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M
uch research has been done

in recent years on map digiti-

zation and on construction

of publicly available digital-

map databases. Digital-map databases are

critical components of GIS applications, such

as navigation,1,2 route planning,3-5 and travel-

information systems.6 While such digital-

map databases are readily available, one of

the major issues that the scientific community

must address in this area is the automatic

interpretation of satellite and aerial images

to extract road network structure and other

information directly from terrain-surface

images.

While many navigation tools enable search-

ing on these digital maps—with searches typi-

cally being based on semantic information,

such as street names or points of interest

(POIs)—a major problem with the current

approach to these systems lies in the fact that

the user must know in advance enough seman-

tic information about the area to search

and locate POIs or other information. In prac-

tice, most people can’t remember all this infor-

mation. To address this issue, we present a

framework for automatically extracting the

map graph descriptors for high-level, intuitive

search and search by example.

Framework overview
Our framework analyzes the digital map

images in offline processing to extract the

enclosed information and construct an attrib-

utedmap graph. The user input is processed on-

line and the search is performed according to a

graph-matching algorithm,7,8 which allows

both full and partial matching of the sketched

query. Our framework represents a user-centric

approach. Users who have visited an unknown

part of a city typically can’t remember street

names and numbers or specific information

about POIs, and have only descriptive informa-

tion about a desired destination, which could

be expressed through geographical (sketch), se-

mantic (POI combinations, such as a parking

lot near a restaurant), and limitation attributes

(a specific city area). Our scheme is designed to

support these query types.

Sketches enriched with semantic informa-

tion or limitation attributes can provide a

close match to common real-life map-search

tasks. In real life, when providing navigational

instructions in natural language, directions

are usually sketched on a piece of paper. Our

framework understands these sketches by align-

ing the drawings to real maps and providing

tools that exploit the user’s descriptive infor-

mation during search. The framework extracts

road-network structure, detects crossroads,

and builds a topological graph of the area. It

also extracts various POIs directly from the

urban maps and provides a map-graph descrip-

tor that combines the map’s topological

features captured in the mathematical formula-

tion of a graph along with semantic features

(the POIs) of the map associated to the graph

elements.

Figure 1 illustrates the general architecture

of the proposed platform. The system consists

of two discrete steps, offline and online pro-

cessing. The basic aim of the offline step is

the creation of the annotated graph. Initially,

the POIs are recognized. Next, the road net-

work structure is extracted, along with the

respective street names. And finally, the

attributed map graph is generated and stored

in the database. The aim of the online step is

the processing of the user query and the re-

trieval of the relevant results. The query is pro-

cessed using the same offline procedure to

generate the query’s attributed graph. Then,

the system performs attributed graph matching
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to present the relevant results to the user in a

ranked order according to similarity.

To design a system that will not depend on

specific map providers, we have determined

several map prerequisites:

� Color constraints. Street names and POIs

should be represented using a dark color

(that is, a color with low luminance value)

to be discernible from the rest of the map

and thus enhancing recognizability.

� Special symbols. Symbols that represent POIs,

such as hospitals, churches, parking, and so

on, should be thoroughly and a priori

defined by the map provider.

Map-image analysis
The main goal of the map image analysis is

the extraction of the road network structure

and the POIs, which are then used for the cre-

ation of the attributed map graph. The map

image analysis is a two-step procedure for

extracting the semantic and topograpical infor-

mation. These two steps are independent and

thus can be performed in parallel.

Semantic information extraction

For extracting semantic information, we

initially apply traditional morphological

preprocessing to the urban map to enhance

unique map characteristics. More specifically,

the image is eroded and then dithered.9 The

erosion enhances the unique characteristics of

the image, while the dithering discards all

other information. Finally, the system performs

a color-based segmentation to extract the use-

ful regions. A thresholding procedure discards

the noise. Figure 2a (next page) presents the

initial urban map image and Figure 2b the

extracted semantical information.

Every extracted region can be either a POI or

a street name. The majority of the areas that

are street names are directly detected by the re-

gion size. For the rest regions, we apply the an-

gular partitioning of abstract image (APAI)

approach10,11 to classify each region into POI

and non-POI and identify the type of POI. In

advance, the system preselects a set of POIs.

For every POI image, the system applies the

APAI algorithm and stores the extracted

features.

During map analysis, for every unclassified

region, the APAI features are compared to the

features of every stored POI on the basis of the

Mahalanobis distance. If matching fails, then

the region is classified as street name. Note

that the APAI method11 is scale- and rotation-

invariant. The APAI algorithm, in contrast,

uses only sectors. For our purposes, we have
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Figure 1. The general

architecture of the

proposed system

consists of two steps:

(a) an offline step

where the map graph

descriptor is created

and stored in the

database, and (b) an

online step where

the user’s query is

processed to retrieve

the relevant results.
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extended the APAI algorithm using both sec-

tors and tracks.

Road-network-structure estimation

Concerning the extraction of the road net-

work structure from the urban map image, we

initially remove all POIs and street names. To

achieve the latter, we apply the antiextensive-

connected-operators algorithm.12-14 Next, we

classify every pixel as road or not road, using

a color-based clustering algorithm. Specifically,

we apply the antiextensive connected operators

to enhance roads, while diminishing the street

names. To ensure convergence after a finite

number of iterations, we include an additional

step (step 3) as follows:

1. The initial image for the loop of the anti-

extensive operators g0 is generated as the

sum of the input image after dilation and the

negative of the input image: g0 ¼ Dilate(I) þ
Negative(I).

2. Then, image gk, 8k � 1 is iteratively updated

by computing gk¼max(Erode(Dilate(gk�1)), I).

This step progressively removes the seman-

tic information from the image.

3. Iteration of step 2 is terminated, depending

on the number of pixels that have changed

value between two successive steps. If the

number of pixels that differ is lower than

1 percent of the overall number of pixels,

the iteration is terminated.

At the end of this procedure we discard the se-

mantic information of the initial map image.

In the resulting image gfinal, we have suc-

cessfully removed the street names and POIs

and then classified every pixel of the colored-

road-network structure image into two com-

plementary sets: road pixels and nonroad pix-

els. To achieve the latter, we assume that Z
different road types exist in the map and that

for every type of road, a mean color value is

predefined. Although these values vary accord-

ing to the source of the map images, every map

provider uses a predefined color-set for the

roads. We formulate the zi, i 2 {1, 2, . . ., Z} ran-
dom variables to represent every color that

appears in the image and to represent a road.

We assume that each zi, i 2 {1, 2, . . ., Z} follows

Gaussian distribution in the RGB color space.

More precisely,

fi rð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ3 Cj j

q e�
1
2ðr�riÞTCðr�riÞ

where ri is the mean value of the ith road color

and matrix C is the diagonal covariance matrix

of the selected probability density function.

Every pixel p is independently classified. If

9i|fi(rp) > ti, where ti is a predefined threshold

for the ith color. Then we classify the pixel in

the road-pixels set. In practice, this criterion

means that the pixel color is close to a color

used to represent the roads in the initial

urban maps. Otherwise p is classified in the

nonroad-pixels set. The values of the thresholds

ti depend on the colors used in the selected

map images to determine the road areas. For

the specific data set used in the experiments,

we performed a set of tests for the six different

colors used to represent the roads and initially
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Figure 2. The road

network extraction

procedure: (a) initial

urban map obtained

from http://maps.

google.com/ (�c 2009

Google), (b) semantic

information, and

(c) extracted road-

network structure.
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set the values as ti ¼ 0.5 8i2 {1, 2,. . ., 6}. Then,

we constructed the road-network-structure

image where the pixels in the road-pixels set

are represented with white, while the nonroad

pixels are represented by black color (as

shown in Figure 2c).

The next step in the procedure is crossroad

detection. To do this, we first examine the to-

pology of the road-network structure by com-

puting the Euclidean distance transform of

the road-network-structure image and then es-

timate the skeleton of the network structure.

Then we detect the crossroad areas as the

areas where more than two roads meet. The

centers of mass of each crossroad area comprise

the nodes of the map graph. Figure 3 depicts

the topological analysis procedure. The map

in Figure 3a results in the road-network struc-

ture of Figure 3b and the Euclidean distance

transform of Figure 3c. The skeleton and the

detected crossroads are depicted in Figure 3d.

Map-graph generation
After estimating the road-network structure

and the crossroad detection, our framework

builds a map-graph descriptor for every map.

After the crossroad-detection procedure, we

can decompose the road network structure

into primitive street regions by considering

each coherent road region between two cross-

roads as a unique street. In terms of the map-

graph construction, the obtained crossroads

are represented as the graph nodes, while the

decomposed street regions provides the graph

edges. Figure 3e illustrates the resulting graph

of the input map image of Figure 3a.

The produced map graph can be used for

shortest-path or map-area search with graph-

matching techniques. For the latter, the graph

attributes are estimated to construct an appro-

priate map-graph descriptor that will be used

for similarity search. Following the mathemati-

cal notation of van Wyk,7 the novel map graph

descriptor is an attributed graph G with m

attributes in every edge and s attributes in

each node. That is,

G ¼ fV ;E; fAigmi¼1; fBigsi¼1g ð1Þ

where V is the nonempty set of vertices

(nodes), E is the set of edges, Ai is the adja-

cency matrix created using the ith edge attri-

bute, and Bi is the vector containing the ith

attribute of all vertices.

We have selected the successive angles be-

tween the neighboring nodes (o1, o2, o3, in

Figure 3e) of a specific node, the normalized

edge-lengths, (d1, d2, d3, in Figure 3e) of the

edge curvature, and the POI information as

the attributes that enhance the graph nodes

and edges. Thus, the elements of matrices Ai

and Bi are the values of oj and dj, j ¼ 1 . . . m.

During the generation of the map-graph de-

scriptor, we associate the nodes and the edges

of the graph to the road network as follows:

� Every detected crossroad represents a single

node in the map graph descriptor.

� Every crossroad contains an attribute that

describes the angles of the streets that are ad-

jacent to the crossroad, sorted in descending

order. Also, the crossroad attributes contain

the normalized lengths of the adjacent street

regions.
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Figure 3. Topological analysis procedure: (a) input map image obtained from

http://maps.google.com/ (�c 2009 Google), (b) the obtained road-network

structure, (c) the produced distance field, and (d) the obtained road-network

skeleton Is, and (e) the pixels of the skeleton that correspond to crossroads.

Ju
ly
�
S
e
p
te
m
b
e
r
2
0
1
0

27



� Every road is represented as a graph edge and

includes the angle attributes of the adjacent

nodes, sorted in descending order and the

edge curvature.

� Every POI forms an extra edge attribute.

Due to their relativistic nature, the selected

attributes are invariant under rotation, scaling,

and translation; hence, the map-graph de-

scriptor of Equation 1 is invariant in the pres-

ence of these transformations.

Sketch-based map-graph searching
During the search step, we assume that the

user submits a sketch of the road-network struc-

ture of the area with at least three connected

edges, and optionally submits some primitive,

high-level information concerning the area.

This information could include POIs, such as

a church or a school.

Graph matching

The sketched query is processed using the

same algorithm presented in the ‘‘Map-image

analysis’’ section to construct the query map

graph. The road network is initially extracted

from the user sketch query, followed by the es-

timation of the skeleton and the generation of

the attributed graph. The user can supply addi-

tional primitive high-level information—for

example, a specific city region—that can be

exploited to narrow the search space.

The attributed graph-matching algorithm

then runs, as described elsewhere,8 and the

matching probabilities between the sketch-

query-graph nodes and each of the graphs

stored in the database are calculated. The

graph-matching algorithm takes into account

the topology and attributes (for example,

angles, edge length, and edge curvature)

included in the graph.

The system then performs a postprocessing

step on the matching probabilities, where the

best matches are chosen and the results are

ranked and properly presented to the user.

The calculation of the ranking score is

described in the next subsection.

The matching process is performed in pairs,

in a two-step procedure. Let’s assume that we

have the maps I1 and I2 described with the

undirected edge-node-attributed graphs GI1

and GI2 . Initially, the successive-projection-

graph-matching (SPGM) algorithm is applied

on graphs GI1 and GI2 , which results in the

probability matrix �P ¼ ½Prij�; every element Prij
denotes the probability that the ith node of

the first graph matches with the jth node

of the second graph. More information con-

cerning the SPGM algorithm is available

elsewhere.7,8

Postprocessing

The probability matrix �P is postprocessed to

present viewable results and compute a scalar

similarity metric, which is used to rank the

results. The postprocess is described below:

1. The probability matrix �P is examined and

the Nmax higher probabilities that are

higher than a threshold Prthr are selected

to form a set of possible matches, Mp, by

permuting the selected matches per node.

2. For every possible match m 2 Mp, the

maximum connected network mc�m is

estimated.

3. The matching score of every possible match

is then computed as

dm ¼ jmcj þ
X
v2mc

Prv

4. The results are sorted according to dm.

5. For every set of nodes m, the corresponding

area of the map is marked and presented to

the user.

We initially set the values of Nmax and Prthr to

be equal to 4 and 0.1, respectively.

Application GUI functionalities

The system’s GUI assists the user in creating

the sketch and placing the desired POIs. Figure 4

presents the main application window. In the

left panel, the user can draw a query using the

provided freehand, line, and arc tools, then

place the desired POIs on the map. In the

main part of the GUI, the user can see the

retrieved results in thumbnails in a list ordered

tomatch the query. The user can click a thumb-

nail to view the full image.

Evaluation
We evaluated the framework using digital

map images of the city of Athens, Greece, all

taken from the Google Maps portal and scaled
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to 3:50000 (second zoom level in Google Maps)

and the city of Chicago, Illinois, taken from

Yahoo! Maps. We created a set of 2,000 partially

overlapping map images of size 512 � 512 pix-

els and two sets of user queries. The first query

set consists of 300 manual road sketches cre-

ated with the free hand tool. The second set

consists of 300 computer-aided road sketches.

The users sketched a small part of a random

area in Athens without having any prior knowl-

edge about the maps. The results were promis-

ing. We evaluated the system’s performance

by computing the ranking during retrieval

and using precision-recall diagrams, where pre-

cision is defined as the ratio of the relevant

retrieved elements against the total number of

retrieved elements, and recall is the ratio of

the relevant retrieved elements against the

total relevant elements in the database.

In addition, we evaluated the framework for

its efficiency in simple search tasks and in select-

ing the appropriate parameters for the SPGM al-

gorithm. We created four primitive shapes,

similar to the shapes of the latin letters X, L, Y,

andT, touse as systemqueries, andwemeasured

theperformance in termsof a precision-recall di-

agram. We also evaluated different instances of

the SPGMalgorithmand selected anewcompat-

ibility function for the SPGM, as follows:

fcðx; �Þ ¼ lnðeþ xÞ�þ x

This equation is a modified version of the

compatibility function presented elsewhere.8

We found this function to provide superior

retrieved results. The diagrams in Figure 5

(next page) present the advantage of the new

compatibility function when compared to

the original algorithm.

Tables 1 and 2 present the cumulative results

for both manual and CAD-based queries. For

63 percent of the queries, the areas sketched

in the query were found in the first five results.

Figures 6a�c depict the comparative retrieval

performance of the proposed framework for

the same query using a free-hand and CAD-

based sketch in terms of a precision-recall dia-

gram. The presented results depict that the

CAD-based queries marginally outperform the

manual sketches.

For queries that represent areas with some

uniqueness, the retrieval framework places the

desired area in a high-rank position. Sketches

with common characteristics (for example, a

cross) that don’t contain any POI information,

result in worse results. This effect can be

explained by the lack of information in the

query. Figure 7 presents some representative re-

trieval results. The retrieval presented on the

fifth and the sixth lines of Figure 7 shows that

our framework is also capable of partial match-

ing. The result in the last line figures the perfor-

mance of the proposed approach in a difficult

query, where the retrieval is mainly based on

semantic features.

To evaluate partial-matching performance,

we created two queries, one with full data and

one with the same query, removing some
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application GUI using

maps obtained from
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nodes. The queries and the comparative retrieval

performance is depicted in Figures 8a�c

(page 32). The precision-recall proves that the

full-data query, which is more strict, retrieves

more relevant matches in higher ranks; how-

ever, the missing-data query performance com-

pares to the full-data query after the first results.

These results are promising for the system func-

tionality, because the users are usually drawing

the major parts of an area and not its complete

road-network structure.

We measured the time complexity of the

system response on different scenarios. In the

first scenario, the user specified a strict search

area, which resulted in a limited search space

(20 to 40 images). The required time varied be-

tween 3 and 5 seconds. In the second scenario,

the user was not sure about the search

area and provided any extended search space
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Table 1. Results for manual sketches.

Correct result

rank (L)

Number of

successful searches Percentage

1st to 5th 190 63.33

1st to 10th 234 78.00

1st to 20th 269 89.67

1st to 50th 300 100.00

Table 2. Results for CAD-based queries.

Correct result

rank (L)

Number of

successful searches Percentage

1st to 5th 209 69.67

1st to 10th 269 89.67

1st to 20th 281 93.67

1st to 50th 300 100.00
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Figure 6. A query drawn with (a) free hand, (b) a CAD-based tool, and (c) their comparative precision-recall diagram.
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Figure 7. Example results for CAD-based and free-hand queries: (a) query, (b) rank 1, (c) rank 2, (d) rank 3, and (e) rank 4.

Map images have been obtained from http://maps.google.com/ (�c 2009 Google).
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(100 to 400 images). In this scenario, the search

time varied between 20 and 50 seconds. These

times are considered reasonable for a practical

tool.

Conclusions
Our proposed sketch-based search and re-

trieval system in map databases shows the

promise that intuitive search can be possible

even when searching in nonannotated conven-

tional map data. We plan to perform further

work in this area to allow for more intuitive

and semantic queries, applications for mobile

and ubiquitous computing, and integration to

existing map searching applications. MM
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Figure 8. A query

(a) sketched without

full data, (b) with the

missing data, and

(c) their comparative

precision-recall

diagrams.
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