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Abstract—Recent advances in 3D scanning technology have
enabled the deployment of 3D models in various industrial
applications like digital twins, remote inspection and reverse
engineering. Despite their evolving performance, 3D scanners,
still introduce noise and artifacts in the acquired dense models.
In this work, we propose a fast and robust denoising method
for dense 3D scanned industrial models. The proposed approach
employs conditional variational autoencoders to effectively filter
face normals. Training and inference are performed in a sliding
patch setup reducing the size of the required training data
and execution times. We conducted extensive evaluation studies
using 3D scanned and CAD models. The results verify plausible
denoising outcomes, demonstrating similar or higher reconstruc-
tion accuracy, compared to other state-of-the-art approaches.
Specifically, for 3D models with more than 1e4 faces, the
presented pipeline is twice as fast as methods with equivalent
reconstruction error.

Index Terms—3D mesh denoising, data driven normal filtering,
variational autoencoders.

I. INTRODUCTION

Industrial sites and manufacturing plants, often require
infrastructure upgrades and construction projects. Modifica-
tions in the production line lead to downtime, high costs
or unwanted delays. Digital twins could allow for improved
supervision, inspection and monitoring based on simulation
studies. Subsequently, they could enable the identification of
errors while handling risk and dealing with liabilities. 3D
scanning can facilitate the development of accurate, high-end
digital twins of manufacturing processes and factory layouts.

Furthermore, smart manufacturing encompasses ”fully-
integrated, collaborative manufacturing systems that respond
in real-time to meet changing demands and conditions in the
factory, in the supply network, and in customer needs” [1], [2].
Accurate digital reconstruction for material inspection, quality
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control and reverse engineering are challenges in this evolving
landscape. Inline 3D scanning could allow the examination of
constructed parts, in many stages of the manufacturing process.
[3]–[6].

Towards this direction, technologies in metrology have
changed, in the past few decades, from stand-alone coordinate
measuring machines (CCMs) to portable 3D scanners. The
benefits of 3D scanning become evident in several use cases.
Quality assurance protocols in automotive industry [4], [7],
maintenance processes in maritime industry [8] and automated
reverse engineering prove that error-free representations are a
requirement for Industry 4.0 outcomes.

Several use cases appear in the literature, i.e. Artec 3D
reports that a foundry [9] uses handheld solutions to scan
3D castings, saving time and increasing productivity. The
authors in [10] present a use case of a surface inspection
method for wind turbines, employing an autonomous robotic
arm equipped with a 3D scanner. Moreover, state-of-the-art
3D industrial scanning outcomes, available online [11] reveal
that models of 2 million sampled points require up to 30
minutes for scanning and up to 30 minutes for post-processing.
Robust, high accuracy and low-error processing outcomes
would reduce the scanning time since the collection of fewer
samples would be necessary for equivalent results, while fast
processing would reduce the post-processing times.

These challenging issues highlight the need for paralleliz-
able computationally inexpensive, and accurate approaches for
mesh denoising. In a classic scenario, scanners yield noisy
point clouds that are consequently converted to noisy 3D
meshes. Denoising aims to remove the noise while preserving
features and multi-scale geometric details. Noise is usually
inserted by scanning devices and digitization processes, thus
making mesh denoising an important post-processing step.
Several methods are available in the literature with significant
denoising results [12]–[16]. Yet the need for robust and fast
algorithms, able to handle dense models rapidly, becomes
essential in industrial applications [17], [18], where they are
expected to significantly reduce the operational cost of many
manufacturing tasks.

Motivated by the aforementioned challenges, we provide a
fast approach for mesh denoising, based on data-driven normal
filtering. We employ deep conditional variational autoencoders
allowing to handle efficiently dense models. We summarize
the contributions of the proposed approach in the following
points:
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• The network can localize since, training and inference
are performed in a sliding patch setup. The filtered
face normal vector is generated by providing a patch
of neighbouring faces as input, corresponding to a local
region around that face.

• It requires a relatively small training set. We propose a
preprocessing method that describes each patch with a
scale, translation and rotation invariant representation.

• Evaluation studies indicate that our approach demon-
strates lower complexity and execution times than other
non-data-driven state-of-the-art methods. Specifically, for
3D models with more than 104 faces, the presented
pipeline is twice as fast as methods with an equivalent
reconstruction error.

• It is fully parallelizable. We evaluated the execution
efficiency with respect to the number of utilized cores
and type of processing unit (i.e., CPU or GPU).

• It can be employed for feature-preserving denoising of
dense 3D models, with different noise patterns. Such a
property would be ideally suited for industrial applica-
tions where 3D scanners with different properties are
generating dense representations of physical objects.

• It is parameter-free since every used parameter is prede-
fined and the user does not need to search for optimal
values per model.

Evaluation studies were carried out using scanned and CAD
3D industrial models. Our results verify the effectiveness of
the proposed method, compared to other state-of-the-art ap-
proaches, both in terms of denoising quality and computational
efficiency.

The rest of this paper is organized as follows: Section II
presents state-of-the-art methods and related works. Section III
focused on preliminaries. Section IV describes the workflow of
the proposed approach in detail. Section V is dedicated to the
experimental setup and simulation results, while conclusions
are drawn in Section VI.

II. RELATED WORK

Mesh denoising approaches can be organized in the follow-
ing categories: isotropic and anisotropic mesh filtering based,
regularization based and data-driven methods.

Isotropic and anisotropic mesh filtering: Laplacian and
Taubin smoothing are well-known approaches that remove
noise and artifacts by employing iterative vertex update based
on the Laplacian matrix of the geometry. To the same di-
rection, Desbrun et al. used the mean curvature flow [19] to
allow treating of irregular surfaces. However, one of their
main disadvantages is that they do not preserve geometric
features. Another category of methods, namely graph spectral
processing [20], employs singular values, eigenvectors and
eigenspace projections to separate 3D mesh data from noise.
However, their disadvantage is that they are computationally
expensive and resource consuming. Other widely accepted
feature preserving approaches [21] process vertex positions
locally while preserving the geometric features. The main
drawback is, in many cases, the deformation of large scale

features. Mesh bilateral filtering methods use normal coor-
dinates to estimate the parameters of noise removing filters,
with the reconstruction accuracy relying heavily on noise
characteristics [22]. Such approaches are based on normal
filtering and vertex position update [12]–[14], [23] consisting
of two iterative stages. The first stage filters the face normals
while the second updates the position of vertices. Although this
category of approaches preserves most of the sharp features,
they require heavy parameterization and fail to generalize.

Regularization based: Regularizers are often used for ill-
posed problems. Denoising of 3D meshes is in many cases
an ill-posed problem due to sensing limitations and non-
uniform sampling operations. Zhang et al. [24] minimize the
energy of both vertex position and normal error and He et
al. [15], propose an L0 minimization approach. Even though
they demonstrate accurate surface reconstruction in Gaussian
noise cases, the computational cost is high, and the denoising
outcomes deteriorate with other noise types. Furthermore, a
cascaded denoising framework is presented by the authors in
[25]. Their approach includes multi-scale tensor voting, vertex
clustering step for detecting sharp features and a piece-wise
fitting step for preserving the identified features.

Learning based: Several studies employ deep networks for
mesh denoising [16], [26]–[28]. The authors in [16] suggest a
data-driven method for mesh denoising that uses training sets
of noisy objects. The objects are scanned by the same devices,
thus facilitating the denoising of geometries with similar noise.
The geometric features are reconstructed sufficiently. Yet, their
main limitation is that the reconstruction accuracy of important
details relies heavily on whether they were initially included in
the training set. In the same fashion, the authors in [26] present
a two-step ELM based denoising approach, where the first
step performs coarse denoising and the second step recovers
features. Several other research groups use CNNs working on
voxelized versions of the geometry [27], or on images derived
from local patches [28]. However, our approach aims to be
applied directly on the mesh nodes avoiding preprocessing,
thus contributing to the field of geometric deep learning where
the sampling of the latent space is nonuniform.

III. PRELIMINARIES

A. Preliminaries on deep autoencoders

Deep autoencoders encompass a multi-layer neural network
architecture where the hidden layers encode the input to a
latent space and decode the latter to a reconstructed output.
A deep autoencoder is composed of two symmetrical deep-
belief networks [29] that typically have three to five shallow
layers for the encoding and the decoding part. The layers are
Restricted Boltzmann Machines (RBMs). Variational autoen-
coders (VAE) [30] assume that the input vectors are generated
by some random process of an unobserved continuous random
variable z. The parameters of the VAE are estimated efficiently
by the stochastic gradient variational Bayes framework [30].
Furthermore, conditioning input vector x under label c consti-
tutes the basis of conditional variational autoencoder (CVAE)
[31].
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Fig. 1: Pipeline of the proposed approach.

Fig. 2: CVAE architecture and training scheme. Normal coordinates of noisy and noise-free patches are employed. Initially, they are properly
rotated and labeled with k-means clustering.

B. Preliminaries on 3D meshes

In this work, we focus on triangular meshes M with n
vertices v and nf faces f . Each vertex vi is denoted by vi =

[xi, yi, zi]
T
, ∀ i = 1, · · · , n. Each fj face is a triangle that

can be described by its centroid:

cj = (vj1+vj2+vj3)/3 (1)

and its outward unit normal:

nci =
(vj2 − vj1)× (vj3 − vi1)

‖(vj2 − vj1)× (vj3 − vj1)‖
(2)

where vj1, vj2 and vj3 are the position of the vertices that
define face fj = {vj1 vj2 vj3}, ∀ j = 1, · · · , nf . The
first-ring area of a vertex vi is defined as the neighborhood
Ni in which the vertex vi is connected to other vertices by
only one edge (i.e., with topological degree equal to 1).

IV. AUTOENCODER ARCHITECTURES FOR 3D MESH
DENOISING

This section presents the mesh denoising pipeline. Training
data were generated from meshes, distorted by noise, using
the normal vectors corresponding to the 3D mesh faces. After
training the autoencoder, the generated output vector is used
for a normal-based vertex update [12] of the mesh vertices.

A. Autoencoder architectures for mesh denoising

This section presents the deep network architecture for mesh
denoising. Specifically, a conditional variational autoencoder
[31] was employed, as illustrated in Figure 2. A conditional
Gaussian encoder with two dense layers is succeeded by a
conditional Bernoulli decoder with two dense layers. Each
dense layer is succeeded by a layer of leaky rectified linear
units (ReLUs) and a dropout layer. We denote X as the
input tensor, Y the corresponding labels, Xin = [Y 99

9X]
the concatenation of X and Y and Xout the output of the
autoencoder. The conditional Gaussian encoder is described
as follows:

Xin = [Y 99
9X] (3)

YEH1
= max

(
0,XinWEH1

+ BEH1

)
(4)

YEH2
= max

(
0,YEH1

WEH2
+ BEH2

)
(5)

Y = max
(
0,YEH2

WEH3
+ BEH3

)
(6)

µ = [y1 y2], σ = [y3 y4] (7)
Z = µ+ σ · N (0, 1) (8)
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TABLE I: Summary of Notations

vi Vertex i
ci Centroid of face i
fi Face i,fi = {vi1,vi2,vi3}
Ai Face area
n Number of vertices
nf Number of faces
Ni Set of neighbouring vertices of vertex i
Nfi Set of neighbouring vertices of faces
nci Normal vector for centroid of face i, nci ≡ nfi
nfi Normal vector for face i, nci ≡ nfi
δn1 Rotation angle
an1 Rotation axis
ac Arbitrary vector facilitating patch rotation
x Hidden layer output
y Hidden layer output
b Hidden layer bias
z Autoencoder output vector

WEH1,2,3
Weighting tensors for the encoder part

WDH1,2
Weighting tensors for the decoder part

BEH1,2,3
Bias tensors for the encoder part

BDH1,2
Bias tensors for the decoder part

L(·) Loss function
s(·) Sigmoid function

qD(X), qΦ(X) Empirical distributions associated to n training inputs
DKL Kullback-Leibler Divergence

H(a,b) Cross entropy loss[
A 99

9B
]

Concatenation of matrices A and B

L Evidence lower bound (ELBO) error
〈a|b〉 Inner product of a and b
L̄p Average edge length for 3D mesh
NB Number of bilateral filter iterations
NV Number of vertex update iterations

1 All ones vector [1 1 1]

Subsequently, the conditional Bernoulli decoder is described
as follows:

Z =
[
Y 99

9Z
]

(9)

YDH1
= max

(
0,ZWDH1

+ BDH1

)
(10)

YDH2
= max

(
0,YDH1

WDH2
+ BDH2

)
(11)

YDH2
= max

(
0,YDH1

WDH2
+ BDH2

)
(12)

Xout = σ
(
YDH1

WDH2
+ BDH2

)
(13)

where WEH1,2,3
,WDH1,2

and BEH1,2,3
,BDH1,2

are weighting
and bias tensors respectively. For the training of the autoen-
coder architecture the evidence lower bound (ELBO) error is
computed:

L = H(Xin,Xout) +DKL(µ||σ) (14)

where H(Xin,Xout) is the cross entropy and DKL(µ||σ) the
Kullback-Leibler divergence.

B. Training, denoising and post-processing

This section describes the autoencoder training and de-
noising pipeline, depicted in Figures 1 and 2, and the patch
descriptor utilized in the proposed scheme.

1) Patch descriptor: The patch descriptor aims to con-
strain the latent space, to allow for efficient training of the
autoencoder. Each patch Pi is comprised of N topological
neighbours of face fi. Neighbouring faces are sorted using the

(a) (b)

Fig. 3: Example of a patch neighbourhood (n = 17), highlighted in
orange color, of the face highlighted in cyan color. The normals of
the faces are also apparent.

distance of the face centroid ci to the face centroid cj , where
fj is a neighbouring face belonging to patch Pi, fj ∈ Pi.
A schematic visualization of the patch descriptor is depicted
in Figure 3. Assuming a local coordinate system (Figure 3a),
arranging faces constrains the latent space in the z-axis. To
further constrain the latent space across x and y axes the
patch is rotated by angle δni around rotation axis an1 so that:

nf =
1

N

∑
i∈Ni

Ai · nci = ac (15)

where ac is a known arbitrarily defined vector. The motivation
behind rotating each patch towards the same direction is that it
allows efficient training with smaller training sets. Otherwise,
we would have to include patches with every possible direction
of normals to the training dataset, resulting in large datasets.

2) Training: The training of the deep network is schemat-
ically presented in Figures 1 and 2. The training set contains
pairs of noisy and noise-free patches comprised of N neigh-
bouring faces. The corresponding face normals are rotated by
δni around rotation axis an1 . For the definition of the rotation
axis the normals of the noisy patch are used as reference.
In order to generate labels for the training set, we perform
K-means clustering defining the group centroids for K clus-
ters. The motivation behind applying K-means clustering is
that it divides the dataset into groups of patches with high
curvature, low curvature, flat areas, and features i.e corners.
Thus, different models are trained for each category. Figure
4 presents an example of a 3D mesh and its corresponding
noisy version. The K-means clustering of the different surface
categories is depicted using different color per different cluster.
The coordinates of the normalized normal vectors nci , that
comprise patch Pi, range in [−1, 1]. They are transformed to
range in [0, 1] by the following equation:

n′ci = 2 · nci − 1 (16)

Subsequently, the matrix N
3×(n+1)
i , consisting of vectors n′ci

is reshaped to Z
3(n+1)×1
i . Finally, training is performed with

Adam optimizer.
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(a) (b)

Fig. 4: Visualization of the K-means clustering for a (a) noise-free,
and (b) a noisy mesh of the same model.

3) Denoising: The denoising process is visualized in Figure
1. To use the trained autoencoder for denoising, patches are
formed on the noisy mesh. For each patch the average normal
nf is extracted and the patch is rotated by δk so that nf is
co-directional to ac, to form the input matrix Z

3(n+1)×1
i . After

the autoencoder has generated the filtered output Z′3(n+1)×1
i ,

they are reshaped back to the original form Z′
3×(n+1)
i . The

exported filtered normal vector for patch Pi is the first column
of Z′, and more specifically:

n̂3×1
ci = Z′i[:, 0] (17)

Finally, each patch is rotated by the opposite angle −δni and
the same axis ani , that they were rotated with in the first place.

4) Post-processing: As a final post processing step, we use
the bilateral filtering approach according to [12]:

n̂c =

∑
fj∈Pi

AjW1ijW2ijncj

‖AjW1ijW2ijncj‖2
(18)

W1ij = exp(
−
∥∥ci − cj

∥∥2

2σ2
1

), W2ij = exp(
−
∥∥nci − ncj

∥∥2

2σ2
2

)

(19)
where Aj represents the area of face fj . Finally, the denoised
normals n̂c are used to update the vertices according to [14]:

vi = vi +

∑
cj∈Ni

n̂cj(〈n̂cj |(cj − vi)〉)
|Ni|

(20)

where Ni represents the first-ring area of a vertex vi. At
this point, it is significant to clarify that we always use the
same values for each model, without searching for the ideal
parameters per model. More specifically, σ2 = 0.15 and for
the estimation of σ1, we use the following equation:

σ1ij =

∑
∀cj∈Ni

‖ci − cj‖22
|Ni|

(21)

as proposed by [12].
For the rest of the paper, we define NB the number of

bilateral filtering iterations and NV the number of vertex
update iterations that are performed. Furthermore, Gaussian
noise will be defined as N ∼ (µ, σ), where µ is the mean

value, σ = β · L̄p is the standard deviation, L̄p is the average
edge length and β a scalar value.
NV is set to NV = 20, while NB depends on the noise level.

Experimental evaluation showed that for N ∼ (0, 0.1 · L̄p),
NB = 1 allows fine-tuning by removing small artifacts.
More iterations increase the computational cost, without any
additional benefit. Further elaboration, is presented in subsec-
tion V-A. Algorithm 1 summarizes the steps of the proposed
method. Even though this training process is time-consuming,
it takes place only once. Also, in comparison with other data-
driven methods [16], the training process is faster, due to the
smaller required dataset size.

Algorithm 1: Data Training and Denoising of 3D
Meshes
// Training Process
Input : Noisy Dataset of meshes Mp, Original Dataset of

meshes M′p ∈ Rnfp×3k, ∀ p ∈ dataset;
Output: Weights WEHi

,WDHi
, i ∈ [1, 2, 3];

1 Estimate centroid normals via Eq. (2);
2 for i = 1, ·, nfp do
3 Rotate the normals by angle δni around rotation axis

ani via Eq. (15);
4 Normalize the normal vectors in a range of [0,1] via Eq.

(16);
5 end
6 Compute labels Y

7 Reshape and create training set Z
3(n+1)×1
i and Z′

3(n+1)×1
i ;

8 WEHi
,WDHi

, i ∈ [1, 2, 3] = train(Zi,Z
′
i);

// Denoising Process
Input : Noisy model M ∈ Rnf×3k;
Output: Denoised model M̃ ∈ Rnf×3k;

9 Estimate centroid normals via Eq. (2);
10 for i = 1, · · · , ñf do
11 Rotate the normals by angle δni around rotation axis

ani via Eq. (15);
12 Normalize the normal vectors in a range of [0,1] via Eq.

(16);
13 end
14 Reshape and create the input Z

3(n+1)×1
i ;

15 n̄ci = denoising(Zi,WEHi
,WDHi

, i ∈ [1, 2, 3]);
16 Post processing for fine-tuning using bilateral filtering via

Eqs. (18)-(19);
17 Reconstruction of the final denoised model using vertices

updating via Eq. (20);

V. EXPERIMENTAL ANALYSIS AND SIMULATION RESULTS

A. Experimental setup and training

Two different datasets are examined. The first includes
meshes originating from the shape repository of the
AIM@Shape project [32] with synthetic Gaussian noise. The
second utilizes Kinect 2 scans of 3D printed objects provided
by Wang et al. [16]. The latter provides noisy scanned out-
comes along with ground truth models. To test the denoising
capability of our method1, we compared our results to guided
mesh normal filtering [13], bilateral normal filtering [12], L0

minimization mesh denoising [15], fast and effective mesh

1https://github.com/snousias/fast-mesh-denoising
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denoising [14], mesh denoising via cascaded normal regression
[16] and feature preserving mesh denoising based on graph
spectral processing [23].

As an additional comparison, the CVAE part of our pipeline
was replaced with traditional autoencoders, referred to as AE.
For the latter, a 5-layer deep autoencoder was employed with
N = [256, 128, 64, 128, 256] the number of neurons for each
layer. An element-wise sigmoid operation succeeds each layer,
trained with a mean square error loss function.

1) Synthetic Gaussian Noise : Eight meshes were selected
for the training of the autoencoder architecture, comprising
in total of 1,977,740 patches. Noisy meshes were synthesized
by adding Gaussian noise N ∼ (0, 0.1 · L̄p) co-directional
to each vertex normal. 1,977,740 training pairs of noisy and
noise-free rotated patches were utilized for the training of the
autoencoder. Two configurations were tested for patch size,
n = 8 and n = 20 neighbours. K = 200 was selected for
the K-means clustering of the CVAE. Training was performed
with an Adam optimizer with β1 = 0.9, β2 = 0.999 and
ε = 1e−8. The training took place for 100 epochs, utilizing an
NVIDIA GeForce GTX 1080 graphics card with 8GB VRAM
and compute capability 6.1. For the bilateral filtering, we
execute only NB = 1 iteration, while for the vertex update
operation, we execute NB = 20 iterations. Experimental
evaluation showed that for noise level up to N ∼ (0, 0.1 · L̄p)
a single bilateral iteration adequately performs fine-tuning, by
removing small artifacts, while more iterations increase the
computational cost without any additional benefit.

2) Kinect scans: Kinect scans were selected from the
dataset provided by Wang et al. [16] in order to form 927541
training examples in total. The trained CVAE model was
employed to denoise a noisy Kinect scanned model excluded
from the training set. The observed noise level of the Kinect
scans was computed to N ∼ (−0.18, 1.4 ·L̄p), while Figure 7
presents the denoising outcome. Furthermore, different settings
were tested to evaluate optimal patch size and number of
bilateral iterations. Patch size ranged in n = 8, 20, 40, 60, the
number of clusters in K = 6, 10, 50, 100, 200 and the number
of bilateral filtering iterations NB in NB = 0, 1, 4, 8.

3) Hyper-parameter optimization: To define the number of
nodes for each layer we performed hyper-parameter optimiza-
tion. For encoding layers E1, E2 and decoding layers D1,
D2 the number of nodes ranged in NE1 , NE2 , ND1 , ND2 ∈
[256, 512, 1024, 2048, 4096]. The number of clusters was set
equal to K = 200, the patch size n = 20, the learning rate
ranged in lr ∈ [1e− 05, 2e− 05, 3e− 05], and the keep ratio
ranged in kr ∈ [0.90, 0.95, 0.99]. We computed the set of
parameters that exhibit higher performance, in terms of lower
ELBO loss, as shown in Fig. 5: i) Batch size equals 256 ii)
keep ratio kr = 0.99, iii) learning rate lr = 3e − 05,iv)
decrease ratio dr = 0.998, v) NE1

= 2048, vi) NE2
= 2048,

vii) ND1
= 2048 and viii) ND2

= 2048.
4) Evaluation models and metrics: The quality of the re-

constructed results is evaluated using a) the Hausdorff distance
(HD) which represents the average one-side distance between
the reconstructed and the original 3D mesh, b) the metric α

Fig. 5: Hyper-parameter optimization radar chart

which represents the average angle difference between the
normals of the ground truth and the reconstructed model c)
visualizations which present in different colors the absolute
difference between the reconstructed and original meshes.

B. Mesh denoising studies

1) Evaluation of reconstructed models: Table II presents
the Hausdorff distance and the mean angular difference α of
the face normals between original and denoised 3D models
correspondingly. In these tables, we use a variety of dif-
ferent initialization approaches and architectures [12]–[16],
[23]. More specifically, we deployed two different deep ar-
chitectures (i.e., AE and CVAE), in two different patch sizes
(i.e., with 8 and 20 nearest neighbours (nn)), and with, or
without post-processing step (pp). As we can observe, the
best performance depends on the model, and none of these
approaches is universally the best. Nevertheless, in most of the
cases, the CVAE using 8 nearest neighbours seems to have the
most stable behaviour. Comparing the reconstructed meshes
provided by AE and CVAE, we notice that simple AE gives
a smoothed result to the object’s surface, but it negatively
affects the preservation of features. On the other hand, CVAE
achieves the accurate reconstruction of geometrical features,
but the surface of flat areas contains artifacts, as shown in
Figure 8. However, this is a problem efficiently tackled by the
post-processing step.

Figure 6 presents a visual comparison of the reconstructed
models. In this figure, we also provide enlarged details as well
as the α metric for easier evaluation. Additionally, Figure
6 illustrates a visualization of the absolute distance and the
theta metric between the original and the reconstructed model
for each vertex of the meshes. The lowest value (dark blue)
denotes that the compared vertices have the same position, in
the 3D coordinate system, while a high value (dark red) of the
absolute distance denotes that the vertices exhibit high error.
Figure 7 presents the denoising result for the Kinect2 scanned
models. Our approach accomplishes a lower theta mean value
yielding equivalent results with other established data-driven
approaches [16].
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TABLE II: Hausdorff distance and metric α (in degree) using disparate approaches of initialization and deep architectures.

Bilateral [12] Guided [13] Fast n Effective [14] L0 min [15] Feature aware [23] Cascaded [16] CVAE 20 pp
Carter (100000 F) 7.934 / 0.507 9.16 / 0.602 11.519 / 0.89 7.253 / 0.363 7.209 / 0.56 8.43 / 0.621 5.955 / 0.457
Pulley (100000 F) 5.476 / 0.365 7.984 / 0.455 8.573 / 0.627 6.341 / 0.255 3.786 / 0.827 6.78 / 0.440 3.591 / 0.305
Screwdriver (54000 F) 4.191 / 0.003 4.654 / 0.004 6.389 / 0.006 4.829 / 0.003 2.58 / 0.004 3.93 / 0.003 3.161 / 0.003

AE CVAE
AE 8 no AE 8 pp AE 20 no AE 20 pp CVAE 8 no CVAE 8 pp CVAE 20 no CVAE 20 pp

Carter (100000 F) 5.345 / 0.343 5.206 / 0.406 5.159 / 0.471 5.847 / 0.523 5.531 / 0.341 5.364 / 0.39 5.282 / 0.405 5.955 / 0.457
Pulley (100000 F) 4.359 / 0.178 3.371 / 0.219 2.917 / 0.205 2.995 / 0.257 4.562 / 0.248 3.672 / 0.254 3.372 / 0.278 3.591 / 0.305
Screwdriver (54000 F) 4.179 / 0.003 2.923 / 0.003 3.315 / 0.004 3.113 / 0.004 4.112 / 0.002 2.946 / 0.003 3.347 / 0.003 3.161 / 0.003

TABLE III: Execution time,measured in seconds, for presented approaches and noise level N ∼ (0, 0.1 · L̄p)

Bilateral Guided Fast L0 Feature CVAE 20 pp CVAE 8 pp
normal [12] normal [13] effective [14] min [15] aware [23]

Sculpt (3669V,7342F) 0.1082 0.6465 0.0591 3.5884 0.26743 0.0772 0.0754
Trimmed star (5192V, 10384F) 0.1529 0.9843 0.0869 4.2748 0.41393 0.0995 0.0995
Rocker Arm (9413V,18826F) 0.3242 2.0561 0.1804 11.1609 1.10021 0.1642 0.1617
Chinese Lion (50000 V, 100000F) 2.0508 21.6360 1.5792 110.6100 16.24114 0.9872 0.9624
Gear (250000V,500000F) 8.5630 221.1910 5.7120 2512.2500 180.77456 3.8858 3.7505

Fig. 6: Denoising results and normal angle difference visualization between reconstructed and original 3D model with Gaussian noise
N ∼ (0, 0.1 · L̄p). For each model absolute distance (upper colored mesh) and theta distribution (lower colored mesh) are presented. (a)
original mesh, (b) noisy mesh, (c) fast and effective [14], (d) bilateral normal filtering [12], (e) L0 minimization [15], (f) guided normal
filtering [13],(g) Cascaded mesh denoising (h) our approach.

2) Impact of patch size, number of clusters and filter pa-
rameters: Figure 9 presents the theta distribution for different
settings of selected number of clusters, patch size and bilateral
iterations. Purple lines correspond to NB = 8 iterations, blue
lines to NB = 4 iterations, green lines to NB = 1 iterations
and red lines to NB = 0 iterations (no post processing). As
we can observe, 8 iterations significantly improve the result
for N ∼ (−0.18, 1.4 · L̄p) noise.

C. Computational complexity evaluation

This subsection presents a comparison of our approach
with other methods in terms of computational complexity. To
facilitate the performance evaluation we used an open-source
implementation in C++ of state-of-the-art methods [12]–[15]
available in [33]. To be more specific, the execution was totally
performed in C++. For our approach, the autoencoder part of
our pipeline is executed in Python TensorFlow, the denoised
normal rotation, bilateral normal filtering and vertex update
parts in C++. All the evaluation studies took place in a Intel(R)
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Fig. 7: Denoising results and normal angle difference visualization between reconstructed and original Kinect scan with noise level N ∼
(−0.18, 1.4 · L̄p). (a) original mesh (up) and noisy mesh (down), (b) fast and effective [14], (c) bilateral normal filtering [12], (d) L0

minimization [15], (e) guided normal filtering [13], (f) Cascaded mesh denoising, (g) Feature aware denoising [23] and (h) our approach.

(a) (b)

Fig. 8: Denoising results using: (a) AE, (b) CVAE.

Fig. 9: Evaluation of theta distribution for different settings of the
number of clusters, the number of patch neighbours and bilateral filter
iterations.

Core(TM) i7-4790 CPU @ 3.60Hz with 32GB of RAM.
As Figure 10 and Table III show, our method is much faster

than L0 minimization [15] and Guided Normal Filtering [13]
and traditional bilateral normal filtering [12]. Compared to
fast and effective mesh denoising [14], our method is slower

Fig. 10: Performance evaluation.

Fig. 11: CVAE execution times for 100K faces model and
different settings

in small models but becomes faster as the number of faces
increases. Execution time measurements presented in Table III
were computed as the mean value of 10 repetitions. In the case
of Rocker Arm counting 18826 faces, our method outperforms
all the other approaches. We attribute this observation to the
autoencoder complexity. Denoising requires O(1) operations
per face removing a large portion of the computational cost.
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Fig. 12: Defect detection with saliency maps. a,e) Noise-free mesh
b,f) Noise-free mesh mesh with surface defects c,g) Noisy mesh d,h)
Denoised mesh

D. Impact of parallelization

As subsection IV-B3 highlights, the input vector Z3(n+1)×1
i

contains the normal vector coordinates of n neighbouring faces
for a single patch. The matrix formulated for all patches can
be expressed as Znf×3(n+1) where nf is the number of faces
for the processed model. Each patch Zi is being processed
separately through the same processing pipeline. Tensorflow
already parallelizes this process and allows to control the num-
ber of used CPUs or GPUs. To further elaborate, a noisy model
consisting of 100K faces, specifically the ”carter” model, was
denoised to measure the execution time for the autoencoder
part. Six different settings were examined, namely, i) 1 CPU
core, ii) 2 CPU cores, iii) 4 CPU cores, iv) 6 CPU cores, v)
8 CPU cores and vi) GPU only. For each different setting,
20 repetitions were performed. Figure 11 presents boxplots
summarizing the execution times distribution for each setting.

E. Defect detection in an industrial setting

Saliency maps [34] are essential tools for reliable, accurate
and computationally efficient 3D representations, by simplify-
ing the representation of physical. Figure 12 presents visual
confirmation, that proper feature preserving denoising can
facilitate defect detection in an industrial setting. The first
row presents the 3D mesh and the second row, the result of
the defect detection process. The color map is related to the
Hausdorff distance of each mesh to the ground truth geometry
presented in figure 12. The first column (a,e) presents the
original object, the second column (b,f) presents the same
object with surface defects that may have originated from the
manufacturing process. As Figure 12 reveals, noise prohibits
the detection of the defects. The third column (c,g) presents the
same 3D mesh with defects and Gaussian noise that may have
originated from scanning. Finally, the fourth column presents
the denoised object, where the outcome of denoising facilitates
accurate detection.

VI. DISCUSSION

In this work, we presented a fast data-driven denoising
approach, applying conditional variational autoencoders to

filter the normals of noisy 3D mesh patches. These patches are
modelled by a scale, translation and rotation invariant patch
descriptor exploited during the learning process. A computa-
tionally light post-processing step is employed only for fine-
tuning purposes. Extensive evaluation studies verify the effec-
tiveness of the proposed method, as compared to other robust
and well-known state-of-the-art approaches. We summarize
the benefits of the proposed approach in the following points.
i) The network can localize since, training and inference are
performed in a sliding patch setup. The filtered face normal
vector is generated by providing a local neighbouring region
as input. ii) It requires a relatively small training set since
we employ a preprocessing approach that restricts the input
data space. iii) It is fully parallelizable. iv) Evaluation studies
indicate that it demonstrates lower complexity and execution
times than other non-data-driven state-of-the-art approaches.
v) It can be utilized in industrial applications for denoising of
dense objects with features such as corners and edges. vi) It
is parameter-free since every used parameter is predefined
and the user does not need to search for optimal values per
model. Furthermore, our study aims to contribute to the field of
geometric deep learning where the sampling of the latent space
is nonuniform, on contrary to image processing or voxelized
versions of 3D volumes. The proposed approach removes the
noise from noisy 3D meshes, given that the deep architecture
is trained with the same noise distribution. This could prove
extremely beneficial for the fast denoising of meshes generated
from a particular scanning device operated at a manufacturing
production line. However, different levels or types of noise
require a different training process.

We should also highlight that the size of the deep neural
network has an impact on the denoising performance, in terms
of execution times and energy efficiency. As a future step,
model compression and acceleration strategies are yet to be
investigated. They would allow a smaller network size and
lower execution times. Further reduction of execution times
could originate from the removal of post-processing steps.
Specifically, patches are appropriately rotated and clustered.
The bilateral filter copes with problems or irregularities, while
extensive evaluation studies reveal that the required number of
bilateral iterations is proportional to the noise level. Training
the CVAE so that no post-processing is required could improve
performance. Furthermore, employing robust clustering, to
effectively group patches with similar distributions of normal
coordinates, could efficiently reduce the size of training set or
boost reconstruction accuracy.
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[19] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr, “Implicit fairing
of irregular meshes using diffusion and curvature flow,” in Proceedings
of the 26th annual conference on Computer graphics and interactive
techniques. Citeseer, 1999, pp. 317–324.

[20] H. Zhang, O. Van Kaick, and R. Dyer, “Spectral mesh processing,” in
Computer graphics forum, vol. 29, no. 6. Wiley Online Library, 2010,
pp. 1865–1894.

[21] P.-S. Wang, X.-M. Fu, Y. Liu, X. Tong, S.-L. Liu, and B. Guo, “Rolling
guidance normal filter for geometric processing,” ACM Transactions on
Graphics (TOG), vol. 34, no. 6, p. 173, 2015.

[22] S. Fleishman, I. Drori, and D. Cohen-Or, “Bilateral mesh denoising,” in
ACM transactions on graphics (TOG), vol. 22, no. 3. ACM, 2003, pp.
950–953.

[23] G. Arvanitis, A. S. Lalos, K. Moustakas, and N. Fakotakis, “Feature
preserving mesh denoising based on graph spectral processing,” IEEE
transactions on visualization and computer graphics, vol. 25, no. 3, pp.
1513–1527, 2019.

[24] H. Zhang, C. Wu, J. Zhang, and J. Deng, “Variational mesh denoising
using total variation and piecewise constant function space,” IEEE
transactions on visualization and computer graphics, vol. 21, no. 7,
pp. 873–886, 2015.

[25] M. Wei, L. Liang, W.-M. Pang, J. Wang, W. Li, and H. Wu, “Tensor
voting guided mesh denoising,” IEEE Transactions on Automation
Science and Engineering, vol. 14, no. 2, pp. 931–945, 2017.

[26] J. Wang, J. Huang, F. L. Wang, M. Wei, H. Xie, and J. Qin, “Data-driven
geometry-recovering mesh denoising,” Computer-Aided Design, 2019.

[27] W. Zhao, X. Liu, Y. Zhao, X. Fan, and D. Zhao, “Normalnet: Learning
based guided normal filtering for mesh denoising,” arXiv preprint
arXiv:1903.04015, 2019.

[28] K. Sarkar, K. Varanasi, and D. Stricker, “3d shape processing by
convolutional denoising autoencoders on local patches,” in 2018 IEEE
Winter Conference on Applications of Computer Vision (WACV). IEEE,
2018, pp. 1925–1934.

[29] G. E. Hinton, “Deep belief networks,” Scholarpedia, vol. 4, no. 5, p.
5947, 2009.

[30] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[31] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation
using deep conditional generative models,” in Advances in neural
information processing systems, 2015, pp. 3483–3491.

[32] B. Falcidieno, “Aim@ shape project presentation,” in Proceedings Shape
Modeling Applications, 2004. IEEE, 2004, p. 329.

[33] B. D. Wangyu Zhang. (2015) Mesh denoising ui. [Online]. Available:
https://github.com/bldeng/GuidedDenoising

[34] M. C. M. Lau and K. Dev, “Tactile mesh saliency: a brief synopsis,”
2016.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TII.2020.3000491

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://www.artec3d.com/cases/eva-cast-starring-role-leading-foundry
https://www.artec3d.com/cases/eva-cast-starring-role-leading-foundry
https://www.artec3d.com/3d-models/industrial-design-and-manufacturing
https://www.artec3d.com/3d-models/industrial-design-and-manufacturing
https://github.com/bldeng/GuidedDenoising


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3000491, IEEE
Transactions on Industrial Informatics

Stavros Nousias (M’16) received his Diploma de-
gree in Electrical and Computer Engineering from
the Department of Electrical and Computer Engi-
neering (ECE), School of Engineering (SE) of the
University of Patras (UoP), Rio Patras, Greece, and
his M.Sc. degree in Electronics and Information
Processing from the University of Patras (UoP), Rio
Patras, Greece. He is currently a research associate
at Visualization and Virtual Reality Group (VVR),
Department of Electrical and Computer Engineering
University of Patras, Greece and at Multimedia

Information Processing Systems Group (MIPS) of the Industrial Systems
Institute (I.S.I.), Research Center Athena, Patras, Greece. He has participated
in several Horizon 2020 and national research projects as research assistant,
research associate , research engineer and systems developer. He has authored
or coauthored over 20 papers in referred journals and international confer-
ences. His research interests include computational modelling,deep learning,
geometry processing, low level signal processing

Gerasimos Arvanitis received the Diploma degree
in Electrical and Computer Engineering and the
M.Sc. degree in electronics and information process-
ing from the University of Patras, Patras, Greece in
2009, and 2011, respectively. From 2011 to 2015, he
worked as a software programmer at the Computer
Technology Institute in Patras, Greece. He is cur-
rently pursuing his Ph.D. degree and he is a member
of the Visualization and Virtual Reality Group at
the University of Patras since January 2016. He has
participated in 4 European projects and he acts as

a regular reviewer for several technical journals and conferences. He has
authored or co-authored over 25 papers in refereed journals, edited books,
and international conferences. His main research interests include digital
geometry processing, 3D modeling, reconstruction, compression, outliers
removal, feature preserving denoising algorithms, and computer graphics.

Aris S. Lalos (Senior Member, IEEE) (M’07–
SM’19) received his Diploma degree, his M.A.Sc.
degree and his Ph.D. from the Computer Engineer-
ing and Informatics Department (CEID), School of
Engineering (SE), University of Patras (UoP), Rio
Patras, Greece in 2003, 2005 and 2010, respectively.
He has been a research fellow at Signal Processing
and Communications Laboratory, CEID, SE, UoP,
Rio-Patras, Greece from 2005 to 2010, in Sig-
nal Theory and Communications (TSC) Department
of the Technical University of Catalonia (UPC),

Barcelona, Spain from Oct. 2012-Dec. 2014 and in the Visualization and
Virtual Reality Group from Jan. 2015 until the the present date. In the
period Oct. 2011- Oct. 2012 was a telecommunication research engineer
at Analogies S.A, an early stage start up. In May 2018, Aris S. Lalos
was elected Principal Researcher (Associate Research Professor Level with
tenure) at Industrial Systems Institute , “ATHENA” Research Centre. His
general research interest include, digital communications, adaptive filtering
algorithms, geometry processing, wireless body area networks and biomedical
Signal Processing. He is an author of 96 research papers in international
journals (32), conferences (60) and book chapters (4). He has participated
in more than 18 European projects related to the ICT and eHealth domain
and he acts as a regular reviewer for several technical journals. Aris Lalos
received the best demo award in IEEE CAMAD 2014, the best paper award in
IEEE ISSPIT 2015, the World’s FIRST 10K Best Paper Award in IEEE ICME
2017 while, in January 2015, he was nominated as Exemplary Reviewer for
the IEEE Communications Letters. He is an IEEE Senior Member since July
2019.

Konstantinos Moustakas (Senior Member, IEEE)
(M’07–SM’16) received the Diploma degree and the
PhD in electrical and computer engineering from
the Aristotle University of Thessaloniki, Greece,
in 2003 and 2007 respectively. During 2007-2011
he served as a post-doctoral research fellow in
the Information Technologies Institute, Centre for
Research and Technology Hellas. He is currently an
Associate Professor in the Electrical and Computer
Engineering Department of the University of Patras,
Head of the Visualization and Virtual Reality Group,

Director of the Wire Communications and Information Technology Laboratory
and Director of the MSc Program on Biomedical Engineering of the University
of Patras. His main research interests include virtual, augmented and mixed re-
ality, 3D geometry processing, haptics, virtual physiological human modeling,
information visualization, physics-based simulations, computational geometry,
computer vision, and stereoscopic image processing. During the latest years,
he has been the (co)author of more than 200 papers in refereed journals, edited
books, and international conferences. His research work has received several
awards. He serves as a regular reviewer for several technical journals and
has participated in more than 20 research and development projects funded
by the EC and the Greek Secretariat of Research and Technology. He is/was
the coordinator of the GameCar H2020 project and scientific coordinator of
the NoTremor FP7 project. He has also been a member of the organizing
committee of several international conferences. He is a senior member of the
IEEE, the IEEE Computer Society and member of Eurographics.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TII.2020.3000491

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


