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ABSTRACT The development of personalized finite element models of the knee anatomy is critically
important in the simulation of knee joint mechanics, prediction of optimal treatments in cases of pathological
conditions and prevention of injuries. Subject-specific models can be obtained from diagnostic images with
multi-atlas segmentation being a pertinent choice when prior anatomical information of the structures of
interest is available. Although multi-atlas segmentation has been prevalent in some parts of the body, its
exploitation for the segmentation of the knee complex has not been illustrated yet. This work utilizes a
multi-atlas segmentation method based on deformable registration and joint label fusion in conjunction with
anatomically-adopted mesh refinement in order to generate subject-specific models of the knee. The success
of finite element simulations strongly depends on the properties of the 3D surface and the quality of the
volumetric meshes. Therefore, emphasis was given to create structured meshes with well-shaped hexahedra
for the knee cartilages and menisci. The segmentation performance is assessed using cross-validation on
7 subjects from the Open Knee project and 78 subjects from the Osteoarthritis Initiative. Our results indicate
that our developed state-of-the-art processing scheme can achieve competitive performance, opening the
path for better diagnostics and patient-specific interventions. The developed tools are freely available to
download from SimTK at https://simtk.org/projects/knee-segment.

INDEX TERMS Atlas-based segmentation, knee geometry, label fusion, mesh refinement, MRI segmenta-

tion, osteoarthritis.

I. INTRODUCTION

The degenerative joint disease, or osteoarthritis, is the most
common chronic condition of the joints. It causes pain and
mobility limitation leading to reduced independence and
degeneration in the quality of life [1]. Most of the existing
research has focused on factors associated with the dis-
ease, but the limited exploitation of longitudinal data analy-
sis examining the factors associated with disease onset and
progression has resulted in poor prevention and treatment
interventions. The quantitative assessment of knee pathology
caused by injury or disease, such as the estimation of cartilage
loss due to osteoarthritis, largely relies on the delineation
of the knee compartments, mainly the bones, cartilages and
menisci. Magnetic resonance imaging (MRI) can provide the
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required input since it is characterized by high sensitivity in
visualizing soft tissue [2]. However, manual delineation is
susceptible to inter- and intra-rater variability. In addition, the
three-dimensional (3D) nature of volumetric data hinders the
cross-sectional perception in the outlining process, usually
performed over sequential 2D scans. In longitudinal studies,
automation and reproducibility in segmentation are important
factors that reduce the workload of the experts and preserve
segmentation consistency, permitting the quantification of
subtle changes. The exploitation of image registration tech-
niques, that spatially map the different images in a common
(reference) space, can provide information on the localization
of the pathology and tissue alteration.

The primary goal of this work concerns the development of
an automated method for segmentation of the knee structures
from magnetic resonance (MR) images. Many of the pro-
posed MRI-based knee segmentation methods are designed
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to operate only on specific knee structures, such as the femur
and cartilage, with pre-defined characteristics in respect to
shape or other descriptors. We build upon a multi-atlas seg-
mentation method developed initially by Wang et al. [3] that
can generalize on any anatomical structure and that exploits
pre-segmented regions of interest to calculate regional likeli-
hoods. The end-goal is to utilize the segmented knee struc-
tures for the construction of personalized models than can
support finite element analysis (FEA). FEA requires high-
quality volumetric meshes with well-shaped elements, such
as hexahedral meshes, which are preferred over the tetrahe-
dral meshes for using significantly fewer elements, having
a superior convergence rate [4] and less singularities [5].
Although many fast and robust methods exist for the creation
of tetrahedral meshes of arbitrary geometries, this is not the
case for hexahedral meshes. Hence, we make use of the
method presented in [4] to create high quality, smooth hexa-
hedral meshes. The resulting geometries are well-structured,
with the cartilages divided into layers so that specific material
properties can be potentially attributed to each layer [6].

This work overall aims to establish an automated method-
ology for creating subject-specific geometries, extracted from
medical images, that can be potentially used for modeling,
simulation and analysis of the knee mechanics. The main
contributions are summarized as follows:

1. A general multi-atlas segmentation scheme utilizing
deformable registration and label fusion is combined with an
anatomically-adopted mesh refinement algorithm for optimal
modelling of the knee from MRI data.

2. The segmentation and mesh generation scheme is not
limited to the bones, but is extended to other structures, such
as cartilages and menisci with emphasis on improving the
geometrical properties required for a subsequent FEA.

3. The effectiveness of the method is illustrated on two dif-
ferent datasets with varying degree of osteoarthritis, in order
to investigate whether the segmentation performance is
affected by the OA grade.

4. A short taxonomy on representative MRI-based knee
segmentation methods is presented to provide some insights
on implemented methodologies, amount of data used for
validation, targeted structures in the knee complex, obtained
accuracy, amount of supervision, and other methodological
aspects.

Il. REVIEW OF KNEE SEGMENTATION METHODS

A variety of promising methods have been introduced for
the segmentation of the knee structures in MR images.
The diverse approaches can be categorized coarsely into
three groups, namely atlas-based, shape or model-based,
and graph-based approaches, without omitting the fact that
hybrid methods can also exist. Comparison of the dif-
ferent approaches is not straightforward, since all present
advantages and weaknesses in respect to obtained accuracy,
requirement of prior information (imaging or segmentation
masks), level of automation, sensitivity to initialization, abil-
ity to handle abnormal (pathological) cases, computational
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complexity, etc. Their accuracy also depends strongly on the
evaluation data, which might differ in quality and amount,
therefore direct comparison is not feasible. A classification
scheme of methodologies for the knee joint segmentation was
proposed in [7] and also followed in a subsequent review [8],
where MRI-based knee bone segmentation methods are ana-
lyzed and compared. We extend the previous review by
focusing more on the critical structures to be segmented, i.e.
cartilages and menisci, and present a table (Table 1) summa-
rizing the main characteristics of current implementations,
while in the following we briefly elaborate on methodological
aspects.

A main family of methods that has been utilized for knee
segmentation relies on statistical shape models (SSMs). The
shape is an important characteristic of rigid structures, such as
the bones and the cartilages, and can guide the segmentation
process by reducing ambiguity. The shapes of the bones
can also help identifying weight bearing regions that might
cause loss of cartilage in the case of osteoarthritis [9], [10].
The framework in [11] made use of a 3D active shape
model for the extraction of the bone-cartilage interface and
a subsequent SVM classifier for the extraction of the car-
tilages. Another strategy utilized active appearance models
with the minimum description length criterion for groupwise
registration to identify the bones and cartilages [12], while
SSMs with multi-object graph optimization were used for
the segmentation of bones that assisted the extraction of
the cartilages in [13]. Additionally to the segmentation of
multiple anatomical compartments in the knee region, shape
models were also the dominant choice for the segmentation of
specific structures of the knee, such as the menisci [14]-[16].
Furthermore, volumetric appearance models [17] have been
used as an extension of surface-based active appearance mod-
els for improvement of the segmentation of the knee bones
and reduction of the variance in the obtained measurements.
Finally, SSMs have been used as an intermediate regulariza-
tion step between an initial segmentation using 2D convolu-
tional neural networks (CNNs) and an ultimate refinement
step with 3D CNNs [16], [18].

Graphical models [19], [20] were also exploited for knee
segmentation. They offer a compact image representation
and allow to use existing algorithms from the graph the-
ory for image analysis [21]. The segmentation problem is
approached by dividing a graph to subgraphs that repre-
sent meaningful objects of interest. Specifically, the method
in [20] is based on a joint optimization scheme using support
vector machines for the description of image features and
spatial dependencies and discriminative random fields for the
interaction term, while the method in [19] utilizes localized
Markov random fields that adaptively emphasize appearance
and shape priors, according to local region voxel intensi-
ties. Simultaneous segmentation of multiple surfaces, where
the segmentation problem is treated as a graph optimiza-
tion problem, is performed in [22] and recently extended to
capture spatiotemporal (longitudinal) context [23]. Content-
based features extracted from the edges and the gray level
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FIGURE 1. Components of our approach towards the generation of a finite element model of the knee complex. After each step the corresponding
output file type is given: NIfTI format stands for medical images, STL for 3D surfaces and MSH for volumetric meshes.

co-occurrence matrix have been utilized within a graph-
cut segmentation scheme to improve discrimination ability
in [24]. Finally, a hybrid multi-atlas and graph-based segmen-
tation approach is adopted in [25].

Although SSMs and graphical models have a strong theo-
retical basis, they usually require the (joint) optimization of
an energy function incorporating an image-based supervised
classification cost, therefore increasing computational com-
plexity. Our approach is based on atlas-based segmentation
and data fusion. This choice was mainly driven by the high
potential of such approaches that has been illustrated in differ-
ent segmentation problems, along with the recent availability
of annotated images of the knee, which is a necessity for
atlas-based approaches, and the easier interpretation of the
method’s intermediate results (in the form of probability
maps).

The foundation of atlas-based methods is a registration
step, that maps the diverse information from several anno-
tated atlases acquired by a single or multiple imaging tech-
niques into a common space where statistics can be extracted.
After spatial normalization each methodology can utilize a
different approach to the segmentation process. The initial
concept of atlas-based segmentation methodologies relied on
single atlases, in which the labels of the atlas were propagated
to the novel image via registration. This strategy is highly
prone to registration errors and the given atlas might also
not be anatomically representative of the novel image. There-
fore, the construction of a probabilistic atlas image from a
set of atlases started to dominate the field aiming to better
capture wide anatomical variations. Multi-atlas segmenta-
tion was firstly introduced in a series of papers [26]-[28]
that proposed to combine disparate sources of experimental
data across multiple targets in order to increase predictive
power [29], [30]. Such approaches rely on a fusion scheme,
that optimally aggregates the votes of the multiple atlases in
order to reach a consensus (final segmentation).

Although multi-atlas segmentation has been applied to a
great extend with success for brain image segmentation [31],
it has rarely been used for modeling the knee complex. How-
ever, multi-atlas approaches have shown great potential in
the segmentation of knee bones and cartilages [32], [33], and
menisci [34]. The technique proposed in [32] employs outlier
detection with voxel classification for the delineation of the
cartilages. Class predictions were obtained by each atlas and
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then combined with a fuzzy voting algorithm. Based on this
work, a non-local patch-based label fusion method was real-
ized in [33] coupled with voxel classification to derive the
femoral and tibial cartilages. Similarly, profoundly inspired
from the work in [35], k-nearest neighbor (kNN) voxel clas-
sification was performed after multi-atlas rigid registration
to a common space (defined as the training center) in [34].
In the latter work information fusion from the multiple atlases
was not performed probabilistically in decision level, but was
effectuated implicitly during supervised classification. Such
basic data fusion strategies weight equally the contribution of
each atlas and moreover do not consider the different levels of
uncertainty over the spatial domain. Those important aspects
were addressed in [3] and motivated the design of our knee
segmentation framework.

Other methods, that rely solely on the intensity content,
have also been proposed for MRI-based knee structures seg-
mentation and can involve texture analysis [36], voxel classi-
fication with kNN classifiers (without spatial alignment) [35],
regression [37] or deep learning [38]-[41]. The deep learning
approaches applied 2D CNNs over single [39] or multiple
planes [38], or accounted for shape preservation through
3D simplex deformable modeling [40]. The latter work was
extended in [41] by incorporating also a 3D fully connected
conditional random field in order to consider the 3D con-
textual relationship among voxels. To avoid segmentation
inconsistencies across slices, 3D convolution was performed
in [42] using a network inspired by the U-Net architecture
[43]. In most of the cases the deep learning approaches have
shown superior potential, especially when 3D topology was
considered. However, deep networks require the availability
of a plethora of segmented images to be used for training
purposes. On the opposite, atlas-based segmentation methods
are much more robust to a limited number of annotated data.

lIl. METHODS

The overall scheme includes several methodological com-
ponents as depicted in Fig. 1. First MRI segmentation is
performed based on deformable registration with multiple
atlases and label fusion to automatically extract the various
knee structures. Then the 3D surface is extracted from the
segmentation mask, followed by volumetric mesh generation
and refinement of the individual structures (cartilages and
menisci). The output consists of a personalized model of the
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FIGURE 2. Overlay of the target image on the atlas a) before and b) after
deformable registration. The soft tissues of the atlas are depicted with a
green hue, whereas the soft tissues of the target image with a white hue.

knee complex that is in appropriate form (i.e. is characterized
by high mesh quality without degenerated elements) to be
used for finite element analysis.

A. REGISTRATION

Atlas-based segmentation methods require that the atlas
images and the new unlabeled image are in spatial alignment.
This is achieved by deformable registration in which a non-
linear transformation is sought that brings each atlas and
target image in the same space so that the corresponding
anatomical structures spatially coincide. Before performing
non-linear transformation, a rigid or affine transformation
with a few degrees of freedom is required to correct for global
pose and scale differences. In other words, rigid registration
achieves the coarse alignment of the images, allowing the
subsequent deformable registration to capture the local indi-
vidual anatomical variations.

Fig. 2 shows an example of a target image overlaid on
the atlas before and after deformable registration. The lack
of complete overlap of the two structures after registration
is mainly explained by the regularization (smoothness) con-
straints inherent in every deformable registration algorithm.
Regularization is necessary because it allows to preserve the
physical properties of the underlying anatomical structures by
controlling the properties (e.g. compressibility) of the defor-
mation field, and also helps the optimization process to avoid
local minima. The residual variability of the coregistered
tructures is exploited by the subsequent fusion mechanism,
as explained in the next section. Overall, the atlas-based
segmentation methodology consists of multiple steps that are
illustrated in Fig. 3 and outlined below:

1. The atlas images and the target image are registered
in order to achieve anatomical correspondence. This can be
achieved in two ways: either by registering all the atlases
onto the target image space (let’s denote it with Q7), or by
registering all the atlases and the target image into a common
reference atlas (e.g. one of the atlases) and hence work in a
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template space 24. In the latter case a transformation @ :
Qr — Q4 is sought and applied to warp the target image
into the common space.

2. The warped atlases provide information on the possible
localization of the different anatomical structures in the ref-
erence space. This information is combined through a label
fusion technique to derive the segmentation of the target
image and the spatial probability maps for each structure.

3. If the reference space is not the target image space the
obtained segmentation can be mapped back into the original
image space through the application of the inverse transfor-
mation @~ 1.

Two methods were mainly exploited for the registration
step, namely Elastix [44], which is computationally efficient,
and DRAMMS [45], which is more costly but offers more
accurate alignment of the images due to its hierarchical
attribute matching mechanism and also provides more pre-
cise inversion of the deformation fields. Aiming at accuracy,
we selected DRAMMS and decided to work in a common
reference space in which all atlas images are warped only
once, i.e. there is no need to repeat this operation for new-
coming images. However, in the case of registration in the
target image space, where the multiple atlas images have to
be co-registered at testing time, Elastix was the only com-
putationally feasible option. Specifically, the computational
cost for Elastix was 30s and for DRAMMS 108 minutes in an
Intel Core i7-4770 CPU @ 3.40 GHz x 8 with a 16 GB RAM
machine. Since DRAMMS performs only deformable regis-
tration, the initial global alignment of the images was per-
formed using FLIRT [46] of the FSL! library. The FLIRT tool
was used with a 6 degrees of freedom (DOF) transformation
model (i.e. rigid registration) and the normalized correlation
as similarity metric. In a few cases where linear registration
was poor, we augmented the transformation model to 12 DOF
(i.e. affine registration).

B. MULTI-ATLAS SEGMENTATION BY LABEL FUSION
Segmentation of the multiple knee structures was performed
by adopting the technique described in [3] that optimizes
the fusion of segmentation outcomes from multiple atlases
through a mechanism referred by the authors as joint label
fusion. In this fusion mechanism, the contribution of each
atlas is weighted according to the probability that each pair of
atlases makes a segmentation error at the specific location and
then weighted voting is applied to obtain the final consensus
vote. The weights do not only depend on each atlas’ uncer-
tainty, but also follow a spatially varying distribution based
on the intensity similarity between atlas and target image.
With more details, let 77 be the target intensity image,
Ts the corresponding unknown segmentation map and A! =
{A},AL}, ... A" = {A! A}} the n atlases (each including
a pair of intensity and ground truth segmentation images),
warped to the space of the 77 image with deformable reg-
istration. We suppose that we have D image modalities and L

1 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
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FIGURE 3. The automatic segmentation scheme. Atlases and target image are warped in a common space 2,4 through deformable registration to
achieve anatomical correspondence. If the “template space” where label fusion is performed, is not the original space of the target image (27),

the output segmentation is mapped back to the target image space.
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FIGURE 4. a) 3D surface of the femoral cartilage from the marching cubes
algorithm; b) The same surface after the application of a Laplacian filter.

(b)

different labels (regions of interest). For deterministic atlases,
where each image position has a unique label (hard segmen-
tation), the estimated probability to receive a consensus vote
for label / at location x of the target image 77 is:

pUIx T =Y Wit (A5 ) =1) M
i=1

where I (A% (x) =) is an indicator function with the value
of 1 if the atlas A’ was segmented with label / at location x
and 0 otherwise, and w'. is the voting weight for the atlas A’
with ), wi = 1. '

In order to estimate the weights w!, the method does
not treat each atlas independently from the others but takes
into account that different atlases might produce similar seg-
mentation errors. The segmentation errors produced by each
registered atlas are modeled by S (x) € {—1,0,1}, with
0 indicating label agreement, i.e., that both (75 and Ag) or nei-
ther one has the label / at voxel x, while -1 or 1 indicates label

56770

mismatch, i.e., that only one of the two segmentations has
label / at voxel x. The probability that two atlases produce the
same label error at position x is modeled by the dependency
matrix M, (i, j) = p (5i @) & (x) = 1Ty, AL, Af,). Since the
segmentation of the target image is unknown, to assess the
segmentation outcome, the similarity of the intensity images
is used as an indicator of the segmentation correctness. This
is based on the principle that when two patches in the inten-
sity images have similar profiles, they most probably should
have similar segmentation. To minimize the expected label
difference between the consensus solution obtained from
weighted voting and the target segmentation, the optimal
voting weights are determined by

M1
Wy = ,x—,ln @)
M1,
where 1, = [1,1,...,1] is a vector of size n. To

avoid inverting an ill-conditioned matrix an identity matrix
weighted by a small positive number « is added to M. The
dependency matrix is estimated over local image patches and
depends on the intensity difference between the target image
and each atlas aggregated over all image modalities.

Similarly, the label fusion is not performed over the whole
image context, but over local image patches. The pair of
image patches is determined after a local search of corre-
spondence. Specifically, based on the premise that when two
image regions look similar, they are more likely to corre-
spond to the same structure (segmentation label), if N (x) is
the patch to be segmented in the target image, the method
searches in each atlas i for the most similar location &; (x),
within a neighborhood Nj:

. 2
AL(N (x) = Ty (N(x))H )

i (x) = arg min
& (x) g min
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FIGURE 5. Femoral cartilage layers grouped into three zones that permits
the assignment of different material properties to model different cellular
synthesis.

This local search makes the method more robust to registra-
tion errors. Accordingly, the consensus vote received by label
! in location x is updated to include the (spatially varying)
weights at the location &; (x) of the corresponding atlas patch

pUIxT) =Y W G (A G =1). @
i=1

The above method also incorporates a machine learning
strategy to detect and correct the systematic errors produced
by any incorporated segmentation method. This latter strat-
egy, which is called corrective learning in [3], is based on
the hypothesis that a large part of the segmentation errors
produced by an automatic method occur consistently from
subject to subject. This step in the methodology attempts to
learn the intensity, spatial and contextual patterns associated
with systematic segmentation errors produced by the host
method on training data (the atlases) for which manual seg-
mentation is available. The method then attempts to correct
errors in the segmentation produced by the host method on
new images.

C. MORPHOLOGICAL PROCESSING

The output of the multi-atlas segmentation technique might
contain errors that result in loss of the shape regularity. A fre-
quent case is a segmentation with isolated pieces. To resolve
this issue, the isolated segments were removed by keeping
the largest connected component of each structure using
6-connectivity as the elementary 3D neighborhood of the
morphological operation [47]. To avoid the removal of seg-
ments that lie close to the largest connected component and
probably should be part of the final structure, a morphological
image closing operation is first performed for each label.

IV. MESH GENERATION AND REFINEMENT

After performing the segmentation, the surface mesh can
be extracted from the 3D discrete scalar field using a sur-
face polygonization technique, such as the very popular
marching cubes algorithm [48]. Since the marching cubes
algorithm produces a rather rough surface a Laplacian filter
was applied to smooth the geometries (Fig. 4) [49]. To reduce
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(d) () 0

FIGURE 6. Results of the mesh generation algorithm: a) femoral cartilage,
b) lateral tibial cartilage, c) medial tibial cartilage, d) lateral meniscus,
e) medial meniscus and f) assembled finite element model.

the computational cost of the subsequent hexahedral mesh-
ing algorithm, the faces of the 3D surfaces were limited
to 10000 using the Quadric Edge Collapse Decimation
filter [49].

Next, the previous triangular meshes were converted to
hexahedral meshes [4]. For this purpose, an anatomically-
adopted sweeping algorithm is applied to obtain a
low-resolution mesh with hexahedral elements followed by
Laplacian smoothing to improve the mesh quality after the
segmentation. As a quality measure of the hexahedral mesh,
the scaled Jacobian metric is used. Specifically, the nodal
position n; of each node j of the low-resolution mesh is
updated based on local information using an extended version
of the Laplacian smoothing algorithm [50] as

-«
nj=anj+ ——— nj ()
ladj)ll, @Zdjm

where adj(j) are the adjacent nodes of node j, and « is a
parameter controlling the balance between smoothing qual-
ity and degree of model shrinkage (¢ = 0.5 was used).
Since the Laplacian filter shrinks the input geometry’s shape,
the smoothed mesh is expanded towards the triangular sur-
face. The mesh is optimized by moving the nodes from their
respective positions in order to obtain a proper Jacobian for
the elements [51]. Smoothing, expansion and optimization
are iteratively repeated until the quality metric is met [52] and
the elements are ultimately subdivided to formulate 6 layers
for the cartilages (Fig. 5) or a more refined mesh for the
menisci [4]. The output of the hexahedral meshing algorithm
is shown in Fig. 6.

V. RESULTS

The method was evaluated on two distinct data sets. The
first dataset included MR images from 8 subjects as part of
the Open Knee project [53]. One subject was excluded since
the MRI modalities deviated significantly from the other
samples, therefore 7 subjects we included in our analysis.
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The data were used in a cross-validation setting for training
and testing. The MRI protocol is referred as ““Cartilage Imag-
ing”, which is a T1-weighted with fat saturation sequence,
providing good contrast for the cartilages. The Open Knee
project supplements high quality ground-truth masks that
were used to guide the segmentation method. These masks
do not only include the bones and the cartilages, but also the
menisci (along with other ligaments) that potentially offer the
chance for future extension of this work to other structures
as well. The second dataset included MR images (3D DESS
WE) from an initial set of 78 subjects randomly selected
from the Osteoarthritis Initiative (OAI) public use data set.
The OAI dataset does not provide ground truth masks for
the menisci that are required for the reconstruction process;
therefore, this dataset was not used in the assessment of the
mesh refinement technique.

The MR images were segmented to obtain subject-specific
geometries that are required for the construction of person-
alized models. For the Open Knee dataset multi-atlas regis-
tration was performed in the target image space [44] due to
the small number of subjects, whereas for the OAI dataset the
reference space was retained fixed to a common atlas space
[45]. Three metrics were employed to evaluate the accuracy
of the segmentation, namely the Dice similarity coefficient
(DSC), the false negative ratio (FNR) and the mean surface
distance (MSD). The latter is also referred in the literature as
average distance (AvgD). The performance of the hexahedral
meshing algorithm was also investigated to assess whether
it modifies significantly the output volumetric geometries
with respect to the input geometries. The 3D meshes were
extracted and evaluated with respect to the input surfaces,
using the MSD metric.

The abbreviations in the illustrated results (Fig. 7 to Fig. 9)
are as follows: FB — femur bone, TB — tibia bone, FC
— femoral cartilage, LTC — lateral tibial cartilage, MTC -
medial tibial cartilage, TC — tibial cartilage (lateral & medial
as one structure), LM — lateral meniscus and MM — medial
meniscus. Finally, we investigated whether our results could
be exploited for extraction of imaging biomarkers for OA
assessment. For this purpose, we investigated if there is any
correlation between the OA grade and the medial cartilage
volume of the tibia, as will be explained later.

A. ASSESSMENT OF THE SEGMENTATION AND MESH
GENERATION USING THE OPEN KNEE DATASET

This section presents the results of the segmentation accuracy
on the Open Knee dataset, using three quality metrics (DSC,
FNR and MSD), in order to facilitate comparison with the
segmentation approaches of other authors (Table 1). Two seg-
mentation approaches were examined, one including the final
machine learning scheme (corrective learning) and one by
replacing this computationally expensive scheme with simple
morphological operations. The results were cross-validated
with the leave-one-out strategy, i.e., the images of 6 subjects
were used as atlases and the left-out subject as target image.
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FIGURE 7. Bar plots of the DSC, FNR and MSD similarity metrics for the
segmentation of the Open Knee data, for two case scenarios, namely
(i) using the corrective learning scheme (JF+CL) and (ii) based solely on
JF. The JF approach achieves slightly higher accuracy as displayed in the
DSC graph and more clearly in the FNR graph, but no conclusion can be
derived from the MSD graph. FB - femur bone, TB - tibia bone, FC -
femoral cartilage, LTC - lateral tibial cartilage, MTC - medial tibial
cartilage, TC - tibial cartilage (lateral & medial as one structure), LM -
lateral meniscus and MM - medial meniscus.

1) ASSESSMENT OF CORRECTIVE LEARNING

Fig. 7 depicts several similarity scores for two approaches,
namely one with and one without the corrective learning (CL)
technique [3] that is designed to detect systematic segmen-
tation errors. By comparing the performance of these two
approaches, we observe that the segmentation (in Fig. 7)
obtained solely by multi-atlas joint label fusion (JF) dis-
plays slightly higher DSC and lower FNR. By inspecting
the DSC scores the maximum difference appears in the case
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FIGURE 8. Mean and standard deviation of the MSD (mm) between the
contour of volumetric mesh and the corresponding initial 3D surface
(Open Knee data). The largest difference occurs for the medial meniscus
(MM) and has a mean value of 1.1 mm.

of lateral meniscus where the segmentation accuracy is 2.14
% higher than the one obtained by CL. Larger differences
are observed using the FNR metric (lower FNR signifies
better performance). The maximum difference appears for
the medial tibial cartilage (27.7% higher FNR with CL) with
the remaining cartilages and menisci showing improvement
by omitting the corrective learning step, as well. On the
contrary, not all the MSD scores display a benefit loss from
the CL approach. The maximum absolute difference appears
for the femoral cartilage (8.3% higher accuracy). Hence,
no conclusion can be drawn based on the MSD score. The
small number of available cases in the Open Knee project
might not be sufficient to postulate that the incorporation
of the CL step has any benefit on the accuracy. Therefore,
since the marginal difference in accuracy does not justify the
significant increase in computational cost by the CL step, for
the proposed modeling scheme we consider only the joint
label fusion as default step for image segmentation.

2) ASSESSMENT OF MORPHOLOGICAL PROCESSING

We separately evaluated the effect of the morphological oper-
ations performed after the joint label fusion technique (with-
out CL) in order to preserve the shape topology. The DSC
has improved for all structures after morphological process-
ing, although the differences were quite small. Specifically,
for the femur and tibia bones the differences in DSC were
insignificant (<0.1), while for FC, LTC, MTC, LM and MM
the DSC has increased by 0.23, 0.50, 0.16, 0.35 and 0.20,
respectively. In respect to FNR, as expected the removal of
isolated pieces and the retainment of the largest connected
component could only cause an increase in FNR, since this
metric takes into account only the false negatives. Therefore,
this metric was not considered the most representative for
assessment. In any case, the increase in FNR values was too
small (<0.7) to dominate over the necessity to enforce shape
regularity and was outreached by the improvement of DSC.

3) COMPARISON WITH OTHERS
In Table 1 a comparison of different segmentation methods
is presented. Although direct comparison is not feasible due
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FIGURE 9. Box plots displaying the segmentation accuracy of the OAI
data. For the cases with extensive outliers it would be preferable to
consider the median value in place of the mean value.

to differences in the datasets, we overall observe that the
implemented JF segmentation method outperforms most of
the other methods, in terms of higher DSC/MSD scores.
Additionally, this method achieved comparable accuracy in
some cases, e.g. in terms of DSC score, 1.4% difference for
the tibia bone in [33], 0.8% for the tibial cartilage in [20]
and 5% for the lateral meniscus in [15], [34]. The method
employed in [18] achieved comparable segmentation accu-
racy for the cartilages in terms of the DSC score, but this is not
the case for the MSD scores, where [18] gives 38% and 20.7%
more accurate results for the femoral and tibial cartilages.
When the previous method is adopted for the menisci [16],
it gives 12% higher DSC score for the lateral meniscus and
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6% for the medial meniscus. The results of Fig. 7 are also
presented with numeric values in Table 2 in the Appendix.

In addition to the previous comparative analysis, we eval-
uated the performance of an open source knee segmen-
tation workflow, the pyKNEEr [54]. For fair comparison,
we selected the OpenKnee dataset due to its high quality
ground-truth masks and adjusted all the images to have the
same right laterality by flipping the left knee images into the
right knee images, as we had performed also for the evalua-
tion of our method. In pyKNEEr each new image is registered
into the atlas space using Elastix [44] and the reference mask
is warped onto the target image through the inverse transfor-
mation field. The segmentation step is based on a single atlas
and focuses only on the segmentation of the femoral cartilage.
In fact, the femur bone is initially segmented in order to
guide the segmentation of the femoral cartilage. The obtained
DSC, calculated through leave-one-out cross validation, was
very low, i.e. 61.2% for the femur bone and 49% for the
femoral cartilage. These results show the benefit of the multi-
atlas label fusion approach incorporated in our segmentation
scheme.

4) ASSESSMENT OF MESH GENERATION

The generation of volumetric meshes was performed only
for the Open Knee data since this dataset includes ground
truth segmentations of the menisci. The mean and standard
deviation values between the initial 3D surface geometries
and the contour of the resulting volumetric geometries are
provided in Fig. 8. Out of all structures, the surface difference
is larger for the medial meniscus, but still relatively small
(1.1 £ 0.53 mm).

B. SEGMENTATION ASSESSMENT ON THE OAI DATASET
In this section, the proposed segmentation method was
applied to a larger dataset of knee MR images with varying
degrees of OA and differences in the images’ intensity dis-
tributions, to test whether these factors affect the accuracy of
the method. Eighty subjects were initially randomly selected,
but two subjects were excluded from the analysis because
the Kellgren and Lawrence score, assessing the OA degree
(required in our next experiment), could not be retrieved for
the one and the other resulted in especially high cartilage
volume (> 3000 mm?) in the common atlas space and was
considered a rare case (outlier). The selection is randomized
with 33 subjects being used for training and 45 for testing.
Segmentation was applied in a common template space (all
the images were registered to a reference atlas), in which
results were evaluated without being mapped back in the
original domain. The default JF approach was used for the
segmentation without the incorporation of the CL method.
By comparing the DSC, FNR and MSD scores with the
ones obtained from the Open Knee data it is obvious that the
accuracy is slightly smaller, e.g. for the femoral and tibial
cartilage the DSC scores are 86.01% and 81.04% for the OAI,
with 88.96% and 87.26% for the Open Knee respectively.
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(©) (d)

FIGURE 10. Example of a bad (1%t row) and good (2" row) automatic
segmentation result. a-b) Bad segmentation overlaid on the MRI (left)
and the ground truth segmentation (right), c-d) good segmentation
overlaid on the MRI (left), and the ground truth segmentation (right).

By examining the femoral and tibial cartilages, the pro-
posed segmentation yields scores that are superior over sev-
eral works e.g. [12], [19], [22], [25], [35] (Table 1). The
works [20], [32] achieved high scores for the tibial cartilage
(8.6% and 3.7% superior), as well for the femoral cartilage
in [32] (2.2% superior), but using a method [20] that relies
on multiple modalities, that are not always available. Specifi-
cally, for the tibial cartilage, we achieved 81.04% mean DSC
score, which is comparable to the works [32], [33], [36],
[38] (maximum DSC 84.1%) and within the range of scores
obtained by [11], [34]. The performance of these two methods
[11], [34] was low for the femoral cartilage (DSC < 84.4%),
except for the method by Tamez-Pena et al. [32] where the
accuracy for the femoral cartilage was comparable with the
proposed method (88% DSC versus 86.01% for our segmen-
tation). Since the data employed in this work are a subset
of the OAI ZIB dataset, we observe that the recent work by
Ambellan et al. [18] (which used the whole dataset) results
in higher DSC scores (by 4.5% for the femoral cartilage
and 5.6% for the tibial cartilage) than the proposed method.
Fig. 9 displays the box plots for the 45 testing subjects using
the same similarity metrics as for the Open Knee data.

As observed, there exist several cases (outliers) with large
deviations from the mean values of DSC and FNR for the
tibial cartilages (lateral and medial). The mean values of
Fig. 9 are provided in Table 3 with supplementary similarity
metrics (Fig. 12). Fig. 10 illustrates a case with bad and a case
with good DSC scores. In the first case we observe that low
image registration quality, possibly due to large anatomical

VOLUME 8, 2020



F. P. Nikolopoulos et al.: Personalized Knee Geometry Modeling Based on Multi-Atlas Segmentation and Mesh Refinement IEEEACC@SS

TABLE 1. Summary of state-of-the-art methods used for MRI-based knee segmentation.

.. Shape
Atlas  Training No. of Structure Accuracy Superv mo dI:el Graph
based data subjects ised based based
FB DSC*: 97.41 - 98.84
TB DSC: 96.42 - 98.24
FC DSC: 86.01 - 88.96
85 (Open LTC DSC: 80.66 - 88.60
v v v
Proposed Knee, OAT) MTC DSC: 81.08 - 85.64
TC DSC: 81.04 - 87.26
LM? DSC: 79.69
MM?2 DSC: 79.11
AvgD**: 0.63
FB RMSD**: 1.05
AvgD: 0.53
B RMSD: 0.9
Lecetal 2014[25] v v 150 SKI10 o 38%*721873 v v
VD*: -5.5
DSC: 72.4
TC VOE: 27.6
VD:-3.7
_ FC DSC: 88.0
Tamez — Pena et al. v v 48 MRI v
2012 [32] TC DSC: 84.0
706 PLS for FB DSCf 96.9
Shanetal. 2014 [33] v v 115 subjects B DSC: 99.6 v
TC DSC: 84.1
1907 (CCBR, FC DSC: 80.4 —84.4
Vi rtu(zlféléo ” TC DSC: 80.5 — 86.6
Chonds(;metrlc MM DSC: 76.0
Dodin et al. 2010 sl; rfgié(‘; FC DSC: 84.0
[36] test/retest) TC DSC: 82.0
. PC DSC: 73.0 - 83.0
Fripp ﬁ ﬁ 2010 v 20 MRI FC DSC: 79.0 - 83.0 v
TC DSC: 76.0 - 86.0
FB DSC: 95.2
TB DSC: 96.4
Lee etal. 2011 [19] v 17 MRI PB DSC:95.4 v v 4
FC DSC: 82.0
TC DSC: 81.0
PC DSC: 82.0
AvgD: 1.02
FB RMSD: 1.54
W e
Seim et al. 2010 [13] v 40 MRI VOE: '34’0 v v v
FC VD: 7.7
VOE: 29.2
TC VD: -2.7
AvgD: 0.88
) FB RMSD: 1.49
Vincent et al. 2010 80 OAI AvgD: 0.74 v v
(12] B RMSD: 1.21
FC VOE: 36.3

VOLUME 8, 2020 56775



IEEEACC@SS F. P. Nikolopoulos et al.: Personalized Knee Geometry Modeling Based on Multi-Atlas Segmentation and Mesh Refinement

TABLE 1. (Continued.) Summary of state-of-the-art methods used for MRI-based knee segmentation.

VD: -25.2
VOE: 34.6
Tc VD: -9.5
FC DSC: 86.4
Zhang [eztoa]l' 208 v 11 MRI TC DSC: 88.0 Y Y
PC DSC: 84.1
Pras""n[;;]al' 2013 v 114 MRI TC DSC: 82.49 v
FC DSC: 84.0
Yin et al. 2010 [22] v 60 OAI TC DSC: 80.0 v 4 4
PC DSC: 80.0
restricted to
s central,
Williams et al. 2010 v 48 MRIAfrom load- not clearly defined v v
[17] 12 subjects .
bearing
regions
Folkesson et al. v 139 MRI FC DSC: 77.0 v
2007 [35] TC DSC: 81.0
Abtbnen S 201! v 376 MRI  Mean bone DSC: 95.0 v v
DSC: 89.4
FC MSD: 0.19
88 OAI DSC: 90.4
Imorphics LTC MSD: 0.17
DSC: 86.1
MTC MSD: 0.26
DSC: 98.6
FB MSD: 0.17
B DSC: 98.5
Ambellan et al. 2019 MSD: 0.18
e v 507 OAI ZIB . DSC: 89.9 v v
MSD: 0.16
DSC: 85.6
TC MSD: 0.23
FB RMSD: 0.74
TB RMSD: 0.59
VD:7.18
150 SKI10
FC VOE: 20.99
VD: 4.29
TC VOE: 19.06
Tack et 2018 1] “ imoghies M DSC, £33 T
Paproki et al. 2014 v 88 OAI LM DSC: 83.9 v v
[15] Imorphics MM DSC: 78.3
Fripp et al. 2019 v LM DSC: 77.0 v v
[14] 14 MRI MM DSC: 75.0
FC DSC: 86.7
174 OAI LTC DSC: 79.9
Norman et al. 2018 v (70/20/10 MTC DSC: 77.7 v
[39] train/validatio PC DSC: 76.7
n/ test) LM DSC: 81.2
MM DSC: 73.1
AvgD: 0.56
FB RMSD: 1.08
100 SKI10 TB ﬁl\\/II%DD:'OI.SO%
Liu et al. 2018 [40] v (60/40 VD 8.1 v
train/test) FC Dy
VOE: 28.4
VD:-1.2
TC VOE: 33.1
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TABLE 1. (Continued.) Summary of state-of-the-art methods used for MRI-based knee segmentation.

FB DSC: 97.0
TB DSC: 96.2
PB DSC: 89.8
Zhou e‘tlélil 2018 v 20 MRI FC DSC: 80.6 v

[41] TC DSC: 80.1
PC DSC: 80.7
LM+MM DSC: 83.1
100 SKI110 FC 58%’. 2%4;

Raj et al. 2018 [42] v (80720 DSC: 82.5 Y

train/test) TC ho

VOE: 29.5

The studies are classified in respect to the implemented methodology, amount of data, targeted structures, obtained accuracy, amount of supervision, etc. VOE
— volumetric overlap error, VD — volumetric difference, RMSD — root mean square symmetric surface distance; FB — femur bone, TB — tibia bone, PB — patella
bone, FC — femoral cartilage, LTC — lateral tibial cartilage, MTC — medial tibial cartilage, TC — tibial cartilage (lateral & medial as one structure), PC — patellar
cartilage, LM — lateral meniscus, MM — medial meniscus. * measured in percentage (%). ** measured in millimeter (mm).2 Lateral and medial meniscus

segmentation was available only from the Open Knee project.
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FIGURE 11. Scatter plots of Kellgren and Lawrence (KL) score (0 healthy -
4 severe OA) for the medial tibial cartilage extracted from manual and
automatic segmentation.

differences, resulted in poor segmentation of the test image.
However, even though the DSC score is small, visual inspec-
tion reveals a reasonable segmentation result that indicates
robust outcomes. The good segmentation case (on the 2"
row) displays much smoother segmentation boundaries that
accurately circumscribe the various structures.

C. EXPLOITATION OF OUR RESULTS FOR MORPHOMETRIC
QUANTIFICATION
Next, we wanted to investigate whether our results could be
used to extract imaging features for OA assessment. The OA
grade was assessed by the Kellgren and Lawrence (KL) score,
ranging from O for a healthy knee to 4 for severe OA. Gener-
ally, the entire context of the knee joint should be examined
to assess the OA degree. However, the clinical symptoms are
dominating in the medial compartments of tibial plateau [55],
[56]. Thus, for the analysis, we only examined the volume of
the medial tibial cartilage, similarly to previous work [57].
In order to examine possible sources of error introduced by
our automatic approach, we first compared the automatically
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extracted MTC volumes with the ones based on the expert
segmentation. The results are plotted in Fig. 11 and allow
to assess whether there is any systematic error in the seg-
mentation method with respect to the cartilage volume or the
osteoarthritis grade. We don’t observe any evident trend in
the distribution of errors in volume estimation (automatic vs
manual) and the medial tibial cartilage volume itself. More-
over, the difference in volume estimation between the two
methods does not seem to be directly related to the OA grade.
However, the volumes in cases with lower OA grades tend to
be overestimated by the automatic method (i.e. the majority
of cases with KL 0 lie below the main diagonal in the graph).
Further investigation of whether image artifacts (caused by
disease deterioration) affect the segmentation accuracy could
not be performed due to the inability to retrieve follow up
studies, that included manually annotated data and OA grade,
for the OAI dataset.

In respect to morphometric quantification, neither seg-
mentation method revealed a significant correlation of MTC
volume with KL score at the baseline examination (R = 0.14,
p-value = 0.35 for the automatic method and R = 0.01, p-
value = 0.93 for the manual segmentation). This outcome,
which contradicts previous studies on morphometric cartilage
quantification [57], might be due to the fact that we did not
consider differences on total knee size as confounding factor.
Quantitative work in the future will include a standardization
step, in which for example the measurements will be normal-
ized in respect to the width of the tibial plateau, in order to
account for knee size differences related to age or sex.

Moreover, we will include shape-related measures, such as
cartilage thickness and curvature, which proved to be more
sensitive for separation of the healthy from low grade OA
[57], [58].

VI. DISCUSSION
Studies have shown that MRI has good diagnostic perfor-
mance in detecting OA [59] due to the high soft tissue
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FIGURE 12. Box plots of the TNR, TPR and VOE similarity metrics for the
OAI data to allow for comparison with works employing metrics other
than DSC, FNR, MSD.

contrast and the ability to track histological changes, such
as bone marrow lesions, joint fluid changes, and cartilage
loss [60]. A mechanism modeling the tissue alteration caused
by the disease could prove to be beneficial in understanding
the pathophysiological process of OA histological changes.
We propose a modular MRI-based methodology that allows
the automatic quantification of the tissue in the multiple knee
compartments facilitating reproducible analysis and consis-
tent follow-up studies.

The proposed method demonstrated high segmentation
accuracy for the case of Open Knee data as compared to most
of the state-of-the-art techniques (summarized in Table 1),
whereas for the OAI data the segmentation performance was
comparable to the other methods. This might be attributed to
the high quality of the Open Knee segmentation masks that
offer more accurate delineation of the underlying structures
as well as the common imaging properties (intensity distri-
bution) of the utilized MR images, which were all acquired
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TABLE 2. Performance metrics? (mean and standard deviation) for the
Open Knee data using the multi-atlas segmentation method (Joint Fusion
- JF) with and without the corrective learning (CL) technique.

DSC (%) FNR (%) MSD (mm)
JF+CL TF JF+CL JF JF+CL TF
FB 9881+ 9884+ 1.5+ 123+ 022+ 021+
0.11 0.12 025 023 0.02 0.02
TB 9821+ 9824+ 213+ 220+ 029+ 028+
0.50 0.57 1.08 1.29 0.09 0.10
FC  89.05+ 8896+ 1173 1043+ 024= 026+
133 1.34 1.19 1.30 0.02 0.02
LTC 8789+ 8860+ 1234+ 942+ 031+ 030+
2.75 2.83 463 3.45 0.11 0.10
MTC 8501+ 8564+ 1497+ 1083+ 026+ 027+
1.92 2.32 6.86 401 0.04 0.04
TC 8662+ 8726+ 1358+ 1008+ 029+ 029+
1.73 2.05 3.58 2.7 0.06 0.05
LM 7802+ 79.69+ 2310+ 2148+ 056+ 057+
3.46 1.82 8.16 771 0.06 0.10
MM 7731+ 7911+ 2510+ 2185+ 0.60+ 059+
6.60 6.61 5.68 5.76 0.16 0.19

*DSC (Dice Similarity Coefficient), FNR (False Negative Rate ), MSD
(Mean Surface Distance, same as Average Surface Distance - AvgD)

with the same protocol. On the other hand, the limited number
of subjects in the Open Knee dataset does not allow us to
generalize our conclusions. Overall, exact comparison with
the works of the others is not feasible due to differences in
the incorporated datasets. However, by examining the liter-
ature on methods using small datasets [14], [19], [20], [36]
it appears that the proposed segmentation scheme achieves
better performance, except of the methodology presented in
[16], [18] which seems to outperform our method.

The main reason for exploiting the Open Knee dataset
was the availability of segmented menisci along with the
bones and cartilages. It is essential to note that the employed
imaging protocol does not offer good contrast for the menisci
(or other soft tissues) as would be the case for a proton den-
sity (PD) MR protocol. Since the incorporated segmentation
method is modular to the imaging modalities, if PD images
are available in the future, they can be easily combined to
obtain a more accurate segmentation of the menisci.

As for the performance of the hexahedral meshing algo-
rithm, we observe (Fig. 8) that the volumetric geometries
do not deviate substantially from the original 3D surfaces
(scores derived from cross correlation). The largest MSD
value tends to occur on the medial meniscus, but the small size
of the dataset does not provide sufficient evidence to assume
that the MSD score of this structure is consistently higher.
An advantage of the anatomically-adopted algorithms for the
generation of the hexahedral meshes is that the structure
is divided into layers. This feature can be useful to model
different cellular synthesis, e.g. progression of diseases such
as the OA, by assigning different material properties to each
layer [61].

VIi. CONCLUSION
The aim of this work is to provide an end-to-end pipeline
for automatic segmentation and 3D reconstruction of the
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TABLE 3. Performance metrics? (mean and standard deviation) for the
OAI dataset.

DSC (%) FNR (%) TNR (%)
FB  9741+0.65 3.62+1.07  99.69+0.17
TB  9642+1.19 564+239  99.85+0.08
FC  8601+241 1395+341  99.76 +0.06
LTC  80.66+£642 16.82+6.56  99.95 0.02
MTC 81.08£9.12 1747951  99.950.02
TC  81.04+479 17104642  99.9 +0.03
TPR (%) VOE (%) MSD (mm)
FB  9638+107 504+123  0.447+0.099
TB  9436+£239 6.89+22 0.628 = 0.186
FC  86.05+341 2446+3.65  0381+0.071
LTC 83184655 31.97+823  0.389+0.208
MTC 8253+£951 31.01+1058 043340273
TC  8290+£642 31.61+648  0.4070.150

*DSC (Dice Similarity Coefficient), FNR (False Negative Rate ), TNR (True
Negative Rate), TPR (True Positive Rate ), VOE (Volumetric Overlap Error),
MSD (Mean Surface Distance, same as Average Surface Distance - AvgD)

multiple knee compartments from MRI. The geometrical
structures can be subsequently introduced into biomechanical
simulation models for patient-specific estimation of articular
loading, or for the calculation of the external knee adduction
moment required during gait retraining interventions. The
presented scheme is modular with respect to the exploited
imaging modalities. It achieved competitive segmentation
performance and produced high quality meshes. Such com-
puter modeling approaches, once combined with simula-
tions aggregating various information sets from full body,
organ, or tissue level mechanistic models, open the path
for the prediction of optimal treatments, better diagnostics,
and improved outcomes of patients with degenerative joint
disease.

APPENDIX
See Figure 12 and Tables 2 and 3.
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