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Summary

The early detection of potential malfunctions at process systems can signifi-
cantly reduce downtime and improve their overall operability. In that context,
this paper demonstrates the behavior and response, through a comparative anal-
ysis, of novel data-driven diagnosis methods for interdependent time series. The
proposed real-time slope statistic profile method utilizes a self-adaptive sliding
window based on a real-time classification technique of linear trend profiles
of both interdependent time series and internal condition so as to avoid mis-
detections. The calculation of the linear trend profile is based on a standard
parametric linear trend test, and the selection of possible incidents is based on
its two-level cross-checking. All possible combinations for the calculation of the
trend test and cross-checking are created to explore their efficiency. The pro-
posed methods are tested against real data sets from a chemical process system
of the Centre for Research and Technology Hellas/Chemical Process Energy and
Resources Institute derived from specific scenarios during nominal operating
conditions.
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1 INTRODUCTION

During the last decades, the term incident detection (or anomaly detection) in scientific literature refers to a problem
of finding patterns in data that do not conform to expected normal behavior. The importance of incident detection is
attributed to the fact that incidents in data translate to significant (and often critical) actionable information. Most of the
existing incident detection techniques confront only specific areas of a problem with different techniques, according to
their application domain and not in a generic form. In the literature, one can find many approaches on incident detec-
tion, such as artificial intelligence, classification,1-5 the clustering approach,6 and the statistical approach.7,8 The artificial
intelligence techniques applied in incident detection problems include neural networks (backpropagation, support vector
machines, and decision trees), fuzzy logic, and a combination of these two techniques.9

In time series analysis, incident detection is referred to as structural change. In the past years, the problem of structural
change(s) detection in time series has received a great deal of attention in areas such as meteorology and earth sciences,10,11

communication and social networks,1,12,13 applied economics,14,15 urban data,16 and chemical process,17 among others.
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Recently, incident detection has been an important and difficult issue of increasing interest also in econometrics and
statistics literature.18,19 Time series algorithms assume that the imported data normally follow a predictable pattern over
time, and they use time series models to predict normal conditions and detect incidents when imported measurements
deviate significantly from model outputs. Furthermore, in most of the aforementioned cases, a single-variable analysis is
performed where the incidents are related to a single time series, ignoring the effect that other variables might have by
potential interactions. This work examines that case of incident detection between two independent time series.

Overall, incident detection algorithms and methods may be grouped into two categories: automatic and nonautomatic.
Automatic algorithms are those that automatically trigger an incident alarm when data are received from a field of sensors
that satisfy certain predefined conditions. On the contrary, nonautomatic algorithms are those that are based on the
worker's reports and experience. A number of studies can be found that contain interesting comparisons between methods
and evaluations of algorithms for incident detection.20-25 It has to be mentioned that all of the aforementioned algorithms
and techniques are applied or modified in order to cover specific incident detection use cases.

Early malfunction detection is an important area in process engineering that deals with the timely detection and diagno-
sis of abnormal conditions of incidents (faults) in a process.26 The early notification and detection of a process malfunction
or a potential malfunction while the plant is in operating mode and in a controllable region can significantly prevent
abnormal and potentially unsafe event progression and reduce productivity loss. The malfunctions are related to faults,
which are defined as the deviation from an acceptable range of an observed variable or a calculated parameter related to a
process.27 In this work, the incident detection problem is considered in the context of monitoring of chemical process sys-
tems using time series related to critical areas, such as a chemical reactor. More specifically, the time series corresponds
to the behavior of a heating zone where a temperature controller maintains the temperature of the external zone to the
desired set point as defined by the operating conditions for each experiment. The heating zones are part of a chemical
process pilot plant that is designed, constructed, and operated by the Centre for Research and Technology Hellas/Chemical
Process Energy and Resources Institute (CERTH/CPERI). In our case, all detected incidents denote a potential malfunc-
tion of the heating zone. This work is essentially an extension of the works of Vafeiadis et al28,29 on the utilization of the
modified versions of the slope statistic profile, denoted hereafter as SSP, methodology on two interdependent time series
produced at the same time and provides two more modified versions along with a final comparison among them.

The novelty of this comparative work is that it provides the ability to infer the presence of an incident in real time soon
after the incident actually occurs (early malfunction diagnosis) of industrial time series based on the simultaneous calcu-
lation and analysis of linear trend profiles of two interdependent time series, utilizing an overlapping sliding data window.
Early malfunction diagnosis is achieved with the use of a modified approach of the SSP for real-time estimation, with its
basic feature being the ability to resize autonomously the size of the sliding window (utilizing real-time classification)
based on the information acquired in real time from the linear trend profiles of the interdependent time series.

This paper is organized as follows. In Section 2, the incident detection problem is defined. A brief description of the
existing versions of the real-time slope statistic profile, denoted hereafter as RTSSP, method is given in Section 3, whereas
the novel development of a self-adaptive sliding window and a common point condition (CPC) are given in Section 4. In
Section 5, a comparison is performed between the existing and newly developed versions of the RTSSP method, and in
Section 6, we draw our conclusions.

2 PROBLEM DEFINITION AND INCIDENT/MALFUNCTION DETECTION

In general, the categories of failures or malfunctions at a process can be originated by sensor failures, actuator failures,
or a controller malfunction.26 Although a number of different cases exist that can be used to derive the root cause of a
problem, in this work, the focus is toward the analysis of the response of control loops and, more specifically, temperature
control loops. In order to develop and test an early malfunction diagnosis mechanism, a pilot case is selected that deals
with two interdependent time series, which is a fact that reacts positively not only to the development of a modified
approach of the SSP but also to the autonomous decision of the sliding window size through a novel technique. The time
series are from the operation of a chemical process of CERTH/CPERI. The experimental data are gathered online and
are acquired by the local industrial automation system infrastructure, in order to be used for comparative analysis during
this work. More specifically, the behavior of a heating zone of a reactor is studied. The objective is to be able to detect as
soon as possible a potential malfunction while the reactor is in operation. The temperature conditions of the reactor are
maintained by a set of heating zones and are affected by the dynamically evolving exothermic or endothermic reactions
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FIGURE 1 The components of a typical heating zone of a chemical reactor. PID, proportional integral derivative; JE, heating resistance;
TE, thermocouple; TIC, controller; TY, solid-state relay

that take place during the reactor operation. Figure 1 shows the typical structure of a chemical reactor with heating zones
along with the analysis of the active measurement and control elements of an indicative heating zone. These elements
are the thermocouple (TE) that measures the temperature, the controller (TIC) that calculated the appropriate action to
reach or maintain the desired temperature, the solid-state relay (TY) that implements the control action received by the
controller, and the heating resistance (JE).

For each heating zone, there is a measured input variable, ie, the temperature (hereafter denoted as TemperatureTS),
and an output variable, ie, the percentage of operation of the heating resistance. In order to maintain the heating zone
to a desired temperature set point, a controller is used (hereafter denoted as ControllerTS) that defines the percentage of
operation (0%-100%) of the heating resistance according to the measured temperature. A proportional-integral-derivative
controller is used as a control loop feedback mechanism that continuously calculates an error value as the difference
between the measured temperature and the desired set point. The controller attempts to minimize the error over time by
the adjustment of the control variable, which is the power supplied to the heating element. These two signals constitute
the tuple of the time series that will be fed to the proposed method. Overall, the relationship of these interdependent time
series is that when one decreases (TemperatureTS), the other increases (ControllerTS) (see Figure 1) when the set point
is higher than the measured temperature, and vice versa. In case the temperature steadily decreases while the controller
output increases, this indicates that a potential malfunction might be present, which can be attributed to various reasons
such as the short circuit of the heating resistance or a burned fuse at the electrical cabinet. When an incident like this
occurs, the operation of the process unit needs to stop for maintenance actions to take place and restore the fault. Overall,
this type of downtime can affect not only the evolution of a single experiment but also the overall unit as it needs to reach
a shutdown state where its temperature is close to environmental conditions and after the fault correction to be heated
up again to reach the appropriate temperature conditions. The entire procedure is translated into wasted time, material,
and resources.

The interdependency of both time series is also verified by Pearson's correlation, where the calculated correlation
shows that TemperatureTS and ControllerTS are highly anticorrelated time series when an incident occurs.29 Thus, the
case where TemperatureTS output decreases while ControllerTS output increases indicates that a malfunction might be
present. The incident that the proposed method will target to detect is the aforementioned case. Figure 2 shows two data
sets, namely, DS1 (Figure 2A) and DS2 (Figure 2B), which represent the controller output and the temperature during
a 24-hour period used for the comparison and evaluation of all modified versions of the SSP. The data sets are from dif-
ferent heating zones from a continuous chemical process unit of pilot scale, which is used for the evaluation of chemical
catalysts. These indicative data sets are selected because they present two different scenarios of failure, with different
responses of the temperature profile. Despite the difference on failure scenarios, one can see the steady state of the con-
troller and temperature time series, in the interval of [0, 580] minutes in Figure 2A and in the interval of [0, 130] minutes
in Figure 2B. This steady-state form is similar to all tested data sets.

It can be seen that the operating temperature is different between the two cases. In the first case (DS1), the temperature
reaches a new steady-state level after the malfunction as it is affected by its adjacent heating zones; thus, it takes longer
to lose its heat compared to the case of DS2, where it is observed that a rapid decrease in temperature occurs.



4 VAFEIADIS ET AL.

FIGURE 2 TemperatureTS (black solid line) and ControllerTS (cyan solid line) time series during an experiment of the chemical reactor in
the premises of the Centre for Research and Technology Hellas/Chemical Process Energy and Resources Institute when an incident occurs.
Tested data sets are (A) DS1 and (B) DS2

3 MODIFIED SSP FOR REAL-TIME INCIDENT DETECTION

An SSP method for real-time incident detection, based on real-time classification of linear trend profiles, has been previ-
ously studied, targeting an automatic and parameter-free approach so as to provide more accurate and significant incident
detections.28,29 This work extends the aforementioned method to a more comprehensive and integrated approach. A brief
description of the modified versions of the SSP method is given.

The SSP method estimates the change point (or breakpoint T) of the linear trend in a time series from the profile of a
linear trend test statistic, computed on consecutive overlapping sliding data windows along the time series. The sliding
window is a technique that processes the most recent data points of the time series and moves s steps along the time axis
as new measurements arrive. This technique has the advantage that it does not need to store the never-ending data stream
of data. Also, it implies that only the measurements located within the current window can be considered for further
data analysis. The selected sliding window step is one, so as not to lose any information regarding changes in the linear
trend of the tested time series. In this work, we adapt two test statistics for linear trend estimation that gives high test
power: one for the correlated residual and another for both correlated and white noise residuals.27 In the SSP approach,
a first candidate breakpoint T is the time point at which the calculated linear trend profile tc crosses the threshold line
of rejection of the null hypothesis of no trend at ±tw−2,1− a

2
, where a is the significance level, w is the size of the sliding

window, and tc follows the Student distribution with w − 2 degrees of freedom (tc ∼ tw − 2).30 The search of the change
point is confined in a time interval corresponding to the profile segment bounded by tw−2,1−a1∕2 and tw−2,1−a2∕2 for positive
trends and by −ttw−2,1−a2∕2 and −tw−2,1−a1∕2 for negative trends, where the significance levels a1 and a2 for the two-side
test are 0.20 and 0.05, respectively.7 The selection of two significant levels is based on the assumption that there are not
sudden and abrupt changes in natural variations, which means that more time and information is needed for a time
series to pass from a zero trend to trend status, and vice versa. Thus, the existence of two significant levels describes the
transition between these situations. Hereafter, segment (tw−2,1−a1∕2, tw−2,1−a2∕2) will be denoted as the upper-bound (UB)
segment and tw−2,1−a1∕2, tw−2,1−a2∕2 as UB1 and UB2, respectively, and segment (−tw−2,1−a2∕2, −tw−2,1−a1∕2) will be denoted
as the lower-bound (LB) segment and −tw−2,1−a1∕2 , −tw−2,1−a2∕2 as LB1 and LB2, respectively. The computational study by
Vafeiadis et al7 showed that in case of a time series of known size, the sliding window should be long enough (larger than
30% of the time series length), so that the estimation of other spurious onsets occurring at small time scales is avoided. In
real time, the size of the sliding window is self-adapted as proposed in the works of Vafeiadis et al.28,29

At this point, a brief description of the linear trend test statistic that is used in the SSP method is given. In the following,
the parametric linear trend test for a sliding window of size w on the time series Yt, t = 1, … , n, is presented. Thus, for
the first window [Y1, … , Yw]T, the least squares estimator for the trend parameter 𝛽 is obtained as

𝛽 =
∑w

t=1(t − t )Yt∑w
t=1 (t − t )2

, (1)
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where t is the average time. The standard error of 𝛽 can be estimated with several approaches. Here, the best two
approaches are presented: the autocovariance and the power spectrum approach. In the autocovariance approach, under
the assumption of independent and normally distributed residuals 𝜀t with zero mean and variance 𝜎2, the estimated
standard error of 𝛽 is calculated by

s1(𝛽) =
{

c
[
𝛾0 + 2c

∑w

s=2

∑s−1

t=1
(t − t)(s − t)𝛾s−t

]}1∕2
, (2)

where c = 12
w(w2−1)

. The estimated residuals are given by 𝜀̂t = Yt − â − 𝛽t, where â = Yt − 𝛽t and Yt is the average of the
time series. In (2), 𝛾k is replaced with the respective estimate of 𝛾̂𝜅 , except at k = 0 where w𝛾̂0∕(w − 2) is used in order
to estimate 𝛾0.30 Thus, the estimated standard error of 𝛽, s1(𝛽 ) is derived. In the power spectrum approach, the estimated
standard error of 𝛽 is calculated by

s2(𝛽) =
[

2∫
0.5

0
W(𝑓 )S(𝑓 )

]1∕2

, (3)

where W(𝑓 ) = ||∑w
t=1 bte−2𝜋if ||2 with bt = t−t∑w

t=1 (t−t)2
and S( f ) denotes the sample power spectrum of 𝜀t given as S(𝑓 ) =

1
2𝜋
(𝛾̂0 + 2

∑w−1
𝜅=1 𝛾̂𝜅 cos(2𝜋𝑓k)). 𝛾̂𝜅 denotes the estimate of the kth-order autocovariance of 𝜀t, given as 𝛾̂𝜅 = 1

w

∑w−k
t=1 𝜀̂t+k𝜀̂t

for k > 0 and 𝛾̂0 = 1
w−2

∑w
t=1 𝜀̂

2
t for k = 0. Thus, the estimated standard error of 𝛽, s2(𝛽 ) is derived.

The t-statistic for the parametric linear trend test is t𝑐𝑚 = 𝛽

sm(𝛽 )
, where m = 1 is the autocovariance approach and m = 2

is the power spectrum approach. Both approaches of standard error estimation have different characteristics that affect
the t-statistic. The autocovariance approach is more sensitive to small changes in the linear trend, and that makes the

tc1 =
̂̂
𝛽

s1(𝛽 )
test statistic more condescending while the power spectrum approach gives high test power to test statistic

tc2 = 𝛽

s2(𝛽 )
compared to other tests for both correlated and white noise residuals.

The SSP method is initially proposed for the time series of known size, and the crucial parameter of sliding window
size is decided according to this time series size. However, in cases where the SSP method has to apply in real time, the
original version is not practical due to the fact that the selection of the proper size of the sliding window is a challenging
decision, since the form of ControllerTS and TemperatureTS varies. The solution that Vafeiadis et al have proposed28 is
the RTSSP, which addresses the issue of the sliding window size selection, among others.

Two different versions of the RTSSP method have been developed based on the computation of the standard error of
the linear trend parameter and the setup of segments. Both versions have embedded a real-time classification technique
for the decision of the sliding window size to be automatic and self-adaptive. As mentioned above, tc is computed on
overlapping data windows of size w with sliding step one. Thus, the RTSSP curve ({RTSSPi} for i = w, w + 1, w + 2, … )
for the entire time series created so far is obtained. In the first version, denoted hereafter as RTSSPv1, the computation
of the standard error estimator of the trend parameter is s1(𝛽 ), and the possible incidents T are detected when the linear
trend profiles of the selected time series cross only UB1 and LB1.28 In the second version, denoted hereafter as RTSSPv2,
the computation of the standard error estimator of the trend parameter is s2(𝛽 ), and the possible incidents T are detected
strictly inside the upper and lower segments.29

4 SELF-ADAPTIVE SLIDING WINDOW—CPC

Despite the standard error calculation of the trend parameter and the different approaches in the cross-checking of linear
trend profiles, both versions RTSSPv1 and RTSSPv2 use real-time classification techniques for the automatic adaptation
of the size of the sliding window and a condition for the proper detection of incidents. Thus, the sliding window has the
ability to dynamically change its size, between predefined minimum and maximum limits, for a better online monitoring
process.

Linear trend profiles {RTSSPi} are both calculated for time series and classified in real time according to two differ-
ent linear trend scenarios, suitably adjusted to the problem of estimation of abnormal temperature behavior incidents.
Scenario 1 presents the case where the ControllerTS output time series moves in the fields of no trend and negative
trend and the expectation of TemperatureTS time series to move in the fields of no trend and positive trend, respectively.
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TABLE 1 Confusion matrices for Scenarios 1 and 2 of the linear trend profiles {RTSSPi} of ControllerTS and TemperatureTS for versions
RTSSPv1 (a, b) and RTSSPv2 (c, d)

(a) Scenario 1 (Negative TemperatureTS {RTSSPi} (b) Scenario 2 (Positive TemperatureTS {RTSSPi}
Trend for ControllerTS) tc ∈ (LB1, UB1) tc > UB1 Trend for ControllerTS) tc ∈ (LB1, UB1) tc < LB1

ControllerTS tc ∈ (LB1, UB1) TP FN ControllerTS tc ∈ (LB1, UB1) TP FN
{RTSSPi} tc < LB1 FP TN {RTSSPi} tc > UB1 FP TN

(c) Scenario 1 (Negative TemperatureTS {RTSSPi} (d) Scenario 2 (Positive Trend TemperatureTS {RTSSPi}
Trend for ControllerTS) tc ∈ (LB1, UB1) tc ∈ (UB1, UB2) for ControllerTS) tc ∈ (LB1, UB1) tc ∈ (UB1, UB2)

ControllerTS tc ∈ (LB1, UB1) TP FN ControllerTS tc ∈ (LB1, UB1) TP FN
{RTSSPi} tc ∈ (LB2, LB1) FP TN {RTSSPi} tc ∈ (UB1, UB2) FP TN

Abbreviations: FN, false negative; FP, false positive; LB, lower bound; RTSSP, real-time slope statistic profile; TN, true negative; TP, true positive; UB, upper bound.

TABLE 2 Intervals for FM1 and FM2 in which the sliding
window size increases or decreases by C or remains steady

Conditions Sliding Window w

FM1, FM2 ∈ [FMB, FMB + 3%) Steady
FM1, FM2 ≥ FMB + 3% Decrease by c
FM1, FM2 < FMB Increase by c

Abbreviations: FM, F-measure; FMB, F-measure bound.

On the other hand, Scenario 2 presents the exact opposite scenario compared to Scenario 1, with ControllerTS series to
move in the fields on no trend and positive trend and the expectation of TemperatureTS time series to move in the fields of
no trend and negative trend, respectively. In (a) and (b) of Table 1, the confusion matrices are given for Scenarios 1 and 2
of version RTSSPv1, whereas (c) and (d) of Table 1 give the confusion matrices for Scenarios 1 and 2 of version RTSSPv2,
respectively.

The measures of precision, recall, accuracy, and F-measure are calculated from the context of the confusion matrix,
shown in Table 1. True positive and false positive cases are denoted as TP and FP, respectively, whereas true negative and
false negative cases are denoted as TN and FN. The instances of the confusion matrices shown in Table 1 are set in order to
include both cases of positive and negative linear trends. Precision and recall cannot describe the efficiency of the method
for selected parameters since a good performance in one of those indices does not necessarily imply a good performance
in the other. For this reason, the F-measure (FM), a popular combination of precision and recall, is commonly used as a
single metric for performance evaluation. The F-measure is defined as the harmonic mean of precision and recall.

Subsequently and despite the version of RTSSP, the size of w is calculated according to the real-time computed
F-measure values of Scenarios 1 and 2, hereafter denoted as FM1 and FM2. The size of w will be changed by c time ele-
ments as follows: let us assume the existence of a bound in the F-measure value (FMB as percent). The existence of this
bound aims firstly to test the effectiveness of the RTSSP method in extreme conditions of accuracy and secondly to provide
a bound for the self-adaptation of the sliding window size. Table 2 explains the values of the adaptive window, based on
the calculated F-measures and FMB. The value FMB + 3% is the allowed range where the sliding window changes. The
+3% limit of the FMB values for the sliding window to be changed is selected after a series of simulations performed for
several limits ranging from 3% to 10%, based on simulations performed for FMB (see Vafeiadis et al28,29). The minimum
and maximum values of the sliding window size need to be preset.

Furthermore, since the classification of the linear trend profiles of both time series is performed online, the adaptation
of the sliding window size is performed in real time, repeatedly every 100 time points. From the exhaustive simulations
made in the works of Vafeiadis et al28,29 for all internal parameters (sliding window size, F-measure bound, sliding window
change, and maximum sliding window), simulation results show that the size of FMB can be set at 95% and the parameter
of change of the sliding window can be set at c = 20 elements. As for the minimum and maximum values of sliding
window size, those can be set to 40 and 120 elements, respectively. For all comparison tests that follow, the core values of
methods' parameters are predefined according to prior simulation results and are indicative. On the other hand, the end
user is allowed to experiment on parameter combinations in order to achieve the desired performance of the method on
early malfunction diagnosis.

For both versions RTSSPv1 and RTSSPv2, potential incidents in the ControllerTS and TemperatureTS time series are
chosen to be all the time points that are placed outside the UB1 or LB1 threshold or that are placed in the lower or upper
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FIGURE 3 (A) Linear trend profiles {RTSSPi} of the ControllerTS and TemperatureTS time series and possible incidents T. (B) Detected
incidents T after the application of a common point condition. RTSSP, real-time slope statistic profile

segments. This approach of the incident detection problem can result sometimes in the detection of too many incidents
during the process ({RTSSPi} profiles of ControllerTS and TemperatureTS cross thresholds many times asynchronously),
either on ControllerTS or TemperatureTS time series or for both of them. Thus, in order to avoid the misdetection of
incidents (some of them may have no meaning at all), we impose a condition, denoted hereafter as CPC, where only the
time points where the linear trend profiles of ControllerTS and TemperatureTS have crossed simultaneously opposite
thresholds will be marked as incidents. Figure 3 shows an example of the application of CPC on the linear trend profiles
of ControllerTS and TemperatureTS on data set DS1.

FIGURE 4 Linear trend profiles {RTSSPi} of ControllerTS and TemperatureTS for data set DS1 for all four versions (A) RTSSPv1,
(B) RTSSPv2, (C) RTSSPv3, and (D) RTSSPv4 and their possible incidents T. RTSSP, real-time slope statistic profile
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It is observed that the application of the CPC on the linear trend profiles of the tested time series has the ability to distin-
guish the time points that fit the most to the test scenario among all possible incidents T. The application of these additions
(self-adaptive sliding window and CPC) to the structure of the RTSSP method has, as a result, increased robustness and
effectiveness for the early malfunction diagnosis problem.

5 COMPARATIVE STUDY

In order to further explore the capabilities of the RTSSP method and have a complete picture about its response, along
with versions RTSSPv1 and RTSSPv2, an extended version is proposed (RTSSPv3). At this new variant (RTSSPv3), the
computation of the standard error estimator of the trend parameter is s1(𝛽 ), and the possible incidents T are detected
strictly inside the upper and lower segments. Another version (RTSSPv4) is also considered where the computation of
the standard error estimator of the trend parameter is s2(𝛽 ) , and the possible incidents T are detected when the linear
trend profiles of the selected time series cross only UB1 and LB1. All the potential combinations of the standard error
estimator and cross-checking of thresholds are described below.

Combination 1—standard error estimator: s1(𝛽 ) bounds: (LB1, UB2) – RTSSPv1
Combination 2—standard error estimator: s2(𝛽 ) bounds: (UB1, UB2), (LB1, LB2) – RTSSPv2
Combination 3—standard error estimator: s1(𝛽 ) bounds: (UB1, UB2), (LB1, LB2) – RTSSPv3
Combination 4—standard error estimator: s2(𝛽 ) bounds: (LB1, UB2) – RTSSPv4

Figure 4 shows the linear trend profiles of the ControllerTS and TemperatureTS time series, along with the possible inci-
dents T according to all combinations of RTSSP described above, for the DS1 data set. Versions RTSSPv1 (see Figure 4A)
and RTSSPv3 (see Figure 4C) provide a higher number of potential incidents T than do versions RTSSPv2 (see Figure 4B)

FIGURE 5 Possible incidents T on ControllerTS and TemperatureTS for data set DS1 for all four versions (A) RTSSPv1, (B) RTSSPv2,
(C) RTSSPv3, and (D) RTSSPv4. LSC and USC markers denote the lower and the upper segment crossing, respectively, for the controller time
series. The same holds for LST and UST for the temperature time series
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FIGURE 6 Detected incidents T on ControllerTS and TemperatureTS after the application of a common point condition for data set DS1
for all four versions (A) RTSSPv1, (B) RTSSPv2, (C) RTSSPv3, and (D) RTSSPv4. LSC and USC markers denote the lower and the upper
segment crossing, respectively, for the controller time series. The same holds for LST and UST for the temperature time series

and RTSSPv4 (see Figure 4D) on the part of the time series before the occurrence of a major incident. This happens because
the standard error s1(𝛽) is more sensitive on the existence of a linear trend than s2(𝛽).

Figure 5 shows the potential incidents T for all four versions according to the RTSSP method suggestions for DS1,
whereas Figure 6 shows the detected incidents T after the application of the CPC for the specified data set. In Figure 5,
the potential incidents are the result of the RTSSP crossing in both the upper and lower segments, for the ControllerTS
and TemperatureTS time series, which means that the time points where temperature increases and controller decreases
are also included. In other words, Figure 5 provides a general view of all linear trend changes (upward and downward)
on the tested time series, ControllerTS and TemperatureTS. From Figure 6, it is clear that the application of the CPC is
imperative, as it well targets the problem (ControllerTS increases and TemperatureTS decreases). One can see that all
versions detect incidents very close to the actual ones, with versions RTSSPv2 (see Figure 6B) and RTSSPv4 (see Figure 6D)
to provide very accurate early malfunction diagnosis. On the other hand, version RTSSPv3 (see Figure 6C) provides some
detection before the actual one, which could be considered warnings of a future malfunction, whereas version RTSSPv1
(see Figure 6A) indicates a vast number of time points where temperature decreases before the actual malfunction.

Figure 7 shows the linear trend profiles of the ControllerTS and TemperatureTS time series, along with the possible
incidents T according to all combinations of the RTSSP described above, for the DS2 data set, whereas Figure 8 shows the
potential incidents T for all four versions according to the RTSSP method suggestions for the specified data set. Figure 9
shows the detected incidents T after the application of the CPC for the DS2 data set. The RTSSPv2 (see Figure 9B) and
RTSSPv4 (see Figure 9D) versions provide an accurate enough early detection, in terms of time, on TemperatureTS,
whereas RTSSPv1 (see Figure 9A) detects incidents more closely (before and after) to the actual malfunction compared
to the other versions.

From all of the results described above, it is clear that there is no major difference between versions RTSSPv2 and
RTSSPv4, as the detected incidents from RTSSPv4 include those detected from RTSSPv2 while the rest are pointed
after them. On the other hand, the issue with RTSSPv1 is the detection of too many time points as incidents compared
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FIGURE 7 Linear trend profiles {RTSSPi} of ControllerTS and TemperatureTS for data set DS2 for all four versions (A) RTSSPv1,
(B) RTSSPv2, (C) RTSSPv3, and (D) RTSSPv4 and their possible incidents T. RTSSP, real-time slope statistic profile

FIGURE 8 Possible incidents T on ControllerTS and TemperatureTS for data set DS2 for all four versions (A) RTSSPv1, (B) RTSSPv2,
(C) RTSSPv3, and (D) RTSSPv4. LSC and USC markers denote the lower and the upper segment crossing, respectively, for the controller
time series. The same holds for LST and UST for the temperature time series
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FIGURE 9 Detected incidents T on ControllerTS and TemperatureTS after the application of a common point condition for data set DS2
for all four versions (A) RTSSPv1, (B) RTSSPv2, (C) RTSSPv3, and (D) RTSSPv4. LSC and USC markers denote the lower and the upper
segment crossing, respectively, for the controller time series. The same holds for LST and UST for the temperature time series

to RTSSPv3, but it has the benefit that at all tested cases, it can provide some incident detection closer to the actual
malfunction compared to RTSSPv3.

To summarize, versions RTSSPv2 and RTSSPv4 are very reliable and have adequate accuracy in their response in order
to provide diagnosis notification in case of temperature dropping. On the other hand, versions RTSSPv1 and RTSSPv3
can also provide accurate early malfunction diagnosis, especially version RTSSPv1, but both are more sensitive on linear
trend variations, a fact that has, as a result, these variations to be pointed as incidents. This is not necessarily a negative
fact because these small variations in the linear trend can be forerunners that a malfunction is to be held in the near
future. Thus, depending on the criticality of the area, which is observed, or the criticality of the experiment, the process
operator or process engineer can opt to have either many notifications with an increased potential of false warnings or a
more ridged method such that only the incidents with high potential will appear.

6 CONCLUSIONS

Generally, the use of linear trend analysis with real-time classification provides a robust signal processing technique on
the real-time incident detection problem. These aforementioned scientific fields and techniques synergistically coexist in
the method of RTSSP. The use case scenario for early malfunction diagnosis that is tested focuses on the detection of the
time point where the temperature time series drops along with the simultaneous detection of the increase of the controller
time series (temperature and controller time series are inversely proportional). The comparative analysis between the four
versions of the RTSSP method has distinguished two of them as the most appropriate for the use case scenario. The most
suitable versions for the specified incident detection problem are RTSSPv1 (standard error estimator s1(𝛽) with bounds
at (LB1, UB2)) and RTSSPv2 (standard error estimator s2(𝛽) with double bounds at (UB1, UB2), (LB1, LB2)). The choice
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between these two versions of the RTSSP method, along with the selection of core parameter values, can be done by the
end user according to the needs and the nature of the problem.

The method of RTSSP can be easily modified and adapted to three other potential use cases: (1) both temperature
and controller time series decrease (shutdown state), (2) both temperature and controller time series increase (startup or
condition change state), and (3) temperature time series increases and controller time series decreases (reaction state).
The RTSSP method is also tested on these use cases with some very good preliminary results. As a future extension of
this work, a generalized version including these cases will be considered as extra scenarios for the detection of specific
operating states of the chemical process.
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