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Abstract—This paper presents a novel framework for
partial matching and retrieval of 3-D models based on a
query-by-range-image approach. Initially, salient features are
extracted for both the query range image and the 3-D target
model. The concept behind the proposed algorithm is that, for a
3-D object and a corresponding query range image, there should
be a virtual camera with such intrinsic and extrinsic parame-
ters that would generate an optimum range image, in terms of
minimizing an error function that takes into account the salient
features of the objects, when compared to other parameter sets or
other target 3-D models. In the context of the developed frame-
work, a novel method is also proposed to hierarchically search
in the parameter space for the optimum solution. Experimental
results illustrate the efficiency of the proposed approach even in
the presence of noise or occlusion.

Index Terms—3-D search, partial matching, range image, salient
features.

I. INTRODUCTION

O BJECT recognition and matching is a very challenging
research area that has been extensively addressed during

the last decades. It has numerous application areas, including
computer vision, CAD, autonomous navigation, etc. In general,
object matching is the process of identifying the correspondence
between images, surfaces, points, 3-D models, etc. Especially
the problem of 3-D model search and retrieval is a topic that has
recently received increasing interest [1].

Partial 3-D matching is a special case of 3-D object matching
that involves finding correspondences on parts of 3-D models.
One of the most challenging problems in partial matching is to
search and retrieve similar 3-D models, when the information
describing the query objects is not complete (e.g., a view of
an object or a range map is available). The wide availability
of range scanners and 3-D digitizers and the emergence of
next-generation technologies in 3-D graphics and computa-
tional equipment has significantly increased the interest for
partial matching algorithms using as input range data. The
present paper proposes a “query by range image” 3-D model
search algorithm based on a novel partial matching method that
utilizes salient points of the range image and the 3-D model.
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A. Background

The problem of finding correspondences between com-
plete 3-D objects has been successfully addressed by many
researchers in the past [2]–[6] while extensive surveys can be
found in [7] and [8]. The most prevalent methods are using the
query-by-example approach. The major problem of this kind
of approaches is to provide translation, rotation, and scaling
invariant descriptors. In [2], a method for search and retrieval
of 3-D models with the use of the spherical trace transform is
described. It is based on tracing the volume of a 3-D model
with radial segments and 2-D planes, tangential to concentric
spheres. Then using three sets of functional with specific
properties, completely rotation invariant descriptor vectors are
produced. Elad et al. [3] used moments of 3-D objects as the
feature vector. The similarity measure is a weighted Euclidean
distance between feature vectors.

On the other hand, few approaches have been presented in the
past that deal with the problem of recognizing a 3-D object when
only a part of its shape is available as query. Some approaches
focus on face alignment [9]–[12] for registering two face sur-
faces. However, the problem of alignment aims to register two
surfaces that are a priori known to be identical. On contrary, the
problem of partial matching and retrieval of similar objects aims
to identify similarities and retrieve objects that are in the gen-
eral case not identical, but exhibit some similarity, to the query
partial view. Some full object 3-D matching methods also sup-
port partial matching using however as query the full object.
In [13]–[17], techniques that use Reeb graphs are proposed in
order to find similarities between two 3-D objects.

Reeb graphs are topological and skeletal structures that are
used as a search key that represents the features of a 3-D shape.
In [18], utilizing shock graph matching, indexing using topolog-
ical signature vectors is applied to implement view-based simi-
larity matching more efficiently.

Biasotti et al. [16] compare Reeb graphs obtained by using
different quotient functions and highlight how their choice de-
termines the final matching result. For instance, the integral
geodesic distance as quotient function is especially suited for
articulated objects, while the distance to the barycenter should
be preferred when the aim is to distinguish between different
poses of an articulated object.

Other commonly used methods for 3-D matching that also
support partial matching use Local features as described in
[19]–[24]. Finally, partial matching also can be achieved with
the use of model graphs [25]–[27].

In [28], the light field descriptor is presented. The concept
behind this method is that if two objects correspond, then they
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should also correspond from every viewpoint. A similar ap-
proach is presented in [29], the so-called “depth buffer” and in
[30] that also includes depth information. However, these ap-
proaches [28], [29], [31] do not deal with partial matching.

Germann et al. [32] initially precalculate a number of
range images from different points of view. Other presented
approaches deal with local surfaces applied to the problem
of pairwise registration of range images [33] and to 3-D
model-based recognition [34], [36]–[38].

Shum et al. [22] map the surface curvature of 3-D objects
to the unit sphere with the use of a spherical coordinate system.
By searching over a spherical rotation space, a distance between
two curvature distributions is computed and used as a measure
for the similarity of two objects. Unfortunately, this method is
limited to objects which contain no holes, i.e., have genus zero.

Most 3-D matching approaches scale linearly with respect to
the number of models in the database. Matei et al. [35] presented
a method based on locality sensitive hashing so as to perform the
similarity tests in sublinear time.

The aforementioned approaches have a few drawbacks. In
many cases, they use a priori information for registering the
partial view with the complete 3-D model, i.e., in the case of
face matching, the tip of the nose or the center of the eyes can
easily be registered. In the proposed method, there is no need of
preregistering the views, thus allowing matching between an ar-
bitrary range image and a 3-D model. Methods that rely on local
feature similarity either cannot be applied on objects that con-
tain holes, or require nontrivial preprocessing for the meshes.
On the other hand, Reeb graph methods are very sensitive to
topological changes and cannot be applied to arbitrary meshes,
since topological problems, like missing faces, disturb the com-
putation of the graph.

B. Proposed Method

In this paper, a novel method for identifying the correspon-
dence between a range image and a full 3-D model is presented.

Similarities between the query image and a model in the
database is performed by searching for the camera parameters
(camera viewpoint, orientation, scale, and internal geometry)
that would generate an image similar to that of the query image
as illustrated in Fig. 1. Rather than match the whole image,
only the salient points are compared. The matching relies
on the fact that the salient points in the correctly matching
image should have a similar spatial distribution to those in the
query image. Instead of exhaustively searching all possible
camera parameters, the search is conducted in a hierarchical,
coarse-to-fine manner by first partitioning the parameter search
space coarsely, and then pursuing the best matching region of
the parameter space at progressively finer levels of quantization.

The proposed scheme is very efficient in terms of recognition
rate, and while using the hierarchical approach, the computa-
tional complexity is reduced by several orders of magnitude.

The major steps of the proposed method are three: the 3-D
model preprocessing, the 2.5-D geometry processing, and the
Hierarchical matching. The system uses as input a range image

, and a database of 3-D models .

Fig. 1. Proposed framework: Assuming a query range image, the algorithm
searches for the best match in parameter space that consists of all possible posi-
tions and orientations of the camera. Since this is a computationally very expen-
sive procedure, a hierarchical approach is designed to search for the best match.

At the preprocessing step, a set of features is extracted for
each model , the set of salient points . During run-time,
a 3-D mesh is initially extracted from the input range image,
and then the set of salient points for the extracted mesh is iden-
tified. This is achieved by selecting a set of feature points on
the range image and creating a triangulated 3-D mesh using De-
launay triangulation and the depth information contained in the
range image. Then the salient features of the 3-D mesh are ex-
tracted.

The final step is the matching procedure. Matching is per-
formed in a hierarchical manner (Section IV-C), by selecting a
set of camera parameters (Section II), and calculating the value
of an error function between the salient features extracted from
the query range image and the ones extracted from the 3-D
model (Section IV-B). The hierarchical matching algorithm pro-
ceeds by searching for the minimum error set of parameters
at the “l” level of the hierarchy, in the neighborhood of the min-
imum error set of parameters of the upper level of the
hierarchy.

The main contributions of the proposed framework are the
representation of the objects using their salient features, that is
compact and can be efficiently used for realistic scenarios like
the presence of occlusions; the hierarchical approach to reduce
the computational cost of searching in the feature space and the
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Fig. 2. Camera parameters of the proposed framework. Perspective projection
is assumed.

general concept of the virtual camera that, when having the cor-
rect parameters, should produce a similar range image to the
query that also exhibits a similar salient feature spatial distri-
bution. Moreover, it should be emphasized that no information
about the setup and the parameters of the camera that captured
the query is a priori known. Thus, the proposed scheme goes
one step further from existing methods by utilizing range images
and salient features to perform 3-D search from partial queries.
The proposed framework does not aim to identify the optimal
alignment of objects known to be similar but to search and re-
trieve objects that exhibit similarity to the query image but are
not identical in the general case. The framework is experimen-
tally seen to provide very good retrieval performance even in the
presence of noise or occlusions as described in the experimental
results in Section V.

II. CAMERA MODEL

Perspective projection using the standard pinhole camera
model is adopted in the proposed method. The intrinsic param-
eters of the camera are its resolution [ (width), (height)]
and the focal length . The position of the camera is de-
scribed using a spherical coordinate system with the following
parameters: radius , longitude , and latitude .

In the model used in the context of the proposed framework,
the camera looks at the center of mass of the object that is placed
at the origin of the coordinate system. Vector (Fig. 2) corre-
sponds to the direction in which the camera looks. In the pro-
posed framework, the camera typically looks at the origin of the
coordinate system. Parameters roll yaw and pitch
are used to refine where the camera looks. Assuming the local
coordinate system of the camera , the angles ,
and correspond to rotation around the -, -, and -axis, re-
spectively, as illustrated in Fig. 2.

Some of the camera parameters can be estimated prior to the
matching process, in order to reduce the dimensionality of the
parameter space and thus save computational power. The res-
olution of the camera is set equal to the resolution of the input
image. The focal length can be explicitly estimated as described

in the following paragraph. Thus, the parameters that need to be
estimated are reduced to the following six .

Focal Length Estimation: The focal length of the camera,
which is unknown since there is no a priori information about
the camera that captured the query, can be directly estimated
using the range image. Assuming that the virtual camera is
placed correctly, the object on the produced range image should
have equal dimensions with the query range image. So, instead
of including one more dimension for in the parameter space,
the focal length is estimated utilizing the 2-D bounding box
of the input range image and the 2-D bounding box of the
projection of the 3-D model.

This is performed by projecting the 3-D model onto the
camera plane using a reference focal length , and then com-
paring the axis aligned bounding box (AABB) of the projected
3-D model with the AABB of the query range
image . The estimate of the focal length stems
from (1):

(1)

III. FEATURE EXTRACTION

As will be discussed in a following section, the identification
of similar areas is computationally very expensive if matching
is performed by comparing the query range image with another
range image extracted from the 3-D model. Therefore, a subset
of features for the range image and the 3-D model should even-
tually be used that should be easy to handle and representative
for each object. In the present paper, salient features are used
that lie in general in the most protruding areas of a 3-D surface.

A. Salient Feature Extraction

The developed method for salient feature extraction that cor-
responds to sharp protruding areas of the object’s surface [39],
[40] is based on Hoffman and Singh’s theory of salience [41].
In order to make this paper self-contained, a brief description
of the method follows. Initially, the dual graph of
the given triangulated surface is generated [39], where and
are the dual vertices and edges. A dual vertex is the center of
mass of a triangle, and a dual edge links two adjacent triangles.
The degree of protrusion for each dual vertex results from the
following equation:

(2)

where is the number of dual vertices in the entire surface,
is the protrusion degree for the dual vertex is

the geodesic distance of from dual vertex , and is
the area of the triangle .

Using simple gradient-based methods (i.e., steepest de-
scent), all local maxima of the protrusion map are
obtained. Geodesic windows are then applied and only the
global maxima inside the window are considered as salient. A
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Fig. 3. Salient features of an Ant model extracted using its (a) entire 3-D model
and (b) 2-D projected range image.

geodesic window (GW) centered at the dual vertex is defined
as follows:

(3)

where defines the window size.

B. 3-D Model Preprocessing

The 3-D models of most databases are in general in various
scales. In order to be able to easily compare the similarities be-
tween a query range image and a set of models, the models
should be normalized to a common scale. As mentioned ear-
lier, the spherical coordinate system is used, so the best choice
would be to normalize each model to the unit sphere and ex-
tract the salient points of the 3-D models using the technique
described in the previous section.

It should be noticed that the database models are normal-
ized to a common scale so as to ease the implementation of the
matching algorithm. The normalization is not a crucial process.
Database objects could also stay at their original scale; in this
case, the estimated camera parameters, more precisely the ra-
dius “ ” of the position of the camera, would be different so as
to compensate for the difference in scale.

C. Range Image

In order to extract salient features from the range image, a 3-D
surface should initially be formed. The surface is created using
only a subset of the points of the image, so as to reduce the re-
dundancy and size of the triangulated surface to be generated.
Features on the range image are selected, as the ones with max-
imum minimal eigenvalue in a predefined window [42]. After
the 3-D surface is formed, the salient features are extracted in
the same way that they are extracted for the 3-D models. Fig. 3
illustrates the salient features extracted from the 3-D model of
an Ant and from its 2-D projected range image.

IV. MATCHING

As mentioned in the overview (Section I-B), the basis of
the proposed framework is a virtual camera, assumed to lie in
the space of the examined 3-D model. The proposed method
searches in the parameter space for the set of camera parameters
that capture a surface as similar as possible (identical in the
ideal case) to the surface of the query range image.

The above is encapsulated in the following hypothesis.
Hypothesis: Assuming that the 3-D model and the partial

surface that is described through the range image do corre-
spond, then

(4)

where is a range sensor (camera) with specific intrinsic
and extrinsic parameters.

Consider the query range image of an object . If the object
(identical to ) is captured using a virtual camera that

captures a range image using the camera parameters ,
then . Under the assumption that the objects

and are identical and if the correct camera parameters
are estimated (i.e., , then trivially .

For the non-ideal case of non-identical objects ,
in the presence of noise or occlusions , or
with an approximate only estimation of the camera parameters

, the images and cannot be identical.
Utilizing the above hypothesis, the problem of identifying the

correspondence between a range image and a 3-D model is re-
duced in finding the correct camera parameters, and , that
minimize the error function:

(5)

where

(6)

A. Matching Using the Range Image

The simplest way to match a given range image with a 3-D
model utilizing the hypothesis of Section IV is to create a range
image for every camera in space, for every possible set of pa-
rameters, and compare the captured range image with the query
range image. Although this method would be in the ideal case
perfectly accurate, it is computationally unacceptable, while it
is prone to errors in real use cases (e.g., in the presence of oc-
clusion or noise).

Search in the parameter space is performed by using a spher-
ical coordinate system that describes the camera position. The
spherical coordinate system provides a trivial way to ensure that
the virtual camera will “look” at the model that is placed in the
center of the coordinate system.

Then, the range image of a particular view is generated using
graphics hardware, in particular OpenGL functions.

After the range image is created, it is compared with the query
range image by calculating the error for the current camera pa-
rameters using the following equation:

(7)

where is the support set of the pixels of the range image that
have depth value both in the query and the generated range
image and the size of . The set of camera parameters
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that minimizes (7) is considered as the best matching
set of parameters.

The range image error function includes all the pixels that
belong both to the query and the database object’s image, only
if the size of is larger than a predefined threshold that is set to
be 0.65 with respect to the size of the query object. Thus, if less
than the 65% of the query object match with the target, then this
set of camera parameters is considered as nonmatching set.

It should be noted that can also be defined as the union of
the query and the generated range images that would result in
a further penalty for surfaces with nonmatching contours. This
degrades however the performance of the algorithm in the pres-
ence of occlusions, which is a real-world scenario and is exten-
sively researched in the experimental results section.

B. Matching Using Salient Features

A way to accelerate the matching process is to use only a
number of feature points of the range image and the 3-D model.
In the context of the proposed method, salient points are used,
as described in Section I-B.

If the virtual camera described in the hypothesis of Section IV
exists and the query range image corresponds to the 3-D model,
then if a set of salient points is extracted from the query range
image and another one from the surface that the virtual camera
captures, then these two sets of points should also have corre-
sponding subsets of features.

The proposed method proceeds similarly to the exhaustive
matching approach (Section IV-A). A set of salient points

is extracted for the query range image (as described in
Section III-C), and another one for the 3-D model. The
latter is transformed for each set of camera parameters ,
in order to be comparable with the set of salient points ,
thus producing the set of salient points . These sets
of points are used to calculate the similarity between the query
range image and the 3-D model.

More specifically, the distance function used to calculate
the difference between the two sets of salient points takes into
account the 3-D distance between the elements of the two sets
of salient points and stems from (8):

(8)

where is the number of the salient points of the range image
and is the 3-D distance between points A and B. Its
value has been experimentally selected to be . As seen
over the performed experiments, the further increase of this pa-
rameter does not lead to more efficient retrieval performance.
The error function of (8) actually computes the sum of the dis-
tances of the range image salient points from their closest salient
points of the processed 3-D model.

As in the case of exhaustive matching, the set of camera pa-
rameters that minimizes the error function is considered as
the best match:

(9)

Fig. 4. Hierarchical search in the parameter space. The procedure is illustrated
only for parameter �.

C. Hierarchical Search

Even if the use of salient points reduces the computational
complexity of matching full range images, the matching pro-
cedure remains computationally expensive when exhaustively
searching in the parameter space. In the proposed framework,
a hierarchical approach is developed that reduces the computa-
tional complexity by several orders of magnitude.

Consider the parameter space described in Section II. The
range of all the angles is sampled using a 0.2
step, while for the camera position , the step is set to 0.1. Notice
also that: , and

, while .
All the sampling densities and the maximum-minimum

values for are experimentally selected for the ITI 3-D
model database [1] and are valid for every 3-D model database.

The hierarchical search algorithm builds initially a coarse
sampling of the 6-D parameter space and evaluates for each
sample the error function as described in Section IV. The sample
that produces the minimum error is considered as best match,
and then the algorithm proceeds to the second layer of the hi-
erarchy. In this layer, the error function is evaluated around
the local neighborhood of the “winning” sample, and the new
sample that produces the minimum error is considered as best
match for the second layer of the hierarchy. This procedure is
repeated until the final layer of the hierarchy is reached that cor-
responds to the maximum accuracy as previously described.

At this point, it should be mentioned that the sampling of
the first layer of the hierarchy is of high importance since a
very coarse sampling would possibly result in missing a cor-
responding view, while dense sampling would inhibit the per-
formance of the algorithm as also seen with experiments in the
ITI database [1]. In the context of the proposed framework, the
initial sampling for angles , and has been chosen to be
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Fig. 5. (a) Ant model. (b) Distribution of the error function for the Ant and for different values of � and �. (c) Distribution of the error function for the Ant for
30% occlusion. (d) Table model. (e) Distribution of the error function for the Table. (f) Distribution of the error function for the Table for 30% occlusion.

, while for , and , their sampling includes the three
values of the set .

For all other layers of the hierarchy, all parameters are han-
dled in an equal manner, thus resulting in the computation of the
error function for two more samples for each parameter. More
specifically, the error function is evaluated for the samples of
the set , where and are the minimum
error sample and the sampling step of the previous layer, respec-
tively.

Fig. 4 illustrates an indicative diagram that illustrates the
concept behind the hierarchical approach. Given a query range
image, initially, in the first level of the hierarchy, range images
and their salient features are extracted and the error function
is evaluated for all cameras of the initial setup. In the second
level, local search is performed in the area near the camera
that produced the lowest error (camera 4). This procedure is
repeated iteratively until the final level is reached that equals to
an accuracy of 0.2 for all the angles, and 0.1 for .

D. Convergence Analysis

An important issue of the proposed method, and of hierar-
chical methods in general, is to avoid the convergence of the
algorithm in a local minimum of the function to be minimized.
In the context of the proposed framework, this issue has been
carefully addressed and the parameter space is sampled in such
a way so as to minimize the possibility of convergence in a local
minimum.

Fig. 5 illustrates four diagrams that concern the Ant
[Fig. 5(a)] and the Table [Fig. 5(d)] model. In Fig. 5(b), the
distribution of the error function is depicted for all possible
different values of and , while Fig. 5(c) illustrates the same
distribution in the presence however of 30% occlusion. Notice
that the global minimum can be clearly identified, while other
local minima have much higher value. Similar characteristics
can be observed in Fig. 5(c). This is an indication for robustness
in the presence of occlusion as also will be discussed later in
the experimental results section.

Moreover, the valley of the global minimum extends to more
than 50 for both the and parameters. This behavior is ob-
served for all examined objects of the database and for the re-
maining parameters of the parameter space. Therefore, in the
proposed algorithm, the initial sampling of the parameter space
for the first level of the hierarchy is chosen to be as described
in Section IV-C. Coarser sampling is seen to inhibit the perfor-
mance of the algorithm; more precisely using initial sampling
of for the angles and reduces the “Rank 1” retrieval
performance of the algorithm by 15%. Denser sampling is not
seen to significantly increase the accuracy of the results, while
slowing down the process; more precisely using initial sampling
of for the angles and is seen to increase the “Rank 1”
retrieval performance of the algorithm by 1%.

The diagrams of Fig. 5(e) and (f) illustrate the error distribu-
tion for the symmetrical table object. Notice that in this case,
there exist several local minima that are however very close in
value to the global minimum. As can be seen in Fig. 5(e) and
(f), their only major difference is that the minimum error in the
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Fig. 6. Recovery of small errors of the proposed hierarchical approach. On
the top of the figure, an indicative error distribution function is illustrated and
just below, three levels of the hierarchical approach. The minimum error can
be reached by either selecting � or � in Level 1, since the proposed approach
does subdivide the parameter space into nondisjoint subspaces (bottom-right).
In case of disjoint space subdivision (bottom-left), the minimum error could not
be reached by selecting � in Level 1.

valleys is increased due to the missing occluded part. A more
thorough discussion on symmetric models is presented in a fol-
lowing section.

Moreover, the hierarchical algorithm is designed so as to be
able to recover for small errors in the estimate of the parameters.
Consider, without loss of generality, three levels of the hierar-
chical algorithm for a single parameter as illustrated in Fig. 6.

The proposed hierarchical algorithm does not divide the pa-
rameter space into disjoint regions. Thus, any value between
and in Fig. 6 can be reached by selecting in the first level as
minimum error sample either or . Typical hierarchical algo-
rithms that divide the parameter space into disjoint subspaces
that are asymptotically adjoined (Fig. 6) would, contrary to the
proposed approach, not be able to handle error distributions like
the one illustrated in Fig. 6, or would require a much denser sam-
pling of the parameter space in the initial level.

V. EXPERIMENTAL RESULTS

The proposed method was tested on the 3-D model database
of the Watertight model Track of Shape Retrieval Contest’07
(SHREC) [43] and the Princeton Shape Benchmark [44].

The SHREC database consists of 400 models organized in
20 categories. From the database, 400 range images where cre-
ated from different views (one for each model) using random
angle parameters, and entered as query in the matching algo-
rithm. Each range image was compared with all the 3-D models.

The Princeton Shape Benchmark database consists of 1814
3-D models. The applied classification was based on the pro-
posed “Coarse1” categorization. A total of 49 classes were
used. A range image was created from every model using
random angle parameters. As before, each produced range

image was compared to all the 3-D models. The resolution of
the synthesized range images was 400 400 for both bench-
mark databases.

A. Evaluation on Benchmarking Databases

To obtain comparable results, the approach of Germann et al.
[32] is used since it is one of the very few approaches for par-
tial matching using as query partial object views, although uti-
lizing a very different method when compared to the proposed
approach and making assumptions that are not made in the pro-
posed approach like known object scale.

The evaluation is performed by computing the ranking during
retrieval and using precision-recall diagrams, where precision
is defined as the ratio of the relevant retrieved elements against
the total number of the retrieved elements, and recall is the ratio
of the relevant retrieved elements against the total relevant ele-
ments in the database.

Fig. 7 illustrates the precision versus recall (P-R) curves for
the proposed hierarchical matching approach using only salient
features and using the full range image for matching compared
to [32], for both the Princeton Shape Benchmark [Fig. 7(a)] and
the SHREC database [Fig. 7(b)].

Moreover, Fig. 8 illustrates the accuracy of the aforemen-
tioned methods in terms of their ranking efficiency. The pro-
posed method using salient features outperforms the approach
of [32] and is also clearly superior to the same approach using
the full range image for matching. This is expected when consid-
ering that the salient features comprise a robust set of attributes
of the 3-D object that describes its characteristics based on the
theory of visual saliency [41].

Additionally, this set of features is also robust in the pres-
ence of occlusion and noise. Fig. 9(a)–(c) indicatively depicts
a clear range image query, an occluded query, and an occluded
query with additive Gaussian noise, respectively. The occluded
queries are obtained by eliminating all connected local surfaces
(triangles) that are closest to a salient point, without splitting
the object into nonconnected parts. The noise queries are gen-
erated by adding Gaussian noise on the range image. As illus-
trated in the diagrams of Fig. 10, the performance of the pro-
posed method does not drop significantly even for 20% or 30%
of occlusion, contrary to the approach of [32]. The robustness
of the proposed algorithm in the presence of occlusion is ex-
pected since the “descriptor” of the object using salient features
is not altered for an occluded object, but actually only reduced
in terms of its size, i.e., the salient features that correspond to
the occluded area are not included in the “descriptor”.

Fig. 11(a) and (b) demonstrates the robustness of the pro-
posed framework in the presence of occlusion and additive
Gaussian noise in the query range image. The performance of
the proposed method remains high, while the performance of
the approach in [32] drops significantly.

Fig. 12 illustrates the first five retrieved results for four
queries that are depicted in the first column of the image. The
results of the three first queries are all from the same class, and
the highly ranked retrieved model is the model from which the
query range image is originated. For the last query, the fourth
retrieved result is from a different class. This is consistent
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Fig. 7. Precision-recall curves for the proposed hierarchical matching approach
using salient features and the entire range image compared with the approach
of [32] for the (a) Princeton Shape Benchmark and (b) SHREC database.

with the proposed method, and it will be further discussed in
Section V-C2.

Moreover, Fig. 13 illustrates comparative “precision versus
recall” diagrams of the proposed approach compared to the ap-
proach of [30], which is a representative of the view-based sim-
ilarity approaches, in the PSB and SHREC databases. As can
be clearly seen, the proposed approach outperforms the method
in [30]. It has to be mentioned that the authors in [30] use a
view-based matching approach that also utilizes depth informa-
tion to perform mainly full 3-D model search. Their algorithm
however also can be utilized for partial matching as described in
[30]. The advantage of the proposed scheme over this approach,
and existing view-based matching schemes in general, can be
considered from the one side as the representation of objects

Fig. 8. Ranking curves for the proposed hierarchical matching approach using
salient features and the entire range image compared with the approach of [32]
for the (a) Princeton Shape Benchmark and (b) SHREC database.

Fig. 9. Indicative range image queries. (a) Clear query. (b) Occlusion query.
(c) Occlusion and noise query.

using salient features that is robust to partial queries and occlu-
sions and from the other side the efficient hierarchical matching
scheme that eliminates restrictions of using only a few views to
identify similarities, which is the case in [30].
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Fig. 10. Precision-recall curves for the proposed approach in the presence of
occlusion compared to the approach in [32] for the (a) Princeton Shape Bench-
mark and (b) SHREC database.

B. Evaluation on Real Range Data

The proposed method also supports matching by using as
query a reconstructed 2.5-D image. These reconstructions can
stem either from a 3-D scanner or using at least two images taken
from different viewpoints so as to extract the relative position of
the image elements [42] and to create a range image. Then, this
range image is inserted as query in the matching algorithm.

To further validate the proposed approach with real queries,
a range image database has been assembled, stemming from
scans performed either using the MINOLTA VIVID700 3-D
scanner and depth maps captured from a stereoscopic camera
[45]. The database consists of the following objects: ten hu-
mans, six cups, five pliers, six mechanic objects, six bearing
objects, and 17 vases. All the above categories also exist in the

Fig. 11. Precision-recall curves for the proposed approach in the presence of
occlusion and noise compared to the approach in [32] for the (a) Princeton Shape
Benchmark and (b) SHREC database.

SHREC database. The resolution of the range images for this
case is “800 800”. Fig. 14 illustrates indicative images of the
performed queries.

Even if the generation of these queries using the 3-D scanner
and the accompanying postprocessing software is straightfor-
ward, the view-based reconstruction is achieved by the methods
described in [42] that utilize two (or more) images taken from
different viewpoints in order to create a depth map (range
image) of the central object on the images. At first, the relative
pose of the images is estimated by selecting a set of features
on each image and registering them. Then with the use of the
eight-point algorithm [42], the relative pose is estimated along
with the depth map for one of the images.

Fig. 15 illustrates comparative precision versus recall dia-
grams of the proposed approach compared to the approach of
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Fig. 12. Results overview: the five first retrieved models for three queries.

Fig. 13. Precision-recall curves for the proposed approach compared to [30]
for the PSB and SHREC databases.

Fig. 14. Indicative real range queries. (a) Vase captured using the MINOLTA
VIVID700 3-D scanner. (b) Human captured using stereoscopic camera.

[32]. As can be clearly seen, the proposed scheme remains su-
perior, while its performance does not drop significantly, when
compared to the results of synthetic queries.

Fig. 15. Precision-recall curves based on real range image queries for the pro-
posed approach compared to the approach in [32] for the SHREC database.

In Fig. 16, a set of results is presented by using as query a
reconstructed range image. The last row corresponds to images
taken with a stereoscopic camera, while the other two are from
synthetic images. The matching results for the synthetic test im-
ages are very good due to the great accuracy of the reconstruc-
tion. On the other hand, the last set of test images produced
less accurate results. This was due to the fact that the recon-
structed surface was not very accurate (detail in lower-left part
of Fig. 16).

C. Performance Analysis

1) Model Category: Fig. 17 illustrates the P-R curves for four
different classes of the SHREC database. The matching perfor-
mance for the class of chairs and sea animals is excellent due to
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Fig. 16. 3-D reconstruction results. The range image reconstructed from the two images on the left column was entered as query in each case.

Fig. 17. Precision-recall diagram for four different classes. The variation in
performance proportionately to the class of the 3-D model is shown.

their unique shape that differentiates them from the other cate-
gories. For the category of the ants, the algorithm performs less
accurately, while the less accurate performance is observed for
the category of birds. The reason for the not very efficient per-
formance of some categories is that the shape of their member
models is similar to other models, even if they belong in other
categories. For example, the birds are very often miscategorized
as airplanes due to their very similar shape.

Moreover, it should be emphasized that the proposed ap-
proach is theoretically valid in the cases where topological
information and characteristics lead to a protrusion degree that
is significantly higher than the effect of any possible descretiza-
tion and/or tessellation noise, which is also the vast majority
of real objects. This means that there are object categories, like
spheres, etc., where the proposed approach would not lead to
optimal performance.

2) Query Range Image: The performance of the method de-
pends mainly on the query range image. The results are much
better when the query range image is as indicative as possible for

Fig. 18. Precision-recall diagrams for 400, 800, and 1600 range image queries
for the SHREC database.

the geometry of the 3-D object. For example, in the fourth row
of Fig. 12, the fourth result is from a different class (birds) than
the query (airplane). This was expected since the two classes
have very similar characteristics. This issue is also illustrated in
Fig. 17 as described in the previous section.

Moreover, for the evaluation of the proposed approach, as
mentioned in Section V, the range images were randomly gen-
erated so as to assure statistical significance of the results. Ad-
ditionally, and in order to assure statistical significance of the
results of the SHREC database that consists of less 3-D models,
“precision versus recall” curves were extracted using as queries
400, 800, and 1600 randomly generated range images that cor-
respond to 1, 2, and 4 range images per 3-D object. As expected
due to the random generation of the range image queries, the
variation of the curves illustrated in Fig. 18 is statistically in-
significant.

3) Symmetries: There is a chance that the method will lead
to a mathematically wrong result in the case of a symmetric 3-D
model. For example, in a case where the query range image is
taken from a table, there is a chance that the method will return
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a wrong camera position for the correct 3-D model, although
most probably the error in the wrong position will be smaller
than the error from another 3-D model. This happens because
the extracted salient features will be symmetrical, due to the
symmetry of the 3-D model. So there is a chance that due to
noise in the salient features of both the 3-D model and the range
image, there will be a better match from another point of view.

4) Timings: The proposed framework is divided into two
separate processing phases: the preprocessing of the 3-D model
databases and the online processing of the user’s query. The av-
erage time to preprocess a 3-D model and generate its salient
features is 1 s. Even if not computationally very expensive, the
complexity of the preprocessing phase is not considered very
important since it is executed only once for each object.

Regarding the online partial matching procedure, the average
time to perform pairwise matching is 20 ms, which is and should
be sufficiently low so as to compensate for the inherent charac-
teristic of partial matching approaches in general that scale lin-
early with the number of the 3-D models of the database. This
value could be further decreased with parallel processing that
can be applied in the proposed hierarchical search scheme.

All experiments have been performed on an Intel Pentium IV
3.2 Ghz with 1 GB RAM.

VI. CONCLUSION

A novel method for partial 3-D shape search and retrieval
using as query a range image was proposed in the present paper.
The proposed method can retrieve objects similar to the query
range data with very satisfactory accuracy. Most promising fea-
tures of the method are: 1) it does not use a priori information
for registering the partial view with the complete 3-D model,
2) it does not impose limitations to the kind of models where it
can be applied, 3) it is based only on the salient features of the
3-D model, and d) multiview images can also be used for 3-D
matching by creating a range image from multiple views of an
object using disparity estimation and structure from motion ap-
proaches. Finally, the proposed method is seen to be robust in
the presence of noise and occlusion in the query range image.
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