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Abstract—This paper presents a novel layered and fast framework for real-time collision detection and haptic interaction in virtual

environments based on superquadric virtual object modeling. An efficient algorithm is initially proposed for decomposing the complex

objects into subobjects suitable for superquadric modeling, based on visual salience and curvature constraints. The distance between

the superquadrics and the mesh is then projected onto the superquadric surface, thus generating a distance map (SQ-Map).

Approximate collision detection is then performed by computing the analytical equations and distance maps instead of triangle per

triangle intersection tests. Collision response is then calculated directly from the superquadric models and realistic smooth force

feedback is obtained using analytical formulae and local smoothing on the distance map. Experimental evaluation demonstrates that

SQ-Map reduces significantly the computational cost when compared to accurate collision detection methods and does not require the

huge amounts of memory demanded by distance field-based methods. Finally, force feedback is calculated directly from the distance

map and the superquadric formulae.

Index Terms—Collision detection, haptic rendering, force feedback, collision response, superquadrics.

Ç

1 INTRODUCTION

HUMAN perception combines information of various
sensors, including visual, aural, haptic, olfactory, etc.,

in order to perceive the environment. Virtual reality applica-
tions aim to immerse the user into a virtual environment by
providing artificial input to its interaction sensors (i.e., eyes,
ears, hands, etc.). The visual and aural inputs are the most
important factors in human-computer interaction (HCI).
However, virtual reality applications will remain far from
being realistic without providing to the user the sense of
touch. The use of haptics augments the standard audiovisual
HCI by offering to the user an alternative way of interaction
with the virtual environment [1].

However, haptic interaction involves complex and
computationally intensive processes, like collision detection
[2], [3], [4] or distance calculation [5], in order to provide
realistic and feasible results. A significant amount of
processing is required for the accurate detection of colli-
sions during the simulations. Handling collisions, i.e., object
intersections in a scene, is an essential process in realistic
simulations. Most approaches presented in the past are
based on building a Bounding Volume Hierarchy (BVH)
around the object consisting of primitive objects like
spheres [2], OBBs [3] or volumes based on complex
dynamically transforming geometries k-DOPs [4]. The

hierarchy of the processed mesh is built, based on
topological criteria. The root of the tree built, contains the
entire object, while the leafs just contain single triangles.
Different algorithms for building this hierarchy have been
proposed in the past [3], [6]. In these methods, if
intersection is detected between the BV of the root and an
object, the algorithm checks for intersection between the
child nodes of the tree and the object and so on, until the
leaf nodes are reached and the accurate points of a potential
collision are found.

Despite the accuracy of these methods, which are
extensively used in the literature, the computational cost
of performing the intersection tests between the objects is
very high, especially when these consist of a large number
of triangles or when they participate in multiple simulta-
neous collisions. Recently, methods for collision detection
based on distance fields were introduced [7], [8], [9], which
decrease the computational cost dramatically. These meth-
ods require, at a preprocessing stage, to generate distance
fields for the objects, which are stored in arrays. In
particular, a bounding box is assumed for each object. A
3D grid is defined inside each box and a distance value is
assigned to every point of the grid, which indicates the
distance of the specific point from the mesh. Negative
values indicate that the point lies inside the mesh. These
distance values are usually obtained using level set [10] and
fast marching algorithms [11]. Despite their efficiency, these
methods are not used extensively for collision detection.
The major reason is their huge memory requirements.
Adaptively sampled distance fields [12] and methods that
trade speed for memory [13] have been presented in the
past in order to decrease the cost in memory. However, the
memory requirements remain extremely high, especially
when the virtual scene consists of many complex objects.

In this paper, a novel layered framework for collision
detection is presented, which reduces dramatically its
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computational cost without any significant loss of accuracy
or requirement of high memory use. It can handle
efficiently collisions between two rigid and between a rigid
and a deformable object. The virtual objects are initially
decomposed to simpler ones. Each subobject is then
modeled using a superquadric (SQ) that bounds its
geometry and collision detection is performed on the
subobjects’ level. The union of superquadrics generated
by the proposed algorithm is a nonconvex surface that
bounds entirely the geometry of the modeled object.

The most important feature of SQ-Map, when compared
to the distance field-based methods, is that its memory
requirements are significantly lower. As will be described in
the sequel, the proposed method reduces the need for the
calculation of the distance field only onto the 2D surface of a
superquadric. Thus, only a 2D distance map is generated
instead of the 3D distance grid required by methods based
on distance fields.

Finally, a robust method is presented for calculating the
force feedback for haptic interaction, which generates
smooth and realistic force fields and is based on the
analytical formula of the superquadric and the estimated
distance map. The proposed methods were tested in a
nonvisual object recognition application for blind people
training and a costume designer application using the
PHANToM and the CyberGrasp haptic devices.

The paper is organized as follows: In Section 2 the
fundamentals of superquadric modeling are presented.
Section 3presents the object decompositionmethod. Section 4
describes the backbone of SQ-Map, which is the collision
detection algorithm based on the superquadric modeling of
the 3D objects, while Section 5 analyzes the accuracy of the
scheme. In Section 6, theproposedhaptic rendering approach
is presented. Finally, experimental results are exhibited in
Section 7 and conclusions are drawn in Section 8.

2 IMPLICIT SURFACE APPROXIMATION

Superquadrics have been used in the past to model objects
using as input, range images, and depth maps [14]. In
general, superquadrics is a family of analytical surfaces
consisting of superellipsoids, superparaboloids, superhy-
perboloids, supertoroids, etc. In use for the modeling of
3D objects, which is our concern, surfaces like super-
ellipsoids, which are defined by the implicit (1), are of
practical interest:

F ðx; y; zÞ ¼ x

a1

� � 2
"2

þ y

a2

� � 2
"2

 !"2
"1

þ z
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� � 2
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0
@
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A

"1

¼ 1: ð1Þ

Function (1) is commonly called inside-outside function,
because for a 3D point ðx; y; zÞ:

If F ðx; y; zÞ > 1, ðx; y; zÞ lies outside the surface.
If F ðx; y; zÞ � 1, ðx; y; zÞ lies inside or on the surface.

Deformation parameters, which correspond to tapering,
bending, etc. [14], can be added to the implicit equation so
as to produce a more flexible model.

After the selection of the appropriate superquadric
equation to model the 3D data, the problem of modeling

the 3D object using a superquadric reduces to the least
squares minimization of the nonlinear inside-outside func-
tion F ðx; y; zÞ with respect to several shape parameters. In
particular,

F ðx; y; zÞ ¼
F ðx; y; z; a1; a2; a3; "1; "2; �; �; �; tx; ty; tz;Kx;Ky; k; aÞ;

ð2Þ

where ðx; y; zÞ is a point in the 3D space, a1, a2, a3, "1, and "2
are the superquadric shape parameters, �, �, and �, and tx,
ty, and tz are the Euler angles and translation vector
coefficients respectively, Kx and Ky are tapering deforma-
tion parameters and k and a are the bending deformation
parameters. The above parameters are determined so as to
minimize the following mean square error.

MSE ¼
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1a2a3

p ðF ðxi; yi; ziÞ � 1Þ2; ð3Þ

where N is the number of points of the 3D object.
The well-known [14] Levenberg Marquardt method for

nonlinear least squares minimization is used in the present
paper in order to evaluate the shape parameters. Notice that
for complex objects, proper division into rigid subobjects is
necessary for efficient superquadric approximation. More-
over, in the context of SQ-Map the superquadrics are
modeled so as to bound the entire geometry of the modeled
subobject. Therefore, constrained minimization is applied
so as to produce bounding superquadrics.

As an example, Fig. 1 illustrates the segmentation of the
virtual hand into its rigid components. Assuming that SQi

represents the superquadric approximationof the ithelement
of the virtual hand, the superquadric representation of the
whole virtual hand (VH) can be mathematically described as
the union of all superquadrics, i.e., VH ¼

S16
i¼1 SQi. Techni-

cally, regions that lie inside the SQ segment “A” but
correspond to SQ segment “B” are pruned away from SQ
segment “A.”

3 OBJECT DECOMPOSITION

The superquadric approximation cannot produce accurate
results if the object to be modeled is very complex. Thus, the
virtual objects have to be decomposed into simpler
subobjects, which can be accurately described using super-
quadrics. An automated algorithm for decomposing com-
plex objects into quasiconvex subobjects and modeling each
part using superquadrics is introduced in the sequel. In
order to decompose an object, an algorithm is proposed
based on salient feature extraction and curvature estima-
tion. The method utilizes topological information and, thus,
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Fig. 1. Segmented virtual hand.



makes use of the polygonal representation of the object and
not only of its vertices. Each of these processes is analyzed
in the following subsections.

3.1 Salient Feature Extraction

The developed method for salient feature extraction is
based on Hoffman and Singh’s theory of salience [15]. In
order to make this paper self-contained a brief description
of the method follows: The method uses salient features and
geodesic distances to define a measure for decomposition in
the areas where protruding parts meet the rest of the body
of an object. Initially, the dual graph G ¼ ðV ;EÞ of the given
mesh is generated [16], where V and E are the dual vertices
and edges. A dual vertex is the center of mass of a triangle
and a dual edge links two adjacent triangles. The degree of
protrusion for each dual vertex results from the following
equation:

pðuÞ ¼
XN
i¼1

gðu;viÞ � areaðviÞ; ð4Þ

where N is the number of dual vertices in the entire surface,
pðuÞ is the protrusion degree for the dual vertex u, gðu;viÞ is
the geodesic distance of u from dual vertex vi and areaðviÞ
is the area of the triangle vi.

Using simple gradient-based methods (i.e., steepest
descent) all local maxima of the protrusion map pðuÞ are
obtained. In order to avoid fragmentation, geodesic
windows are applied and only the global maxima inside
the window are considered as salient. A geodesic window,
GW , centered at the dual vertex u is defined as follows:

GWu ¼ fv j 8v 2 V ; gðu;vÞ < "g; ð5Þ

where � defines the window size.
In [16], in order to perform segmentation, parts Lx

named “locales” are used, which correspond to equidistant
areas from the salient feature, in terms of geodesic distance.
The difference of the areas of consecutive locales is defined
as “Boundary Strength.” The object is “cut” at the intersection
of the locales that exhibit a significant increase of the value
of “Boundary Strength,” which is the case, e.g., for the area
where the tail of an animal reaches its body.

3.2 Curvature Estimation and Superquadric
Modeling

The approach described in Section 3.1 seems to produce
good results for a large variety of cases. However, it does
not consider curvature information. Thus, it would not split
a torus, where curvature is high but the predescribed
criteria are not met. For 3D segmentation this is not a
problem, but for the case of superquadric modeling this is
not acceptable since the subobjects to be modelled have to
be approximately convex. The present framework extends
the approach of Section 3.1 [16] and proposes a novel
method which incorporates curvature information into the
segmentation criteria, thus being able to decompose torus-
like objects.

Curvature estimation from 3D triangular meshes has
been extensively addressed in the past [17], [18]. In the
present framework, the Gaussian curvature is used because
it can directly provide information on whether the local

surface, for which the curvature is defined, is synclastic or

anticlastic [19], i.e., whether the point is elliptic or

hyperbolic. At this point it should be emphasized that

Gaussian curvature is only used as supplementary informa-

tion to clarify the above point and, thus, to overcome a

specific weakness of the method presented in Section 3.1.
The Gaussian curvature for a 3D point p is found by:

kðpÞ ¼ detðSðpÞÞ; ð6Þ

where SðpÞ is the second fundamental tensor [19] and

represents the negative derivative of the unit normal vector

N of the surface at point p:

SðxÞ ¼ � @N

@x
: ð7Þ

The method described in [18] is adopted for the

evaluation of the Gaussian curvature (6), because it does

not demand surface fitting operations or the estimation of

local spatial derivatives. The local area of a dual vertex v is

not defined to consist just of its adjacent faces, but of a

larger area consisting of all dual vertices inside the geodesic

window (5) with size � ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
areaðvÞ

p
, in order to make the

estimation robust to noise and to small local variations of

curvature. After calculating the Gaussian curvature for all

dual vertices of the mesh, the set Lhyp
x is defined, which

consists of the Nhyp
x hyperbolic points of Lx, for each locale.

Lhyp
x ¼ fvjv 2 Lx; kðvÞ < 0g:

The criterion for decomposition, which is used as a

complement to the one described in Section 3.1, consists of

the following two conditions:

. The percentage of the hyperbolic dual vertices of a
locale should be over kh, i.e.,X

v2Lhyp
x

area ðvÞ > kh �
X
v2Lx

area ðvÞ:

. The absolute mean Gaussian curvature of the
hyperbolic points should be at least th, i.e.,

1

Nhyp
x

�
X

v2Lhyp
x

kðvÞ

������
������ > th;

where kh and th are experimentally estimated thresholds.

Specifically, kh is a qualitative threshold that defines the

size of the area of the locale that should exhibit hyperbolic

geometry so as to decompose the object at the specific

locale. On the contrary, th is a quantitative threshold on the

degree in which the hyperbolic points exhibit hyperbolic

geometry. kh corresponds to the percentage of hyperbolic

points at the locale L and th to the mean value of the

Gaussian curvature of the hyperbolic points of L. If for a

specific locale Lx the percentage of hyperbolic points and

their mean Gaussian curvature are higher than kh and th,

respectively, the object is cut at Lx.
It should also be mentioned that, in order to avoid

fragmentation, a minimum size of a subobject is enforced.
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Summarizing, the major steps of the object decomposi-
tion and superquadric modeling procedure are:

1. Extract salient features, locale surfaces and calculate
the Boundary_Strength for each locale as described
in Section 3.1.

2. Estimate the Gaussian curvature for each dual vertex
(6).

3. Perform Gaussian curvature and “Boundary Strength”
tests for decomposition incrementally for each locale.
If at least one of them is positive perform decomposi-
tion according to the specific locale.

4. Model each subobject using a superquadric, so as to
bound its geometry.

An example of the decomposition using curvature
information can be observed at the elephants trunk in
Fig. 10a. In that case the use of “Boundary Strength”
information only does not lead to decomposition.

4 COLLISION DETECTION FRAMEWORK

A flow chart of the proposed layered collision detection
method, which is described in the sequel, is illustrated in
Fig. 2.

In the following terms ASQ and B will used to refer to
the object that is modeled using superquadrics and a second
object possibly colliding with ASQ, respectively.

During the preprocessing phase each part of the
decomposed object ASQ is modeled using a superquadric
as described in Section 2. Next, the resulting superquadric is
uniformly sampled. The distance of each sample P from the
modeled object part alongside the normal direction of the
superquadric surface at point P is calculated and stored in
an array (i.e., distance map).

The proposed superquadric collision detection proce-
dure performs tests between the points of an object B and
the superquadrics that comprise another object ASQ. In
order to refrain from these tests, when the objects are not
close enough, bounding spheres are defined for each object,
as well as for each superquadric. The smaller the number of
SQ surfaces an object is decomposed to, the faster the
algorithm. In cases of fragmentation, which, however, are
rare in practice, the algorithm can be easily combined with
an hierarchical procedure for exploiting spatial coherency
and minimizing the redundant operations. In the context of

this work no more than two levels of bounding sphere
hierarchies need to be used to provide satisfactory results.

During runtime, for each vertex VB of B, the following
procedures are carried out. Initially, in the first layer, the
superquadric implicit equationmodelingASQ is evaluated. If
VB lies inside the surface the algorithm proceeds to Layer 2.
At this step, the distance ofVB to the SQ surface is calculated.
This distance corresponds to a pointPV on the superquadric
surface and is comparedwith the value of the distancemap at
point PV . If VB lies deeper inside the superquadric than
allowed, i.e., thedistanceofVB to theSQsurface is larger than
thevalueof thedistancemapatpointPV , collision isdetected.
Layer 3 is an enhanced version of Layer 2. In particular, it
maps additional information to the distance map, corre-
sponding to the distance of each vertex of ASQ to the
superquadric, in order to avoid possible errors caused by
local concavities, etc.Moreover, it utilizes amultiresolutional
procedure to refine the distance map at the desired level.

Notice that the collision detection procedure can be
restricted to the preferable layer according to the quality of
the superquadric approximation and the desired accuracy.
In the following, the complete preprocessing and the
runtime algorithm are described in detail.

4.1 Preprocessing

4.1.1 Step 1

The first step of the preprocessing phase is to decompose
the object, to model each segment using superquadrics as
described in Sections 2 and 3 and to define the bounding
spheres for each object and subobject.

4.1.2 Step 2

In the second step, a dense mesh TSQ is generated for the
superquadric using its parametric equations.

rSQð�; !Þ ¼
a1 cos

"1ð�Þ cos"2ð!Þ
a2 cos

"1ð�Þ sin"2ð!Þ
a3 sin

"1ð�Þ

2
64

3
75;

� �

2
� � � �

2
� � � ! < �;

ð8Þ

where � and ! are uniformly distributed in the specified
intervals. More precisely, �d points are extracted for the
�-space and !d for the !-space.

When discretizing a superquadric using a uniformly
distributed parameterization, the generated mesh consists
of points that are not uniformly distributed in the super-
quadric surface, as illustrated in Fig. 3a. This may result to
the absence of distance information for large surface
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Fig. 2. Superquadric-based collision detection—Block diagram.

Fig. 3. Superquadric rendering using a parameterization of (a) equal

spaced intervals and (b) nonequally spaced (transformed) intervals.



elements of the superquadric. Therefore, a parametric

transformation [20] is used, in order to generate a mesh

with almost equally spaced point samples by projecting the

unit superquadric onto a unit sphere and projecting the

nodes on the superquadric to the nodes of the sphere. The

new parameterization results from the following equation:

�0

!0

� �
¼

tan�1 sgnðtanð�ÞÞj tanð�Þj
1
"1

� 	
tan�1 sgnðtanð!ÞÞj tanð!Þj

1
"2

� 	
2
4

3
5; 8�; !: ð9Þ

Notice that the above transform projects the input

variables to the interval ��=2 � � � �=2. This is acceptable

for �, but not for !, which, by its definition, should be

distributed in the interval �� � ! < �. To overcome this

problem, the value of the initial ! is checked and the value

of � is added or subtracted from !0, when necessary.

!0
new ¼

!0 þ �; if ! > �=2
!0 � �; if ! < ��=2
!0; else:

8<
: ð10Þ

Using the above parameterization, the generated mesh TSQ

consists of point samples almost equally spaced along the

surface of the superquadric as illustrated in Fig. 3b.
After defining the superquadric mesh, the distance of

each point sample from the original mesh is calculated. The

discrete distance map DSQð�; !Þ is computed using (11)

DSQð�; !Þ ¼ ICDðSQ; SmeshÞ; ð11Þ

where ICD calculates the distance of every point sample

ð�; !Þ of the superquadric SQ, alongside the normal

direction at point ð�; !Þ, from the mesh Smesh and assigns

the corresponding values to the distance map DSQð�; !Þ.
The distance map is used in the sequel to allow all vertices

VB of object B to move freely inside the superquadric only

within a specific distance from its surface, defined from

DSQð�; !Þ.

To avoid intersection between a triangle of B and ASQ,

which can happen if the face of the triangle collides with the

mesh of ASQ, but its vertices are still outside it, a small

offsetting value � is subtracted from the distance map. The

value of � is chosen adaptively depending on local

geometric features. For the choice of � only the distance

map on the superquadric is used. In particular, the value of

� is chosen to be nonzero only for the superquadric samples

x 2 Zmin, where Zmin includes the areas on the super-

quadric where DSQ exhibits local minima, since these are

areas that may protrude inside the face of a triangle.

�ðxÞ ¼ aN � d! � krDSQðxÞk; if x 2 Zmin

0 otherwise;



ð12Þ

where d! is the mean distance between consecutive samples

on the superquadric and aN is a normalization constant

experimentally selected to be “1.5”.
Using (12), higher values of � are set in the areas with

high positive gaussian curvature. A simple case of an object,

the obtained superquadric and the calculated distance map,

is illustrated in Fig. 4.

4.1.3 Step 3

In the final step, a distance value is assigned to every

superquadric point PM that corresponds to the projection of

each vertex M of ASQ to the superquadric surface, as

illustrated in Fig. 5a. If the line connecting the vertex W of

the original mesh Smesh and the minimum distance pointPW

intersects with Smesh, the vertex is neglected and no distance

value is assigned to the corresponding point PW (Fig. 5a).
If the vertices of ASQ are not projected onto the SQ

surface, as illustrated in Fig. 5b, the SQ approximation with
the distance map can be either too loose, the case of arc E, or
too strict, the case of arc S. This means that an element of an
object that is possibly involved in the collision might
penetrate the original mesh in the area of arc E, while
collision would be reported even before it enters the
original mesh in the area of arc S. The aforementioned
issues are the main reason for introducing Layer 3 that
handles them properly and is presented in the sequel.

4.2 Runtime Layered Algorithm

The runtime algorithm proceeds as follows:

1. Test for overlapping between the bounding spheres.
If positive, proceed to:
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Fig. 4. (a) An object composed of two spheres, (b) its superquadric

approximation, and (c) the resulting distance map, �d ¼ 100; !d ¼ 200.

White corresponds to larger distance values.

Fig. 5. Superellipses (a) Layer 3: Distance mapping of the mesh vertices

and (b) representation of Smesh using Layer 2.



2. For each overlapping pair execute Layer 1 super-
quadric collision detection. If positive, proceed to:

3. For each overlapping pair execute Layer 2 super-
quadric collision detection.

4. If �d!d < kL �Nm, proceed to Layer 3 superquadric
collision detection. Nm is the number of vertices of
the modeled subobject, �d, !d correspond to the
superquadric-sampling density values and kL is an
experimentally selected threshold that defines how
dense the superquadric sampling has to be so as to
proceed to Layer 3. The value of kL has experimen-
tally been selected to be “10.”

The novel three-layered approach for fast resolution of
collision detection queries is presented in the sequel. Each
layer represents a different collision detection scheme that is
based on the previous and overcomes specific weaknesses of
them. Furthermore, the calculations in each layer are used in
the next layer so as to produce a more accurate result. This
incremental nature of theproposedmethod allows theuser to
dynamically select the layers that should be used, according
to criteria concerning, e.g., real time execution.

4.2.1 Layer 1

The first layer consists of a simple check of the superquadric
inside-outside function as described in Section 2. If the
result is positive, the algorithm proceeds to Layer 2 or
intersection is detected if only Layer 1 is used.

The accuracy of the one-layer collision detection depends
entirely on the accuracy of the superquadric approximation.
If the 3D mesh was perfectly modeled using a superquadric,
collision detection based on this simple check would be
perfectly accurate. However, such perfect modeling is rare
in practical applications and, therefore, the following Layers
are used so as to obtain more accurate results.

4.2.2 Layer 2

In the context of the second Layer, the following procedure
is executed at every time update of the simulation. It should
be mentioned that, in order to avoid collisions, each vertex
VB of object B, has to be left to move freely without
entering inside ASQ at each time instance, even if it lies
inside the superquadric modeling it. When checking for
collision, not only the distance of VB from the superquadric
at the present frame has to be evaluated, but also the point
of the superquadric, which corresponds to the minimum
distance. An analytical estimation of the coordinates of this
point is possible, but requires the solution of a ð4� 4Þ
nonlinear system of equations for each vertex [14]. This

procedure is computationally complicated and unaccepta-
ble for real time applications. Another approach could be
the minimization of the distance equation using a multi-
dimensional Newton iteration, which is, however, seen to
suffer from instabilities.

In the context of SQ-Map, a fast multiresolution search
method is developed to find this minimum distance point.
The main aspects of this method are described in the
following for the 2D case of a superellipse, without loss of
generality, in order to present more effectively important
features in the figures.

Consider the superellipse of Fig. 6a. Point M lies inside
the curve and its minimum distance from the superellipse,
as well as the minimum distance point PM have to be
evaluated. As illustrated in Fig. 6a, for the minimum
distance point PM , the normal vector to the surface passes
through point M. The equation of the superellipse is:

x

	1

� �2
"

þ y

	2

� �2
"

¼ 1: ð13Þ

If " < 1 (Fig. 6a), point PM corresponds to a larger value of
angle # ð#PM

> #MÞ, where # is the variable of the
parametric equation

rð#Þ ¼ a1 cos
"ð#Þ

a2 sin
"ð#Þ

� �
; �� � # < �: ð14Þ

Notice that �
4 < #PM

< �
2 . If 0 < #PM

< �
4 , which is the case

for point PM1
then #PM1

< #M1
. If " > 1, the above inequal-

ities become reversed as illustrated in Fig. 6b. Assuming
sets A and B, where

A ¼ k
�

2
< # < k

�

2
þ �

4

n o
B ¼ k

�

2
þ �

4
< # < ðkþ 1Þ�

2

n o
;

k 2 Z; ð15Þ

then

#M > #PM
; if ðA \ f" < 1gÞ [ ðB \ f" > 1gÞ

#M < #PM
; if ðB \ f" < 1gÞ [ ðA \ f" > 1gÞ:

ð16Þ

The above are simply extended for the case of the general
3Dsuperquadric by simply replacing#by � and!.As a result,
search directions are obtained for the two coordinate
variables (�; !) of the superquadric. Notice that despite the
fact that the superquadric is a 3D surface in the 3D Euclidean
space, it is only a 2D area in the non-Euclidean (curved)
superquadric space. Thus, 2D search is performed in the area
defined from points (�M; !M) and (�M þ �r; !M þ !r), where
�r and !r are the search range variables as illustrated in
Fig. 7a, which can be positive or negative according to (16).
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Fig. 6. Superellipses (a) " = 0.4 and (b) " = 1.6.

Fig. 7. Search pyramid for NL ¼ 3, �r; !r > 0. (a) Level 0. (b) Level 1.

(c) Level 2.



Notice that the coordinate variables do not correspond to
angle values of � and !, but to indices to their already
performed quantization. The search range is defined from
the superquadric quantization density (�d; !d) in the
following way:

�r ¼ !r ¼ 2NL þ 1; ð17Þ

where NL is the integer part of

NL ¼ max log2
�d
16

; log2
!d

32

� 	
: ð18Þ

Fig. 7 illustrates the levels of the created pyramid,
which will be used in the 2D distance search method. The
function IS , to be maximized over the search region, is
equal to the absolute internal product of the normalized
normal vector to the superquadric surface at every point
(�; !) and the normalized line direction connecting points
M and ~PM , which lies inside the search region and is a
candidate minimum distance point.

IS ¼ 1

kVnormk � kLdirk
jVnorm � Ldirj; ð19Þ

where Vnorm is the spatial derivative vector of function F,

which is defined in (1), Vnorm ¼ @F
@x ;

@F
@y ;

@F
@z

h iT
and Ldir ¼

½x~PM
� xM; y~PM

� yM; z~PM
� zM�T . IS is maximized for

point PM (as shown in Fig. 6a) since, in this case, the

vectors Vnorm and Ldir are approximately collinear.
As noted earlier, the hierarchical search procedure is

applied to find the point PM that maximizes Is: Initially, the
function IS is evaluated for the points of the top level NL.
Next, the function IS is evaluated at level NL � 1 for the
neighbors of the point, which produce the higher IS value at
level NL. The procedure is repeated until the bottom level is
reached and point PM is found. The hierarchical search
method requires 8NL þ 1 evaluations of function IS instead
of ð2NL þ 1Þ � ð2NL þ 1Þ of the exhaustive search.

After locating point PM , the distance DSQ of this point
from the original mesh is available from the distance map. If
the distance of point M from point PM is higher than DSQ,
collision is detected.

4.2.3 Layer 3 (Improvement on Layer 2)

The third layer of the SQ-Map collision detection algorithm
builds on the results from Layer 2.

In every time update, the same hierarchical minimum
distance search method is used to find the minimum
distance point on the superquadric mesh. The difference
lies on the subdivision procedure applied in this layer and
in the use of the more accurate distance map obtained at
Step 3 of the preprocessing, in order to achieve more
accurate results. In particular, subdivision is performed to
the base level of the hierarchy, simply by doubling the
sampling density in both dimensions ð�; !Þ of the super-
quadric surface, thus quadrupling the samples. The
accuracy factor AS indicates the number of the needed
consecutive subdivisions. The number of samples is there-
fore increased by a factor of 4AS . In order to speed up
calculations, the 3D data of these levels can be evaluated in
the preprocessing stage using (9), (10), and (11) instead of

calculating them dynamically during runtime. After the
minimum distance point PM is found, a distance value is
assigned to it, using linear interpolation of the preproces-
sing data obtained at Steps 2 and 3.

5 ACCURACY ANALYSIS

Both the collision detection and haptic rendering methods
of SQ-Map are actually based on an approximate represen-
tation of the objects’ surface using superquadrics and
distance maps. In the following, the conditions that should
be satisfied in order to efficiently use SQ-Map are analyzed.

Consider the continuous version CM , CSQ of the mesh
surface Smesh and superquadric mesh TSQ, respectively, i.e.,
CM consists not only of the mesh vertices, but also of all the
points on its triangles (including the edges of course).

Let us also define the following three types of regions for
the mesh Smesh:

1. Convex region.
2. Concave region of type Q1: The concave regions that

are comprised of points that can be projected onto
the superquadric surface without self-intersecting
with Smesh (area of arc S in Fig. 5b).

3. Concave region of type Q2: The concave regions that
are comprised of points that cannot be projected
onto the superquadric surface without self-intersect-
ing with Smesh (point W in Fig. 5a).

Assuming that:

1. CM is bounded by the superquadric surface CSQ.
2. 8x 2 CM; 9y 2 CSQ;DSQðyÞ so that

x ¼ y�DSQðyÞ � nSQðyÞ; ð20Þ

where nSQðyÞ is the normal direction of CSQ at point
y and

3. DSQðyÞ is a scalar function with domain CSQ and
represents the distance of point y from CM alongside
the normal direction nSQðyÞ.

Lemma. Using (20) with the scalar function DSQ, an exact
representation of CM is obtained if and only if the mapping fC
of all points of CM on the superquadric is injective (one-to-
one), where fC projects the CM onto the superquadric surface.

Proof. Step 1: Forward proof with contradiction.
If the representation of CM is exact, let us assume that

the mapping is not injective, i.e., there exist at least two
points x;x0 2 CM , x 6¼ x0 that are projected onto the same
point y 2 CSQ. Then:

x ¼ y�DSQðyÞ � nSQðyÞ;

x0 ¼ y�D0
SQðyÞ � nSQðyÞ:

Representing both equations with respect to yand
equalizing:

x0 � x ¼ DSQðyÞ �D0
SQðyÞ

� 	
� nSQðyÞ

But, function DSQðyÞis scalar, thus DSQðyÞ ¼ D0
SQðyÞ.

As a result x0 ¼ x, thus reaching in a contradiction.
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Step 2: Inverse proof.
If function fC is injective, then for each x 2 CM , there

exists a point y 2 CSQ that is uniquely associated with x.
Therefore, using the associated distance value DSQðyÞthe
position of every x 2 CM is accurately and uniquely
described from (20). tu

Corollary 1. For the case of the sampled TSQ surface, the lemma
can be expressed as follows:

Using (20) with the scalar discrete function DSQ the error

of the representation of CM can be asymptotically reduced to

zero while increasing the sampling density of TSQ if and only if

the mapping fC of all points of CM on the continuous

superquadric surface is injective (one-to-one), where fC
projects the CM onto the superquadric surface.

Corollary 2.Using (20) with the scalar discrete functionDSQ the
error of the representation of Smesh can be asymptotically
reduced to zero while increasing the sampling density of TSQ if
and only if the surface of Smesh does not include concave
regions of type Q2.

Corollary 2 obviously stems from the fact that if Smesh

includes concave regions of type Q2 then the mapping
function fC cannot be injective. It is emphasized that, as the
above Corollary 2 implies, asymptotically zero error in the
representation of Smesh is guaranteed whenever the surface
of Smesh is convex or even concave of type Q1.

The conditions of the lemma and its corollaries are
considered during the decomposition procedure of Sec-
tion 3. In particular, the proposed decomposition scheme is
set up so as to cut the initial object in the areas that exhibit
concavities of either type Q1 or Q2, since in these areas the
“Boundary Strength” variable (Section 3) exhibits high
values. In this way, quasiconvex subobjects are created that
contain as few concave areas as possible.

In the ideal case, the algorithm partitions the object into
subobjects with convex or with concave regions of type Q1

thus satisfying the condition of “Corollary 2.” However, in
practice, the algorithm may encounter small local concav-
ities of type Q2. In this case, the approximation will tend
asymptotically to a nonzero error value. It is therefore
obvious that accuracy is not only related to the sampling
density of the superquadric, but also on how well the
superquadric approximates the mesh.

Regarding the accuracy of each Layer it should be
mentioned that Layer 3 by definition includes all features of
Layer 2 and additionally maps the distance information of
all vertices of Smesh onto the superquadric. Thus, for the
same superquadric sampling density, it provides always a
more accurate approximation since it handles directly the
errors of too loose or too strict approximation (Fig. 5b) that
are inherent in Layer 2.

6 HAPTIC RENDERING

After collision is detected, the force feedback provided to
the user through the haptic device has to be calculated. In
the present framework, force feedback is obtained directly
from the model adopted for collision detection, thus
handling collision detection and haptic rendering in an
integrated way, as described in the sequel.

6.1 Calculating the Force Feedback

Referring to Fig. 8a, let point MB be a vertex of object B and

Smesh represent the local surface of ASQ. Also let SM
SQ

represent the distance of point MB from the superquadric,

which corresponds to point PM on the superquadric

surface. If collision is detected, the absolute value of the

force fed onto the haptic device is obtained using a spring

model as illustrated in Fig. 8a. In particular:

kFk ¼ k � SM
SQ �DSQðPMÞ

��� ���; ð21Þ

where k is the spring constant. DSQðPMÞ is the distance of

point PM from the mesh and is stored in the distance map

of the superquadric. Notice that the term jSM
SQ �DSQðPMÞj

is an approximation of the actual distance of MB from the

mesh that becomes more accurate if the superquadric

surface approximates well the mesh.
The direction of the force should in general be

perpendicular to the local area, where collision is detected.

An obvious solution to the evaluation of the direction of this

force would be to detect the surface element (i.e., triangle),

where the collision occurred and to provide the feedback

perpendicularly to it. This approach is not only computa-

tionally intensive, but also results in nonrealistic noncontin-

uous forces at the surface element boundaries. In the

present framework the analytical approximation of the

mesh surface is used utilizing the already obtained super-

quadric approximation and the distance map. Based on this

approximation, the normal to the object’s surface can be

approximated rapidly with high accuracy. In particular, if

DSQð�; !Þ is the scalar function of the distance map on the

superquadric, as described in Section 4, the surface Smesh of

ASQ can be approximated by (22) (Fig. 8b):

Smeshð�; !Þ ¼ rSQð�; !Þ �DSQð�; !ÞnSQð�; !Þ; ð22Þ

where

rSQð�; !Þ ¼
x

y

z

2
64
3
75 ¼

a1 cos
"1 � � cos"2 !

a2 cos
"1 � � sin"2 !

a3 sin
"1 �

2
64

3
75;

8� 2 � �

2
;
�

2

h i
! 2 ½��; �Þ

ð23Þ

is the parametric definition of the superquadric and

nSQð�; !Þ the normal vector for each point rSQð�; !Þ. The
vector nSQð�; !Þ is defined as the cross product of the

tangent vectors along the coordinate curves [14],
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nSQð�; !Þ ¼ t�ð�; !Þ � t!ð�; !Þ ¼ sð�; !Þnd ¼

¼ sð�; !Þ

1
a1
cos2�"1 � � cos2�"2 !

1
a2
cos2�"1 � � sin2�"2 !

1
a3
sin2�"1 �

2
664

3
775; ð24Þ

where

sð�; !Þ ¼ �a1a2a3"1"2 sin
"1�1 � � cos2"1�1 ��

sin"2�1 ! � cos"2�1 !:
ð25Þ

The calculation of the force feedback demands the
evaluation of the normal vector nS on the object’s surface.
Similarly to (24), it is obtained through (26). In the following
the brackets ð�; !Þ will be omitted for the sake of simplicity.

nS ¼ @Smesh

@�
� @Smesh

@!
; ð26Þ

where

@Smesh

@�
¼ @rSQ

@�
� @DSQ

@�
nSQ �DSQ

@nSQ

@�
;

@Smesh

@!
¼ @rSQ

@!
� @DSQ

@!
nSQ �DSQ

@nSQ

@!
:

ð27Þ

The term
@rSQ
@� can be computed directly:

@rSQ
@�

¼ "1
2
sin 2�

�	1 cos
"1�2 � cos"2 !

�	2 cos
"1�2 � sin"2 !

	3 sin
"1�2 �

2
4

3
5; ð28Þ

while the term
@DSQ

@� is computed numerically. Finally,

@nSQ

@�
¼ @s

@�
nd þ s

@nd

@�
: ð29Þ

Terms @s
@� and @nd

@� are easily computed through (24) and
(25),

@s

@�
¼ A cos2"1 � � sin"1�2 � 1� 2"1 � 1

"1 � 1
tan2 �

� �
; ð30Þ

@nd

@�
¼ 1� "1

2

� 	
sin 2�

� 1
a1
cos�"1 � � cos2�"2 !

� 1
a2
cos�"1 � � sin2�"2 !

1
a3
sin�"1 �

2
64

3
75; ð31Þ

where A ¼ �a1a2a3"1"2 sin
"2�1 ! � cos"2�1 !.

Using (26)-(31), the direction of the normal nS is
obtained. Equivalent analysis is performed for the deriva-
tives with respect to the coordinate curve !. Notice that the
object surface normal direction can be precalculated. This
provides much faster force feedback evaluation than
dynamically calculating the normal from the object surface
or the gradient of a distance field, which is a common
practice in the haptics literature [21].

Finally, the direction of the normal along the surface of
the modeled object is obtained using (26), thus resulting to
the reaction force, which is:

Freaction ¼ k SM
SQ �DSQðPMÞ

��� ��� nS

knSk
: ð32Þ

Using (32) the force feedback corresponding to collision
between elementary parts (e.g., vertices and triangles) is

calculated. When an area of an object collides with a part of
a second object, several triangles are colliding with each
other, thus resulting in numerous components of the force
feedback of (32). When providing force feedback by
accumulating these force components, the final force
depends on the number of contacts, thus also on the
sampling density of the object (high number of contacts for
a fine triangulation of an object), and could become very
high and lead to instabilities. In the present framework, all
force elements inside an impact zone are averaged and then
fed onto the device for interaction. The impact zone is
defined as the area, where forces should be transferred to
the haptic device (e.g., fingers for the CyberGrasp and a
small sphere around the pointer for the Phantom). With the
use of impact zones, independency from the sampling
density of the objects is achieved and no instabilities have
been observed.

If smoothing of the force field is required, simple
smoothing operations can be applied only on the 2D distance
map, thus resulting in smooth force feedback.

It has also to be noted that the force cannot be
guaranteed to be continuous. If point MB crosses the
medial axis of the superquadric a discontinuity will arise on
the minimum distance point PM on the superquadric and a
force discontinuity may be encountered. However, experi-
ments have shown that, in practice, this is not very likely
and the possibility of such a discontinuity becomes even
lower if the superquadric approximates well the mesh.
Moreover, the defect of the discontinuity is lowered
through the previously described force averaging in the
impact zones.

6.2 Modeling Friction

The force calculated from (32) is always perpendicular to
the object’s surface. If no friction component is added, the
resulting force feedback will be like touching a very
slippery surface [22]. In order to avoid this undesirable
defect, a friction component is added to the force of (32). In
particular,

Ffriction ¼ �fC � 1þ kf SM
SQ �DSQðPMÞ

��� ���� 	
� nf

knfk
; ð33Þ

where fc is the friction coefficient and nf the direction of the
motion of the processed point, i.e. nf ¼ Pt �Pt��t, wherePt

is the current position of the processed point and Pt��t its
position at the previous frame. Term kf jSM

SQ �DSQðPMÞj is
used in order to increase the magnitude of the friction force
when the penetration depth of the processed point increases.
The variables SM

SQ and DSQðPMÞ are defined in (21), while
factor kf controls the contribution of the penetration depth to
the calculated friction force. Finally, the force fed onto the
haptic device yields from the addition of the reaction and the
friction force, Fhaptic ¼ Freaction þ Ffriction.

6.3 Modeling Haptic Texture

Using SQ-Map for haptic rendering, haptic texture [22] can
also be simulated easily by applying appropriate transfor-
mations on the acquired distance map. In the present
framework, in order to simulate surface roughness, Gaus-
sian noise [22] is added to the distance map. No computa-
tional cost is added, since the procedures for calculating the
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force direction are not altered due to the existence of haptic
texture. The only difference lies in the evaluation of the
magnitude of Ftexture, which now yields from:

Ftexture ¼ k SM
SQ � ðDSQðPMÞ þ ngÞ

��� ��� nS

knSk
; ð34Þ

where ng denotes th Gaussian noise.

7 EXPERIMENTAL RESULTS

The proposed methods were evaluated using two off-the-
shelf haptic devices, namely, Phantom and CyberGrasp.
The experimental evaluation of the SQ-Map collision
detection and haptic rendering is presented in Sections 7.1
and 7.2, respectively.

SQ-Map was integrated in two different haptic interac-
tion applications, which are the nonvisual object recognition
for blind people training and the costume designer
application.

The first of the developed applications aims at the
recognition of virtual objects (Fig. 9a) using only the sense
of touch, which is intended to be used by blind or visually
impaired users [23]. In the second, (Fig. 9b), the user is able
to interactively simulate clothing [24] as well as to perform
fitting and editing operations of cloth over avatars using
haptic devices. All results were obtained with an Intel
Pentium 4, 3.0 GHz with 512MB RAM and an ATI Radeon
9800XT graphics card.

7.1 Collision Detection Evaluation

The proposed superquadric based collision detection algo-
rithm is compared to standard mesh-based approaches [3],
[4] as well as to distance field-based methods [8], [12]. The
experiments consist of touching and handling a virtual object
using the haptic device, for the two applications (Fig. 9). It
should be noted that in both experiments the scene objects are
almost at every time step in collision with each other. The
virtual hand that is queried against the scene objects is
composed of 4,790 vertices and 9,344 triangles. For the
performed experiments the precomputation time was found
to lie between 4 seconds for the simplest model (Camel) to
7 seconds for the most complex (Elephant). These times
include processing for decomposition, superquadric model-
ing, distance map generation that is performed only once
during the modeling of the objects.

Fig. 10 illustrates the decomposition of three of the
processed objects, using the algorithms of Section 3.

The three different curves of the diagrams in Figs. 11a
and 11b represent the percentage of the computational cost
of SQ-Map, with respect to [3], using the three different
layers of the superquadric collision detection procedure (the
method in [3] corresponds to 100 percent). Note that they
correspond to simulations where the involved objects are
continuously colliding. If the objects were not colliding at
all, the execution times would be almost identical. The
difference in efficiency is obvious, while it becomes more
noticeable when handling more complex virtual objects.
Moreover, SQ-Map can also detect collisions between a rigid
and a deformable object. It should also be mentioned that
SQ-Map (approximate method) does not report the same
type of information with the approach in [3] (accurate
method), since it approximates the object’s surface with an
implicit equation and a distance map. The error, as
illustrated in Fig. 14c, is calculated for all points Mi of
object B that lie inside the superquadric modeling ASQ

through:

e ¼
X

8Mi2SQ

jD̂MðMi;nSQðPMiÞÞ �DMðMi;nSQðPMiÞÞj
Rmax

;

ð35Þ

where PMi is the projection of Mi onto the superquadric
D̂M the estimated distance from Smesh along side the normal
direction nSQ and D̂M the accurate one. Rmax is the
maximum distance between the vertices of the object.

In both simulations, the error varies around 0.4 percent
to 0.5 percent and is also illustrated in Fig. 14c. Finally,
experiments have shown that there is no need to use Layer 3
collision detection if the discretization of the superquadric
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Fig. 9. (a) Object recognition application. (b) Costume designer

application.

Fig. 10. Decomposition of three of the the processed models.

(a) Elephant. (b) Tiger. (c) Horse.

Fig. 11. Percentage of the computational time needed for the SQ-Map

collision detection method compared to the mesh-based approach [3] for

the (a) recognition application and (b) costume designer application.



surface is fine. In general, there is a trade-off between

runtime efficiency and memory allocated in order to store

the distance map of the superquadric surface.
Distance field methods [7], [8] are slightly faster than SQ-

Map, at the cost, however, of huge memory requirements in

order to produce a dense 3D grid. Table 1 illustrates the

memory requirements of each object individually as well as

for the whole scene of Fig. 9a using a fine discretization of

the distance field and distance maps. Figs. 12a and 12b

illustrate the memory requirements of the distance field

method [8], the adaptive distance field method [12] and SQ-

Map collision detection for the “tiger” model and for the

whole scene (Fig. 9a), respectively, using floating point

arithmetics for the distance map and grid, with respect to

the sampling density.
From Fig. 12, it can be deduced that, despite its

efficiency, the distance field method is inappropriate when

the virtual environment consists of many detailed objects.

Using the adaptively sampled distance fields [12], the

memory requirements decrease, but they are still high for

the case of the simulation of complex virtual environments,

which is the case in Fig. 9a. As a consequence, despite the

theoretically unbeatable performance of distance fields,

their extremely high memory requirements could lead in

practical applications to a significant slow down of

performance due to the use of virtual memory.
On the contrary, the memory requirements of the OBB

are less than 5MBs for the processed models. This value

seems initially comparable to the values of SQ-Map as

presented in Table 1. However, the memory requirements

of the OBB should be considered to be low compared to the

SQ-Map, since they correspond to an accurate representa-

tion of the object, while for SQ-Map to an approximate. If

the sampling of the superquadric is increased so as to

reduce the approximation error, the memory requirements

will increase far beyond the ones of the OBB that are

constant for a specific model.
Another remarkable method was presented in [13],

which trades memory for speed by partitioning the space

using 23N -trees, in particular, 512-trees, instead of octrees

and by reducing the tree-depth to three levels. As a result,

the time to traverse the tree is held low at the cost, however,

of higher memory requirements than the adaptive distance

field. Thus, its memory requirements are still much higher

when compared to the ADF’s and especially to those of the

presented approach.

The superquadric-based method diminishes the need for
memory allocation, while retaining all benefits of the
distance field-based collision detection. This is caused by
the fact that it uses a 2D distance array mapped onto the
surface of the superquadrics instead of the 3D distance grid.
On the other hand, there is the need to perform object
decomposition when handling complex virtual objects,
which is efficiently performed in the context of SQ-Map,
as described in Section 3.

In general, the approximation of the object’s surface
using a distance map (height field) [25] is very efficient and
simplifies processes like collision detection. However, this
provides an accurate approximation only if the objects do
not have large concavities on their surface. In the present
work, problems of concave features are handled using the
decomposition method, which tends to decompose an
object into quasiconvex regions. Moreover, the accuracy of
the representation is directly related to the sampling density
of the superquadric. The higher the sampling density the
more accurate becomes the representation. On the other
hand, this would result in an increment of the memory
requirements of the approach, needed so as to store the
more detailed distance maps. This would also be the case
for the distance field-based methods, when trying to refine
their accuracy.

7.2 Haptic Rendering

Regarding the accuracy of the force feedback, it should be
noticed that it depends initially on the 3D object decom-
position. If the decomposition and the superquadric
modeling is not accurate and large concavities of type Q2

exist inside a segment, which is approximated with a single
superquadric, then it is not possible to represent these
concave areas using the distance map information only. In
such a case, the resulting force field would not be accurate
in the areas where the approximation of the surface is also
not accurate. However, this case was not encountered in
practice, since the 3D decomposition scheme tends to
produce segments without such concavities.

Moreover, the accuracy of the force feedback depends
also on the accuracy of the obtained distance map, i.e., the
discretization of the superquadric surface. If it is fine
enough and the decomposition-superquadric approxima-
tion scheme produces segments that satisfy the lemma
presented in Section 5, the force will not inherit the force

90 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 1, JANUARY/FEBRUARY 2007

TABLE 1
Memory Requirements

Fig. 12. Memory requirements for the distance field [8], the adaptive

distance field [12] and the proposed SQ-Map method (a) for the “Tiger”

and (b) for the whole scene (Fig. 9a).



discontinuity, from which all methods that use the 3D mesh
to obtain haptic feedback suffer [21], when moving through
mesh polygons. In particular, the force feedback evaluated
using the mesh of the object will be perpendicular to its
surface, thus resulting to a relatively strong discontinuity
when crossing an edge (Fig. 13a). When a simple local
smoothing operation is applied to the distance map, the
resulting force feedback is smooth in the areas around the
edges, without being over-rounded as is the case with the
force shading method [26] or the distance field method
when the pointer of the haptic device is not very close to the
real surface [22]. Fig. 13b illustrates the magnitude of the
difference of the force feedback for subsequent frames
(Fdiff ¼ kFi � Fi�1k) under sliding motion, when force
feedback is obtained directly from the mesh and when
using the presented method with a smoothed distance map.
It is obvious that SQ-Map produces smoother force feedback
since Fdiff does not contain spikes and has relatively small
values.

Figs. 14a, 14b, and 14c illustrate absolute timings of SQ-
Map and the “performance index versus error” graph. The
upper plot of Fig. 14a illustrates timings for collision
detection and force feedback evaluation separately as well
as the combined frame update time and corresponds to
sliding motion in the recognition application environment
using all three layers of the SQ-Map framework so as to
obtain a very accurate result. Fig. 14b depicts total timings
for collision detection and haptic rendering for a relatively
high number of contacts. The figure illustrates that the
algorithm performs almost equally fast no matter, which is
the number of contacts. This does not mean that the
algorithm is totally independent of the number of contacts.
However, during the collision between two objects, it
achieves almost constant performance if the objects are
either slightly colliding or under heavy collision or even not
colliding at all, but very close with each other, since the
algorithm will perform almost the same tests for the points
that lie inside the bounding superquadric of the object.

The “performance index versus error” graph of Fig. 14c
plots the performance of SQ-Map with respect to the error,
which corresponds to the desired accuracy, for different
sampling densities of the superquadric. The values of
“performance” are the average timings when the respective
error threshold is forced.

The “performance index versus error” graph highlights
several interesting properties of the SQ-Map. The part of each
plot that exhibits almost constant performance corresponds
to Layer 2 collision detection. Notice that in Layer 2, the
performance decreases slightly when the superquadric
discretization is increased. The sloping parts of the graph
correspond to Layer 3 collision detection. The performance in
this part decreases because more dense subdivision is
performed. When using a more dense sampling on the
superquadric the error of the Layer 2 collision detection
decreases and in the “performance versus error” graph, the
transition from Layer 2 to Layer 3 occurs for lower values of
the error threshold, i.e., for higher values of accuracy. It is
emphasized that the error of Fig. 14c never reaches zero,
however, many more subdivisions are performed in Layer 3.

Finally, it should be mentioned that the present work
presents an alternative core algorithm for computing the
force feedback for haptic display. It is capable to perform
6DOF haptic rendering, which is degraded in the presented
experiments only to force feedback and not torque. More-
over, popular state-of-the-art techniques like virtual cou-
pling, precontact braking forces [13], haptic texturing, etc.,
which are very common in the haptics literature [11], [22],
can be easily and efficiently integrated in SQ-Map so as to
provide more realistic and stable haptic rendering.

8 CONCLUSIONS

In this paper, a novel framework for real-time collision
detection and haptic interaction with complex virtual
environments is presented. The efficient collision detection
algorithm models each virtual object using superquadrics.
For complex objects, decomposition is performed and each
resulting subobject is approximated using a superquadric.
The distance of the mesh and the superquadric is mapped
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Fig. 13. (a) Force feedback using only the mesh, force shading, and

smoothing on the SQ distance map and (b) force feedback directly

evaluated from the mesh and force feedback obtained from SQ-Map

with distance map smoothing.

Fig. 14. (a) Absolute timings for SQ-Map under sliding motion.

(b) Absolute timings for high number of contacts. (c) Performance index

versus Error graph. The error is calculated from (35).



onto its surface and is used in combination with its analytical
formula in order to rapidly perform collision detection
without the need to execute triangle per triangle intersection
tests. The force feedback provided to the user is calculated
efficiently, in an integrated way, using the analytical
description of the superquadric and the distance map.

In general, the SQ-Map has the following contributions
and limitations.

Contributions: The superquadrics-based method has
certain advantages over the more common OBB or k-DOP.
It provides a simple, parameterized implicit representation
of the underlying shape. This leads to the improvements
reported. This method can be viewed as a trade-off between
OBB, which is space-efficient, but slower, and the original
distance field method, which is faster, but consumes huge
amount of memory. Moreover, it can handle collisions
between a rigid and a deformable object. Force feedback is
calculated explicitly from the superquadric representation
of the shape, while haptic effects can be easily implemented
by processing the obtained distance map.

Limitations: Superquadrics representation comes at a cost.
Not all objects can be easily decomposed into superquadrics
and the precomputation time is increased. SQ-Map com-
putes an approximated distance between colliding objects
that becomes more accurate for more accurate superquadric
approximations. Moreover, small local concavities may be
missed by the decomposition algorithm and special care
must be taken to detect edge-edge contacts using an
offsetting value on the distance map, since the relative
position of the edges of the objects possibly involved in
collision cannot be calculated explicitly. Finally, there is no
guarantee that the force feedback will be continuous.
However, a smooth force field can be easily obtained by
applying smoothing operations on the distance map.

Experimental results demonstrate that significant com-
putational gain is expected using SQ-Map in haptic virtual
reality applications, without a huge increment in memory
requirements.
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