of the camera. It
is presently the largest available outdoor dataset and for each subject,
image sequences were captured using up to five acquisition conditions:
two camera angles (L, R), two shoe types (A, B), two surfaces (grass-G
and concrete-C), with or without carrying a briefcase (BF), and time
and clothing differences (N2). There are two available versions of the
database. We have evaluated our algorithm on both versions. The first
dataset consists of 71 subjects and can be evaluated using the seven
experiments A-G. The latest version (v2.1) consists of 122 subjects and
there are 12 experiments A-L. In the performed experiments, the GAR
sequences are used as gallery and the probe sets contain individuals that
are unique and there are no common sequences with the gallery sets.

The proprietary HUMABIO database was captured in an indoor en-
vironment. Currently, there are two available sessions that were cap-
tured with six months difference. The first session consists of 75 sub-
jects and the second is 51, in which 48 subjects are common. Briefly,
the collection protocol had each person walk multiple times naturally
along a predefined path, so that the view is approximately fronto-par-
allel. The main course of walking is around 6 m on a concrete (C) sur-
face. For each subject, up to three different conditions were captured:
two shoe types (classic-CL and slipper-PA), with or without a hat (H)
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TABLE I
COMPARISON OF THE PROPOSED METHODS TO THE BASELINE ALGORITHM [8] FOR ALL EXPERIMENTS A-G USING THE 1.7 VERSION

OF THE USF DATABASE. (WE REMOVED FROM PROBE SETS D, E, F, G THE SUBJECTS THAT WERE NOT IN THE GALLERY)

TABLE II
RECOGNITION PERFORMANCE OF THE PROPOSED WEIGHTED FEATURES (RCK–G) IN COMPARISON WITH

OTHER APPROACHES FOR ALL EXPERIMENTS A-G ON THE 1.7 VERSION OF THE USF DATABASE

and (BF) when the subject carries a briefcase. For each sequence of
each individual, the color (left and right) images were captured using
the Bumblebee stereo camera from Point Grey Research. The camera
lenses are precalibrated against distortion and misalignment and addi-
tional left and right images are aligned to within 0.05 pixel root mean
square (rms) error. Furthermore, an optimized sum of squared differ-
ences approach (SSD) is utilized by the proposed scheme in order to
estimate the disparity images [30]. This is the first database that has
available accurate depth data for assisted gait recognition. In this paper,
three experiments on this database are demonstrated (first session). Ex-
periment A examines the hat covariate, B the briefcase, and, finally, C
the shoe difference. In all cases, the gallery consists of classic shoe type
(CL) without briefcase (NB) and not wearing a hat.

VI. EXPERIMENTAL RESULTS

The proposed framework was evaluated in the context of the gait
identification and verification scenarios. Since the dynamic time
warping approach exhibited overall improved recognition rates, the
following results are presented using this technique for signature
matching.

In some approaches for gait recognition, one subset of the gait se-
quences can be used for training such as in [31] and [32]. This ap-
proach increases the performance for some of the challenging exper-
iments (time and clothing), but leads, in general, into a more compli-
cated system in terms of building the trained gallery model. Moreover,
these methods impose further constraints in the enrolment procedure,
which should be significantly complicated. The proposed algorithm is
extensively compared to methods that do not demand a training pro-
cedure. Furthermore, it is also compared with two state-of-the-art ap-
proaches that require training in a preprocessing stage.

For evaluation of the proposed approach in an identification scenario,
cumulative match scores (CMS) are reported at ranks 1 and 5. Rank 1
performance illustrates the probability of correctly identifying subjects
in the first place of the ranking score list and rank 5 illustrates the per-
centage of correctly identifying subjects in one of the first five places
of the ranking score list.

A. Evaluation of the Proposed Gait System in the USF Database

The experimental results are reported in comparison with the USF
baseline algorithm [9] for both versions (1.7 and 2.1) of the USF data-
base. Moreover, comparative results are exhibited with other state-of-
the-art gait recognition approaches on version 1.7 of the USF data-
base. In particular, Table I compares the recognition performance of
the proposed methods with the USF baseline algorithm [8]. It can be
seen that the proposed feature classifiers give better rank-1 results on
most experiments, thus validating the capability of the proposed trans-
forms to encode the shape characteristics of the silhouette sequences
by using relatively low-feature vector sizes. Furthermore, the suggested
weighted combination of the feature descriptors using the genetic al-
gorithm (RCK-G) outperforms the baseline algorithm in almost every
experiment. In Table II, the recognition performance of the weighted
features (RCK-G) method is presented in comparison with other known
methodologies.

In particular, the results of RCK-G are compared with the method
introduced in [33] that uses for identification features extracted from
body and shape, the linear time normalization algorithm using the sil-
houette feature (LTN-S) [13] as well as using the angular transform
(LTN-A) [13], the angular gait transform analysis using dynamic time
warping [14], and finally for two methods from MIT [32] and UMD
[10] that use training for building the gallery set, based on hidden
Markov models. Table II illustrates that the proposed weighted feature
algorithm outperforms all experiments with similar approaches that do
not use training for building the gallery set. Furthermore, the proposed
weighted algorithm (RCK-G) also achieves better performance for ex-
periments C-G for rank 1 and 5 from the approaches that are based on
training in a preprocessing state.

Moreover, the proposed methods were evaluated in the 2.1 version of
the USF database that includes 122 subjects. The recognition results are
presented in Table III in comparison with the USF baseline algorithm
[9]. As seen, the proposed feature classifiers RIT and Krawtchouk give
better rank-1 results on most experiments. Additionally, in challenging
experiments when time and clothing (K, L) are appeared as a condition,
RIT, CIT, and Krawtchouk algorithms perform better than the baseline
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TABLE III
COMPARISON OF THE PROPOSED METHODS TO THE BASELINE ALGORITHM [9]
FOR ALL EXPERIMENTS A-L USING THE 2.1 VERSION OF THE USF DATABASE

TABLE IV
RECOGNITION PERFORMANCE OF THE PROPOSED GENERALIZED RADON

TRANSFORMS, KRAWTCHOUK AND THE RCK–G ON BINARY,
RADIALLY, AND GEODESIC DISTRIBUTED SILHOUETTES

algorithm but the identification rate at rank 1 is still not very high. Fi-
nally, the proposed optimal weighted feature method using a genetic
system (RCK-G) outperforms the baseline algorithm in almost every
experiment.

B. Evaluation on the Proprietary HUMABIO Gait Database

The proposed methods were also evaluated using the proprietary
HUMABIO gait database that includes gait data from 75 subjects.
The experimental results are presented in Table IV for all proposed
methods on all silhouette transforms. The proposed methodologies
perform well in the experiments with the hat and the shoe (experiments
A and C). In the briefcase experiment (experiment B), the recognition
rates are lower. This confirms the results on the USF database and
verifies the hypotheses that the briefcase experiment still remains a
challenge. From the proposed feature extractors, RIT and Krawtchouk
achieve, in general, better performance than the CIT. The proposed
weighted feature methodology (RCK-G) was evaluated on the silhou-
ette extracted features and the identification rate of the system was
increased by 1% in hat (A) and 3% in slipper (C) experiment. Finally,
the proposed scheme that utilizes 3-D silhouette maps was evaluated
for the HUMABIO gait database.

It should be noted that the HUMABIO database includes depth data
for the gait sequence. The proposed weighted feature algorithm based
on 3-D silhouettes (radial and geodesic) achieve better performance
on the experiments with briefcase and shoe (experiments B and C).
Specifically, using the radial silhouette distribution transform, identi-
fication rates are increased by 3% for the briefcase (B) and 2% for
the shoe (C) experiment, when compared to the case of the binary sil-
houette images. In addition, using the geodesic silhouette distribution
transform, rank 1 is increased by 2% for the briefcase and 4% for the
shoe experiment, when compared to the radial silhouette distribution
transform. The briefcase experiment still remains a challenge, but the

Fig. 5. (a) Original silhouettes. (b) Noisy silhouettes with � = 1:5.

rank-1 rate has increased 5% when compared to the performance using
binary silhouette sequences. The 3-D extended silhouettes perform up
to 7% better when compared to the binary silhouettes. This result was
expected during the design of the framework since 3-D information
about the silhouette is present in both extended silhouettes. The fur-
ther increased performance of the geodesic silhouette is also expected,
since it encodes very useful information regarding the topology of the
manifold that represents the 3-D silhouette.

Finally, in order to evaluate the resilience of the proposed features,
the extracted silhouettes were distorted with additive noise, as illus-
trated in Fig. 5. Specifically, the contour of the binary silhouettes was
initially partitioned into small line segments. Then, Gaussian noise
N(0; �) was added in the perpendicular direction of the line segments.
The experimental evaluation did not exhibit a significant decrease in
the recognition rates for small values of the standard deviation �. The
robustness of the proposed radon transforms and the Krawtchouk mo-
ments to additive noise were also proven in [21] and [25], respectively.

Besides identification, the proposed algorithms were evaluated in
terms of verification. In a verification scenario, a person presents a new
signature (probe sequence) and claims to have an identity that exists
or not in the system. The validation of the effectiveness of the pro-
posed technique for verification in terms of the rate operating charac-
teristic curves (ROC) is reported in http://www.iti.gr/~djoannid/Gait/
index.htm for the USF and the HUMABIO gait databases.

VII. CONCLUSION AND FUTURE WORK

In this paper, a novel gait recognition methodology was presented,
based on three new feature descriptors and their fusion using genetic al-
gorithms. Moreover, two new silhouette distributions were introduced
that utilize depth information from a stereo camera in order to create
3-D silhouette maps. The proposed system was evaluated with the use
of radon transformations and the weighted Krawtchouk moments as
feature extractors for identification and verification purposes. By using
the best performing proposed methodologies, improvements have been
made in recognition performance compared to other methodologies
on the reference “Gait Challenge” database. Future work involves the
use of new feature descriptors that fully exploit the depth information
available.
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3-D Face Recognition Using Local
Appearance-Based Models

Hazým Kemal Ekenel, Hua Gao, and Rainer Stiefelhagen

Abstract—In this paper, we present a local appearance-based approach
for 3-D face recognition. In the proposed algorithm, we first register the 3-D
point clouds to provide a dense correspondence between faces. Afterwards,
we analyze two mapping techniques—the closest-point mapping and the
ray-casting mapping, to construct depth images from the corresponding
well-registered point clouds. The depth images that are obtained are then
divided into local regions where the discrete cosine transformation is per-
formed to extract local information. The local features are combined at the
feature level for classification. Experimental results on the FRGC version
2.0 face database show that the proposed algorithm performs superior to
the well-known face recognition algorithms.

Index Terms—Automatic registration, depth image, local appearance
face recognition, 3-D face recognition.

I. INTRODUCTION

Biometric identification is a challenging task that has received a sig-
nificant amount of interest in the last decades. Among the utilized bio-
metric modalities, the human face is one of the most natural. Moreover,
a subject’s face images can be acquired easily and unobtrusively. Due
to low cost and the wide availability of image acquisition systems, most
of the face recognition algorithms are based on 2-D intensity images
[23]. However, the algorithms that process intensity images suffer from
facial appearance variations that are caused by changes in head pose
and illumination conditions. Much effort has been devoted to solving
these problems in the 2-D domain. Although significant enhancements
have been achieved in the 2-D domain against these variations under
controlled conditions, the problem still remains unsolved under uncon-
trolled, real-world conditions.
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