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Abstract—Recently, there has been increasing interest for easy
and reliable generation of 3D animated models facilitating sev-
eral real-time applications (like immersive tele-presence, motion
capture and gaming). In most of these applications, the recon-
struction of soft body animations is based on time-varying point
clouds which are non-uniformly sampled and highly incomplete.
To overcome these significantly challenging imperfections without
any additional information, first we introduce a novel reconstruc-
tion technique based on rank minimization theory, which can
result into a unique solution to the otherwise ill-posed problem.
This technique is further extended to exploit the spatial coherence
which usually characterizes the soft-body animations. Based
on the developed tools, we propose a distributed consolidation
technique where the reconstruction is performed by working
simultaneously on several group of frames. To achieve this, we
impose temporal coherence between successive frame clusters by
constraining the rank minimization problem. We validate the
proposed techniques via experimental evaluation under different
configurations and animated models, where we show that the
high-frequency details of the models can be adequately recovered
from a highly incomplete geometry dataset.

Index Terms—incomplete dynamic point clouds, point cloud
reconstruction, animated models, matrix completion, distributed
optimization

I. INTRODUCTION

NOWADAYS, a considerably increasing attention has
been attracted to geometry reconstruction of real-world

scenes. Several techniques have been developed for the ac-
quisition, e.g. motion compensated structured light [1], active
space-time stereo [2], passive multi-view stereo [3]. Although
the resolution and accuracy of the new generation image
sensors and scanning techniques are constantly improving, due
to the imperfect scanning conditions the acquired point data
are often corrupted by severe noise, outliers, high variations
in point density, misalignment and missing data. All these
imperfections pose dramatic challenges to the reconstruction
of dynamic shapes, of which one of the most significant is
to deal with the multiple reflections and the object occlusion
which usually result into highly-incomplete data.

The output of such an acquisition process is a sequence of
unstructured point clouds, which is one of the most primitive
and fundamental manifold representation. The enhancement
process of these low-quality point cloud data is usually called
consolidation [4]. Consolidation techniques [5]–[7] work on
the captured data and output a new point set which more
faithfully represents the underlying shape. They are considered
as an essential pre-processing step before other point cloud
operations (e.g., surface reconstruction, normal estimation),

since improvements of the point cloud quality will have a
major impact into the quality of the subsequent operations.
Specifically, decoupling these processes can effectively avoid
premature and erroneous decisions.

In this work, we consider the problem of dynamic point
reconstruction given only a small number of geometry data,
which have been sampled non-uniformly from the entire shape.
Usually, the process of the recovery of the missing data
requires some additional information, e.g., normals or scanner
information, template models. As far as we know, there are
very few techniques in the area that deal with the problem
of missing data under a generic framework [8]. This is a
consequence of the fact that the point cloud reconstruction
problem can be very ill-posed when prior information is not
being provided, and thus, an infinite number of surfaces can
pass through (or near) a given set of data points.

Recently, a new signal processing framework termed as
matrix completion (MC) [9] has been extensively used with
great success in several applications. MC techniques aim to
recover the missing entries of a matrix by minimizing its rank
via the solution of an optimization problem [10]. The rank
minimization problem [11] corresponds to the task of finding
the simplest model that fit to the given data. One of the strong
aspects of MC theory is the provided universal performance
guarantees, which state that the missing information can be
exactly recovered provided that the incomplete matrix is low-
rank and that a lower bound for the known entries is satisfied.
MC has been successfully applied to several computer graphics
and vision problems, such as the recovery of occluded faces
[12], the face image alignment [13], and the fusion of point
clouds from multiview images of the same object [14].

In computer graphics, the modeling of the geometry of
dynamic scenes is obtained via animation meshes. When the
sequences have fixed connectivity but the vertices’ positions
vary over time, then the sequences of meshes exhibit temporal
coherence, apart from the spatial [15]. This spatio-temporal
coherence of the meshes indicate that the underlying data
reside on or near a low-dimensional subspace in a higher-
dimensional space. In matrix form representation, the ani-
mation matrix can be constructed by stacking together the
3D frames of the static point clouds as row vectors. The
resulting matrix can be accurately represented by keeping only
a subset of the principal components, since it has a low-
rank property. However, when the scanning operation results
into missing point positions, outliers and noise, several entries
of this matrix can be zero or erroneous, thus the computed
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principal components may contain severe errors. In this case,
matrix completion is a viable reconstruction solution for robust
recovery of the missing geometry data.

A. Related work

In this subsection we provide a brief overview of related
work in the recovery of the geometry for static and time-
varying meshes.

Surface reconstruction: Deriving a new point set from
a given point cloud can also be considered in the context
of defining point set surfaces. Conventionally, the area of
surface reconstruction has been categorized in combinatorial
methods, e.g, Delaunay triangulation [16] and implicit meth-
ods [17]. The Delaunay methods reconstruct a triangulated
surface providing guarantees in the geometric and sometimes
topological quality of the reconstruction. However, if the input
points are non-uniformly distributed or incomplete, they do not
work well. On the other hand, implicit techniques construct
indicator functions for the underlying surface and perform
isosurfacing to generate a mesh. They are more suitable for
data that are noisy, incomplete or non-uniformly distributed.
Recently, a unified framework has been proposed which jointly
optimizes geometry and connectivity for surface reconstruction
[18]. However, both the aforementioned approaches either
perform well provided that the sampling of the input surface
is sufficiently dense, or may require the estimation of the
normals, the construction of the level set function and iso-
surfacing.

Static point cloud reconstruction: A huge number of
prior works has investigated the problem of completion in
static geometries, resulting in excellent filled static meshes.
In [19] the least-squares meshes (LSM) algorithm has been
proposed where the geometry of the mesh is reconstructed by
solving a sparse linear system given only a small number of
control points. However, the direct application of LSM to every
frame separately is usually causing incorrect topologies and
temporally incoherent surfaces. Another common approach
to produce a temporally consistent dynamic mesh is to use
a template prior [20]. While the general animation can be
captured adequately, geometric details are limited to those
in the template. Hence, the deformation of a generic or a
user specified template fail in modeling fine-scale dynamics
that could be captured by exploiting the embedding low
dimensional structure that exist in the deformable animated
models.

Animation mesh reconstruction: A large number of ex-
isting approaches for animation reconstruction are based on a
priori knowledge, which is represented by a template model.
This template model is either provided by the user [21] or is
being reconstructed by the data [22]. Specifically, in [22] a
sequence of point clouds sampled at different time instances
are used as input. The proposed approach automatically as-
sembles them to a common shape that best fits all of the input
data frames, without requiring prior knowledge of the template
model. In [23], a method for the automatic reconstruction of
spatial and temporal coherent animated meshes from raw real-
time high resolution scanner data.

PCA reconstruction: Completion of missing data based
on principal components analysis (PCA) approaches has been
extensively used in several applications, e.g., for reconstructing
an image of a face from a few pixels. However, there are
very few published works concerning the case of 3D surface
reconstruction, [24], while the majority of the works related
with PCA of the point cloud are tackling mesh compression
[25], [26].

B. Overview and contributions

In this work, we address the highly challenging problem
completing the vertex positions missing from a time-varying
point cloud describing an arbitrary shape by developing a
consolidation framework based on rank minimization theory.
Specifically, first we introduce a novel, geometry-myopic
reconstruction technique based on matrix completion theory,
which is able to provide a unique solution to the otherwise ill-
posed problem. This technique is extended in order to exploit
the spatial coherence of the geometry data by implicitly forc-
ing row and column proximities. Building on this framework,
a novel distributed technique for the reconstruction of massive
data has been proposed, where the computational burden can
be distributed over a network of interconnected machines via
a light communication protocol.

It is important to note that the proposed framework does
not depend on previous works in animation reconstruction
and consolidation, thus develops novel geometry processing
techniques using modern optimization tools. It can be con-
sidered as a part of a surface reconstruction pipeline, which
would otherwise fail to recover the animation mesh due to the
missing data and the lack of any prior information. To the best
of our knowledge, matrix completion algorithms have never
been applied to the animation reconstruction problem, despite
their wide success on a large range of computer graphics and
vision applications. Our motivation can be justified by the
low-rank property of the animation matrix, which permits the
employment of matrix completion techniques.

In summary, the main contributions of this work are the
following:

• We describe a generic reconstruction technique based on
rank minimization for the recovery of the missing data
of dynamic point clouds. This technique does not use
any prior information concerning the connectivity of the
meshes.

• We extend the proposed technique exploiting the spatial
coherence which usually characterizes the soft-body an-
imations, which is captured via a Laplacian matrix. We
prove that this extended framework is a generalization of
the well-known least-square meshes (LSM [19]) for the
reconstruction of dynamic point clouds.

• A practical scenario where the Laplacian matrix is un-
known has been also considered. In order to recover the
connectivity of the soft-rigid models in the case of highly-
incomplete geometry data, we propose a robust approach
based on the average point cloud.

• We introduce a novel distributed consolidation technique
where the reconstruction is divided and performed in
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TABLE I
SUMMARY OF NOTATION.

a,a and A Scalar, vector and matrix variables
AT and AH Matrix transpose and Hermitian transpose

[A]i,j Matrix element at the i-th row and j-th column
M and M̂ Real and reconstructed animation matrix

L Laplacian matrix
IN the N ×N identity matrix

IN×K the N ×K identity matrix
0N×K the N ×K matrix with zeros

Ω Set containing matrix positions of observed vertices
EΩ Matrix containing 1 at positions ∈ Ω, 0 elsewhere
E An all ones matrix

� · �∗, � · �F Nuclear and Frobenius norms of matrix
◦ Element-wise (Hadamard) matrix product
⊗ Kronecker product

�A,B� Inner product of two matrices equal to trace(AHB)
vec(A) Vectorization of matrix A

unvec(A) The inverse operation of vec(·)
diag(a) Diagonal matrix with vector a on the diagonal

SVTt Singular Value Thresholding with threshold t
L(X,Y,Z) Lagrangian with primal (X,Y) and dual (Z) variables

Vc,� Auxiliary variable for pairing neighbouring clusters c, �

successive parts of the dynamically generated animation
point cloud. To achieve this, the rank minimization prob-
lem is further extended by introducing constraints which
impose temporal coherence between successive group of
frames.

II. PRELIMINARIES:

A. Point-cloud reconstruction based on principal components
analysis

Subspace approximation techniques such as PCA have been
exploited with great success for the compression and recon-
struction of dynamic point clouds [25]–[27]. However, the
consolidation of the animation matrix, due to the low-quality
of the scanned data does not permit its utilization. In particular,
it is known that singular value decomposition (SVD) is not
robust to outlier noise and incomplete data. To support this,
let us first formulate the PCA-based point cloud reconstruction
technique. A summary of the notation used throughout the text
can be found in Table I.

We consider that for each frame f ∈ {1, . . . , F}, the xyz-
coordinates of N points are concatenated to a matrix,

Mf =




mf,x(1) . . .mf,x(N)
mf,y(1) . . .mf,y(N)
mf,z(1) . . .mf,z(N)


 ∈ R3×N . (1)

Stacking all the F frames, we construct the animation matrix
M =

�
MT

1 . . .MT
F

�T ∈ R3F×N . Let the SVD of this matrix
be written as

M = UΣVH (2)

where U ∈ C3F×3F and V ∈ CN×N are unitary matrices,
while Σ ∈ R3F×N diagonal matrix with the singular values
σi, i = 1, . . . ,min(3F,N), on the diagonal.

Due to the underlying spatio-temporal coherence which
typically exists in geometric animations [15], we can expect
that M can be adequately approximated by using fewer
components, i.e. by keeping only K < min(3F,N) principal

4.791e-03

0.0036

0.0024

0.0012

6.450e-05

Fig. 1. Left: The original mesh of the 39-th frame of the Handstand animation
model M. Middle: The PCA-based reconstruction M̂ using 10% of the
principal components. Right: Heatmap visualization of the normalized mean
square visual error (NMSVE) with maximum error equal to 4.79e−3.

components of M, thus the reconstructed animation matrix M̂
is defined as:

M ≈ M̂ = UΣ̂KVH (3)

where Σ̂K is the diagonal matrix with σ̂i = σi, for i =
1, . . . ,K and σ̂i = 0 for i = K + 1, . . . ,min(3F,N). For
instance, Fig. 1 shows the reconstruction result for the 39-th
frame of the Handstand animation model [28], where only the
10% of the principal components have been used, i.e., K = 50
with M ∈ R525×10002.

In general, an animation matrix M ∈ R3F×N described by
3FN values, it has only (2N−K)K degrees of freedom. This
fact can be revealed by counting parameters in the SVD (the
number of degrees of freedom associated with the description
of the singular values and of the left and right singular vectors).
This behaviour is standard for many models of soft-body
animation, thus, by imposing small rank to M̂ we usually
sacrifice a small level of the reconstruction quality.

B. Matrix completion

Matrix completion (MC) is a powerful tool that permits the
recovery of a matrix given only a subset of its entries, and it is
based on the low-rank property of the given matrix. Formally,
can be expressed as

min
X

rank(X) subject to EΩ ◦ (X− M̂) = 0 (4)

where M̂ ∈ R3F×N is the known matrix, Ω is the set with
the matrix indices of the non-zero entries, X is the unknown
matrix and rank(X) provides the rank of the matrix X. The
matrix EΩ is composed by ones and zeros, i.e.,

[EΩ]i,j =

�
1 if (i, j) ∈ Ω
0 otherwise (5)

In [29], it was proposed that the matrix completion problem (4)
results into the following equivalent unconstrained problem,

min
X

τ�X�∗ +
1

2
�X−Y�2F (6)

where τ ≥ 0 is a weighting parameter and Y = EΩ◦(X−M̂).
It has been proved that the solution of (6) is provided by
the singular-value-thresholding (SVT) operator SVTτ (Y) [29,
Theorem 2.1]. Specifically, let Y = UΣVH be the SVD of
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Fig. 2. An example of a highly-incomplete time-varying point cloud matrix.

a matrix Y, where U and V are matrices with orthonormal
columns. Then, the SVT operator is defined as

Dτ (Y) = Udiag
�
{(σi − τ)+}1≤i≤r

�
VH (7)

e.g., SVT applies the τ -thresholding rule to the singular values
of the operand matrix shrinking those below τ towards zero.

III. CONSOLIDATION BASED ON RANK MINIMIZATION

In this Section, we introduce an efficient solution to the
problem of point cloud reconstruction based on matrix com-
pletion techniques. Afterwards, we improve the reconstruction
quality by using geometry constraints provided by the Lapla-
cian matrix.

A. Exploitation of the underlying subspace properties

Our aim is to reconstruct the matrix M̂ given a reduced
number of 3D points and assuming that there is no other
information available, e.g., edge lengths, faces. Essentially, the
incomplete animation matrix has zeros at several positions, as
shown in Fig. 2 and can be formally expressed as the element-
wise (Hadamard) product EΩ◦M̂ of the animation matrix and
the matrix EΩ. Ω is the set with the matrix M̂ positions (i, j)
which are known and correspond to the known 3D points of
the point cloud, with M � |Ω| � 3F ·N known entries. Since
the matrix M̂ has rank equal to K � N , a rank minimization
problem [11], [29] can be formulated in order to retrieve the
missing data, i.e.,

min
X

�X�∗ subject to EΩ ◦ (X− M̂) = 0 (8)

where � · �∗ denotes the nuclear norm defined as �X�∗ =�min(3F,N)
i=1 σ2

X,i with σX,i denotes the i-th singular value
of X. Eq. (8) can be approximated by the following uncon-
strained optimization problem:

min
X

1

2
�EΩ ◦ (X− M̂)�2F + τ�X�∗ (9)

where the first term of (9) minimizes the error between the
known points and the recovered with � · �F denoting the
Frobenius norm of the matrix, while the term with the nuclear-
norm imposes low rank to the recovered matrix, depending
on the weighting parameter τ . Note that the choice for τ is

determined specifically for each animation matrix, thus it is
further investigated in Section V.

To proceed, let us introduce an auxiliary matrix Y ∈
R3F×N and formulate the optimization problem (9) as follows:

min
X

1

2
�EΩ ◦ (Y −M)�2F + τ�X�∗ s.t. X = Y. (10)

Although expression (10) seems to be more complex than
(9) due to the introduced constraint, essentially it permits the
employment of efficient algorithms, such as the Alternating
Method of Multipliers (ADMM) [10], due to the decomposed
cost function. In this work, the proposed techniques are based
on the ADMM, since it is a simple but powerful technique,
based on a solid theory with performance guarantees for its
convergence.

In order to solve (10), first let us express its augmented
Lagrangian form: L(X,Y,Z) = 1

2�EΩ ◦ (Y − M)�2F +
τ�X�∗+ ρ

2�X−Y�2F+�Z,X−Y�, where X,Y are the primal
variables while Z is the dual variable, and ρ > 0 is the penalty
parameter. Then, ADMM is composed by the following steps
which are executed for each iteration i = 1, . . . , imax:

X(i+ 1) = argmin
X

L(X,Y(i),Z(i)) (11)

Y(i+ 1) = argmin
Y

L(X(i+ 1),Y,Z(i)) (12)

Z(i+ 1) = Z(i) + ρ(X(i+ 1)−Y(i+ 1)). (13)

The minimization of (11) is equivalent with minX τ�X�∗ +
ρ
2�X − Y + ρ−1Z�2F , which is known that it can be solved
via the SVT operator, i.e.,

X(i+ 1) = SVTτ/ρ

�
Y(i)− ρ−1Z(i)

�
. (14)

In particular, the SVT is a non-linear function which applies
a soft-thresholding rule at level τ

ρ to the singular values of the
input matrix Y(i)− ρ−1Z(i).

Now, to obtain the optimality condition of (12) we set the
partial derivative of the augmented Lagrangian with respect to
Y equal to zero, i.e.,

∂

Y
L
�
X(i+ 1),Y,Z(i))

�
= 0

⇒ EΩ ◦ (Y − M̂)− ρ
�
X(i+ 1)−Y

�
− Z(i) = 0 (15)

which has solution expressed as follows (c.f. Appendix A):

Y(i+1) = unvec
�
A−1

�
EΩ ◦M̂+ρX(i+1)+Z(�)

��
(16)

where A = diag(vec(EΩ)) + ρI3F ·N . The ADMM-based
matrix completion technique for the reconstruction of the
partially known animation matrix EΩ ◦ M̂ is summarized in
Algorithm 1.

Convergence speed: It is known that when high qual-
ity reconstruction is required, the sequential implementation
ADMM may suffer from low convergence speed. To optimize
the speed of the convergence, we utilize the over-relaxation
technique [10], where the quantity ρX in (15) is replaced by
the following one: ρ(αX−(1−α)Y), where α is the relaxation
parameter.
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Algorithm 1 CoPC: Proposed consolidation algorithm for the
completion of the point cloud matrix
Input: Ω,EΩ ◦M, ρ, imax
Output: X(imax)

1: Computation of A via A = diag(vec(EΩ)) + ρI3F ·N
2: for i = 1, . . . , imax do
3: {Step 1: Soft-thresholding of the singular values}
4: X(i+ 1) ← SVTτ/ρ

�
Y(i)− ρ−1Z(i)

�
5: {Step 2: Computation of (15) with the over-relaxation}
6: V ← αX(i+ 1)− (1− α)Y(i)

�
7: b ← vec(EΩ ◦M+ ρV − Z(i))
8: Solve the system Ay = b
9: Y(i+ 1) ← unvec(y)

10: {Step 3: Update the dual variable}
11: Z(i+ 1) ← Z(i) + ρ(X(i+ 1)−Y(i+ 1))
12: end for

Computational Complexity:: The costly step of the Algo-
rithm 1 is the computation of the SVT operator to sparse
matrix Y(i)−ρ−1Z(i). In general, the complexity of the SVD
is O((3F )2N) per iteration for N > 3F [30, Chapter 8.6, pp
486-493]. However, the number of known entries is usually
much lower than the total number of entries of the matrix
M̂, hence its dominant singular values and singular vectors
can be efficiently computed via incomplete SVD methods,
e.g. Lanczos bidiagonalization algorithm, or via subspace
tracking techniques, thus the complexity can be reduced over
to O(NFM).

B. Incorporation of the spatial coherence

Spatial coherence can provide additional information about
the geometry of the 3D model, improving the reconstruction
quality. Thus, apart of the underlying structure of the data, the
proximity of the vertices can be incorporated into the problem
formulation. In the previous subsection, we have developed
Algorithm 1 as a generic approach for point cloud reconstruc-
tion. To incorporate the available geometry structure, here,
we introduce a graph-based matrix completion technique for
the reconstruction of time-varying point clouds, exploiting the
spatial coherence of the shapes.

The proximity of the vertex positions of a static point cloud
can be encoded by a graph, where an edge between two
graph vertices (where each one represents a different point
in the 3D space) denotes that these points are close in the
3D space. To be more specific, let us consider the graph
G = (V,E,W ) where V = {v1, . . . ,vN} is the vertex
set with each vertex represents a 3D point. E ⊆ V × V is
the edge set, where the edge eij connects the two adjacent
vertices vi ∼ vj depending on their proximity in the 3D space.
W = {wij , i, j = 1, . . . , N} is the set with the non-negative
weights. The binary Laplacian matrix L can be employed
in order to provide a proximity metric for the point cloud
geometry, with L = D−A. The matrix A ∈ RN×N represents
the connectivity of the vertices of Mf , with A(i,j) = 1 when
(i, j) ∈ E and 0 otherwise, while D is the diagonal matrix
with D(i,i) = |N(i)| and N(i) = {j | (i, j) ∈ E} is a set with
the immediate neighbours for node i.

It is important to note that the spatial coherence has been
previously employed for the reconstruction of a static point

cloud, in the well known technique of LSM [19]. Specifically,
LSM is described as the solution of the following extended
system of equations,

Xlsm

�
δL IN×K

�
=

�
03F×N R

�
(17)

where Xlsm ∈ R3F×N , L ∈ RN×N , δ is a weighting parame-
ter and R ∈ R3F×K are the known 3FK anchor points from
M. Let Le =

�
δL IN×K

�
and Re =

�
03F×N R

�
,

then the least-squares solution of (17) is expressed as: Xlsm =
ReL

T
e (LeL

T
e )

−1.
To proceed, let us first note that for the case of soft-

body animations, while the relative vertex distance may vary
from frame to frame, the adjacency of the vertices remains
consistent, thus providing the spatial coherence property.
Therefore, all the frames could share a common Laplacian
matrix, which can be obtained based on one arbitrary frame
Mf . Therefore, the proximity metric can be embedded into
problem (9) according to the following formulation:

min
X

1

2
�EΩ ◦ (X− M̂)�2F + τ�X�∗ +

γ

2
�XL�2F (18)

where via the last term of (18), we demand that the neighbour-
ing node positions of the reconstructed frames to be close
to each other, and γ represent the associated regularization
parameter of the graph Laplacian. Before proceeding to the
solution of (18) let us note that:

Proposition 1: Given that the connectivity of the animation
matrix M is described via the binary Laplacian matrix L, then
the LSM [19] technique (17) can be viewed as a special case
of the optimization problem (18) for τ = 0 and γ = δ.

Proof 1: The proof is given at the Appendix C.
Since the solution of (18) exploits the spatial coherence as
well as the underlying coherence of the geometry data, it is
expected to improve the performance over the LSM.

Now, let us express the augmented Lagrangian of the
equivalent splitting version of the optimization problem (18)
as L(X,Y,Z) = 1

2�EΩ ◦(Y−M̂)�2F +τ�X�∗+ γ
2 �YL�2F +

ρ
2�X−Y�2F +�Z,X−Y�, where, as previously, X,Y are the
primal variables, Z the dual variable and ρ is the penalizing
factor. Based on the analysis of the previous subsection, it can
be seen that only the second step of ADMM is essentially
different in this case. The optimality condition with respect to
the Y variable is expressed as:

EΩ◦(Y−M̂)+γY(LTL)+ρ
�
Y−X(i+1)

�
−Z(i) = 0 (19)

The minimizer of (19) is obtained by solving the following
generalized Sylvester equation [31] (c.f. Appendix B):

3F+2�

i=1

AiYBi −C = 0 (20)

with

Ai =





Eii i = 1, . . . , 3F
γLTL i = 3F + 1
ρIN i = 3F + 2

(21)

Bi =

�
diag(EΩ,i) i = 1, . . . , 3F

IN i = 3F + 1, 3F + 2
(22)
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and C = EΩ ◦ M̂ + ρX(i + 1) + Z(i), which has a unique
solution for ρ > 0. Eq. (20) is equivalent with the following
3FN × 3FN linear system:

��

i

BT
i ⊗Ai

�
vec(Y) = vec(C) ⇒ Ry = r (23)

where R �
�

i B
T
i ⊗Ai, y � vec(Y) and r � vec(C), thus

the solution of (23) is straightforward.
The proposed algorithm in this case (termed as sCoPC) is

described by the same steps with Algorithm 1, except for the
Step 2 which is replaced by the procedure of the computation
of (23).

Computational Complexity:: Unlike Algorithm 1, the major
computational bottleneck in sCoPC lies at the update proce-
dure of the ADMM variable Y in eq. (23), since the matrix that
has to be inverted is no longer diagonal. The direct approach
of matrix inversion for (23) requires complexity of the order
O
�
(3FN)3

�
, thus it cannot be applied for this case, due to

the potentially huge dimensions of this system. Even with the
employment of iterative algorithms (e.g. GMRES [32]) the
complexity remains impractical, i.e., O

�
(3FN)2imax) where

imax � 3FN is the number of algorithm iterations. Instead,
techniques that exploit the multiple right-hand-sides of the
equations are required to approximate efficiently the solution
of (20) [33], [34].

IV. DISTRIBUTED CONSOLIDATION

In the previous section, the proposed techniques applied on
the whole set of the animation frames. However, due to many
practical limitations the operations on the points have to be
performed in parts, i.e., by dividing the data and processing
at each time a small portion. In our case, the dynamic point
cloud data can be divided by grouping several frames into
(clusters) and their processing can be obtained in parallel using
interconnected devices. From matrix completion perspective,
this problem is highly ill-conditioned since the number of
the available entries are much lower than the required one.
To overcome this problem, additional information has to be
incorporated to the problem formulation. On this premise,
we propose the exploitation of temporal coherence between
the successive frames, thus, we introduce an spatio-temporal
coherence exploitation technique.

To proceed, let us consider the case where M is divided into
C disjoint clusters i.e., M̂ =

�
M̂T

1 . . . M̂T
C

�T
, where the

c-th cluster has fc frames, i.e., M̂c ∈ R3fc×N for c = 1, . . . , C
and fc < F . In analogy with the problem (18), we express
the cluster-based rank minimization as follows:

min
{Xc}C

c=1

C�

c=1

τ�Xc�∗ +
1

2
�EΩc

◦
�
Xc − M̂c

�
�2F +

γ

2
�XcLc�2F

(24)
where the minimization is obtained jointly for all clusters
Xc ∈ R3fc×N . Note that the sum of the nuclear norms of the
partitioned matrices M̂c can be larger than the nuclear norm
of M, i.e., �M�∗ ≤ �C

c=1 �M̂c�∗. This fact combined with
that the number of available data decreases for the same under-
sampling ratio, i.e., |Ωc| ≤ |Ω|, indicate the bad condition of

the clustered case. To mitigate this problem, we propose to
utilize the available information of the temporal coherence,
incorporated as additional constraints into the rank minimiza-
tion problem (24). Recall that in the previous subsection, the
structure of the average point cloud has been encoded into the
rank minimization problem, however, the temporal coherence
of the animation sequence has not been explicitly utilized.

To achieve this, first let us introduce a suitable metric to
evaluate the proximity of the vertex positions between the
successive frames. In particular, assume that � denotes the
coherence between the successive frames Mf and Mf+1, then
the expression

�EΩf,f+1
◦Mf −EΩf+1,f

◦Mf+1�2F ≤ � (25)

can be employed to impose temporal coherence into the
problem formulation (18). Note that EΩf,f+1

◦ Mf selects
the vertices of Mf frame which are adjacent with Mf+1,
while EΩf+1,f

◦ Mf+1 selects the vertices of Mf+1 frame
which are adjacent with Mf . Note that Ωf,f+1 and Ωf+1,f

are the sets which indicate the neighbouring vertices and
EΩf,f+1

,EΩf+1,f
∈ R3fc×N

Then, we can formulate the following temporally-coherent
graph-based rank minimization problem, where the new intro-
duced constraints force the neighbouring vertices to consent
to the close values, i.e.,

min
{Xc}

C�

c=1

τ�Xc�∗ +
1

2
�EΩc

◦
�
Xc −Mc

�
�2F +

γ

2
�XcLc�2F

+
ξ

2

�

�∈Nc

�EΩc,�
◦Xc −EΩ�,c

◦X��2F (26)

where Nc denotes the neighbouring areas of the c-th cluster.
Since the clusters are obtained successively, it is that Nc =
{c−1, c+1}, where Mc−1 and Mc+1 denote the previous and
the next cluster respectively. However, the fourth term of this
optimization problem couples the problem among the clusters.
To overcome this issue, let us introduce an auxiliary variable
per pair of neighbouring clusters c, �, denoted by Vc,� with
the property that Vc,� = V�,c. Then, the splitting version of
can be expressed as:

min
{Xc},{Yc},{Vc,�}

C�

c=1

τ�Xc�∗ +
1

2
�EΩc

◦
�
Yc −Mc

�
�2F

+
γ

2
�YcLc�2F +

ξ

2

�

�∈Nc

�EΩc,�
◦Yc −Vc,��2F

s.t. Yc = Xc (27)

where the cost function has been separated based on the three
variables, Xc,Yc and Vc,�, thus it can be efficiently solved
by the ADMM algorithm (c.f. Appendix D). The obtained
solution of (27) is described in Algorithm 2 (dCoPC).

Computational Complexity: The proposed algorithm over-
comes the high complexity issues of Algorithm 2, since it
solves multiple smaller instances of each subproblem, one per
input cluster (cluster size being a user-selected parameter), as
shown in Fig. 3. Note that the parallelism concerns the clusters,
i.e., the inner “for loops” in Algorithm 2.
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Algorithm 2 dCoPC: Proposed distributed consolidation al-
gorithm
Input: Ωc∀c,Ωc,�∀� ∈ Nc,EΩ ◦M, γ, ξ, imax
Output: X(imax)

1: for i = 1, . . . , imax do
2: {Step 1: Soft-thresholding of the singular values}
3: for c = 1, . . . , C do
4: Xc(i+ 1) ← SVTτ/ρ

�
Yc(i)− ρ−1Zc(i)

�
5: end for
6: {Step 2: Computation of Y}
7: for c = 1, . . . , C do
8: Ac ← γ

�
(LT

c Lc)⊗Ifc
�
+diag

�
vec(ξEΩc,� +EΩc +ρE)

�

9: bc ← vec
�
ξVc,� + Zc + ρXc +EΩc ◦Mc

�

10: Yc(i+ 1) ← A−1
c bc

11: end for
12: {Step 3: Computation of the average value of the neighboring

3D points}
13: for c = 1, . . . , C do
14:

Vc,�(i+ 1) ← EΩc� ◦Yc(i+ 1) +EΩ�c ◦Y�(i+ 1)

2
,

∀� ∈ {Ωc,c−1,Ωc+1,c}
15: end for
16: {State 4: Update the dual variable}
17: for c = 1, . . . , C do
18: Zc(i+ 1) ← Zc(i) + ρ

�
Xc(i+ 1)−Yc(i+ 1)

�
19: end for
20: end for

{Xc}

Ω

{Yc}

M

{Vc,�}

{Ωc,�}

{Zc}

Fig. 3. Flow chart of the distributed consolidation algorithm. The notation
{·} indicates that quantities for each frame cluster are computed in a parallel
manner for c = 1, . . . ,K.

Moreover, we can take advantage of the natural separability
of the problem to describe a distributed protocol with low
communication overhead between the clusters, as it is depicted
in Fig. 4 for the case of the c-th cluster. For instance, the
input for the Sylvester equation (23) solver is locally prepared
according to the rest of the ADMM variables, then deployed
to remote processes for computation. After all updates are
completed (ensured by the presence of a synchronization
barrier), the lighter updates for Zc, Vc,� and Xc can be carried
out locally. In this manner, the dCoPC framework becomes
readily parallelizable, lending itself well towards integration
with distributed computing systems.

V. EXPERIMENTAL RESULTS

In this section, we present an experimental analysis of
the proposed framework for the reconstruction of highly-
incomplete time-varying 3D point clouds. We categorize the
developed algorithms into global (CoPC, sCoPC) and dis-
tributed (dCoPC) techniques, where the former considers that

Xc

Ω

Yc

Mc

{Vc,�}
Vc−1,c

Vc+1,c

Vc,c−1

Vc,c+1

Ωc,�

Zc

Fig. 4. Distributed protocol for low communication overhead between
clusters. The red box indicates the required input from the next and the
previous clusters.

the processing is conducted globally over the whole set of
data at once, while the later considers that the data are sepa-
rated and distributed into different interconnected devices. All
algorithms have been implemented using the Julia scientific
language [35].

A. Setup

1) Datasets: For our experiments we have used three
animation models, namely, the “Handstand”, “Samba” and
“Squat” models from [28] which have been produced based
on scanned images. In order to represent the imperfections of
the scanned animated models, we produce the missing point
positions based on the random uniform distribution, where the
xyz-coordinates share the same under-sampling pattern. The
reconstruction quality of the evaluated techniques is obtained
by using the normalized mean root square error for all frames,
NMSE = �X−M�F

�M�F
, and the KG error [36], which is defined

as KGE = 100 · �X−M�F

�X−E(M)�F
, where E(M) denotes a matrix

whose columns consist of the average vertex positions for all
frames.

2) Parameter selection: The results of the proposed itera-
tive techniques have been obtained upon the convergence of
the algorithms, i.e., imax has been set accordingly for each
case. The convergence behavior of the proposed algorithms is
determined by the parameters τ , γ and ξ, where τ (used in
CoPC, sCoPC, dCoPC) determines the rank of the recovered
matrix and thus the convergence speed, γ (used in sCoPC,
dCoPC) determines the spatial coherence via the Laplacian
matrix, and ξ (used in dCoPC) determines the temporal coher-
ence between the successive clusters of frames. Specifically,
large values of τ (or equivalently imposing low-rank to the
reconstructed matrix) will result into fast convergence but
also lower reconstruction quality [29, Theorem 1]. On the
contrary, small values of τ may result into better reconstruction
quality but the algorithm could diverge due to the small
sampling ratio M . Moreover, the parameters γ and ξ are
weighting the prior information concerning the spatial and
temporal coherence respectively. The parameter of the dual
variables ρ determines the convergence speed of the ADMM
techniques; after experimental evaluation we have selected the
value ρ = 1/10 for the derived results. The cluster size for
obtaining the results of dCoPC was set to 15.

3) Robust estimation of the Laplacian: The weighted
graphs are constructed based on the following two techniques:
the � ∈ R neighbourhoods (�-N) and the k ∈ N nearest
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Fig. 5. KG error of the PCA-based reconstruction w.r.t the number of the
principal components.

neighbours (k-NN). It is known that �-N graphs are symmetric
and are more geometric meaningful, although depending on
the choice of the parameter � they could lead to heavy or
disconnected graphs. On the other hand, the choice of the
parameter for k-NN graphs is more straightforward, usually
leading to connected graphs. For the weighting of the graphs,
two different approaches can be applied: either the binary,
where wi,j = 1 if and only if vertices i and j are connected
by an edge, or the thresholded Gaussian kernel, where if

the nodes i and j are connected, then wi,j = e
−�xi−xj�22

2θ2

if (i, j) ∈ Ec, and 0 otherwise, where θ is the variance
which sets the threshold for edge existence. In this work we
employ k-NN binary weighted graphs for the derivations of
the Laplacian matrix, however from simulation results which
are not presented in this work, we get similar results when
thresholded Gaussian weighting is used.

In the case of incomplete geometry and no other prior
information, the direct computation of the Laplacian matrix
is not possible. A straightforward approach would be first to
reconstruct the missing data based on Algorithm 1, and then
compute the Laplacian. Although, this is a plausible approach,
it could result into a noisy estimation for high under-sampling
ratios. To overcome this problem, we propose to construct
and exploit the graph of the average point cloud. The average
point cloud is defined as M̄ =

�F
f=1 αfMf ∈ R3×N , where

αf is the weighting factor for the f -th frame. Therefore, a
robust technique for the reconstruction of the Laplacian is the
following:

1) first reconstruct the incomplete point cloud sequence via
Algorithm 1,

2) then build an average point cloud of all the reconstructed
frames, and

3) finally compute the Laplacian matrix of this average
point cloud.

Although it is known that the simple averaging of the positions
of the points could result into visually implausible shape,
the resulting mean shape retains the information about the
proximity of the points in average, as it is justified by the
experimental results. A more appropriate approach would be
to compute the Laplacian based on [27], however this is out
of the scope of this work.

4) Included techniques: In the next subsection, we inves-
tigate the quality performance of the proposed techniques,
namely, CoPC: Matrix completion technique (Algorithm 1)

���� ���� ���� ���� ���� ���� ����

��������������������

���

���

���

���

���

���

�
�
�
� ����������������������

����������

Fig. 6. Normalized mean-square-error (NMSE) for the reconstruction of the
Laplacian matrix w.r.t. the under-sampling ratio of the animation matrix.

which works on the animation matrix M ∈ R3F×N . This
technique represents the geometry-myopic approach for the
reconstruction of M, where no prior information is required,
and it belongs to the global case, where the processing is
conducted at all the available data at once; sCoPC: We extend
the CoPC technique by exploiting the spatial point cloud
geometry, represented by the Laplacian matrix L, and it also
belongs to the global case; dCoPC: This technique represents
the distributed case where the processing is conducted by
different devices by dividing the animation set into clusters.
These devices are assumed to be interconnected into a net-
work.

Apart from the proposed techniques, we also consider the
LSM technique [19] for the global and the distributed cases
(dLSM), which exploits only the spatial coherence of the
dynamic meshes. Also, we employ with two methods of
Laplacian interpolation, one emploiting spatial (SLI) and the
other both spatial and temporal coherence (STLI) [37]. SPI
uses spatial Laplacian constraints to aid the completion of
the animated mesh, while STLI complements the constraints
imposed by the weigthed Laplacian with temporal information.
More specifically, the motion vectors of known points are
used to estimate the motion vectors of the neighbouring
ones that are missing by solving a weighted Laplacian-based
optimization problem.

B. Evaluation results

1) PCA-based consolidation: Before proceeding to the
evaluation of the proposed techniques, let us investigate the
performance of the PCA-based reconstruction. In Fig. 5, we
depict the KG error of the reconstructed animation matrix (3)
with respect to (w.r.t.) the number of the principal compo-
nents that are being retained. Obviously, the number of the
components determines the quality of the reconstruction, while
the performance of the technique depends on the underlying
correlations of the animation data, thus, the number of the
required principal components is model dependent. Note that
even in the case where the missing data is only 1%, the PCA-
based technique fails to reconstruct the models. This result
verifies the fact that the conventional PCA technique is not
robust to outlier noise and thus not suitable for reconstruction
based on missing data.

Obviously, the method for the construction of the graph
Laplacian matrix (e.g. �-N or k-NN) has major impact at
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the reconstruction performance. Due to the missing data, the
constructed Laplacian may contain severe errors, even in the
case of few (e.g. 10%) missing entries. However, the graph
Laplacian of the average point cloud mitigates this effect
via the averaging over the available frames. To justify these
statements, in Fig. 6 we show the normalized square error

NMSE(u) =
�L− L̃u�2F

�L�2F
where L is the true Laplacian matrix and L̃u is the recon-
structed based on the CoPC technique for different under-
sampling ratios. We can observe that when the Laplacian
matrix is being constructed based on the average of the
incomplete point cloud, then it does provide any information
even for the 10% case. On the contrary, the construction of
the Laplacian matrix upon the CoPC provides an estimate of
the average point cloud M̄ connectivity.

2) Reconstruction quality: Figure 7 shows the heatmap
visualization of the normalized mean square visual error
(NMSVE) [38] for the three animation models, the “Hand-
stand”, “Samba” and “Squat” for the case of 70% missing
points (i.e. 30% under-sampling ratio). We can observe that
sCoPC preserves the details and achieves small KG errors.
The results of NMSE and KG error for highly incomplete
under-sampling ratios, i.e., 10%, 20% and 30%, are shown in
Table II. Comparing among the techniques, we observe that
sCoPC exhibits the smaller errors leverage from the underlying
structure of the data and the average point cloud geometry.
The matrix completion techniques, CoPC and sCoPC perform
better for the “Squat” animation model, which is justified by
the higher number of frames (F = 250). Note that working
on square matrices (3F = N ) favours the performance of
the matrix completion techniques. Also note that for under-
sampling ratios larger than 30%, the exploitation of the spatial
coherence via LSM performs worse than CoPC, which only
exploits the underlying low-rank structure of the animation
matrix.

3) Estimated Laplacian: In the previous results, we have
assumed that the Laplacian matrix is perfectly known, being
constructed based on the complete animation matrix. Obvi-
ously, this is not the case in a more real case setup where only
the 3D points are available. On this premise, we investigate
the performance of the techniques when the Laplacian matrix
is computed based on the reconstructed animation matrix. In
particular, for its reconstruction we use the CoPC technique
which does not need any other prior information about the
geometry. In Table II we show the results for the “noisy”
Laplacian case for the cases of LSM and sCoPC. Recall
that in our results the Laplacian matrix which is used by
the algorithms has been obtained by the MC algorithm. The
performance of LSM is constrained by the reconstruction
quality of the Laplacian matrix, hence even some small noise
it may cause very large errors. Fig. 8 shows three frames (1,
88 and 109) of the “Handstand” animation model, comparing
the original, the LSM and the sCoPC techniques for the case
of 30% under-sampling ratio. We can observe that sCoPC
achieves much better reconstruction quality compared to LSM,
reaching lower than the half of the LSM KG error in the

Fig. 7. Heatmap visualization of the normalized mean square visual error
(NMSVE) for the three animation models. Comparison between the proposed
techniques CoPC, sCoPC and the LSM [19] for global and distributed
consolidation.

case of “Squat” model. However, for the case of 10% under-
sampling ratio, the techniques exhibit large KG errors (> 2)
which it is usually not acceptable.

Fig. 9 depicts the obvious advantages of CoPC-based
methods to spatial Laplacian interpolation. Spatiotemporal
Laplacian interpolation’s first frames similarly suffer (since
completion on the first frame is performed using only spatial
Laplacian constraints), but recovers quality as the animation
unfolds. Still, points in regions with fast motion (such as
the feet in the handstand animation) fail to be reconstructed
reliably, resulting in relatively large errors. Conversely, the
proposed methods are shown to be more robust with respect
to abrupt changes and fast motion, simultaneously preserving
low and consistent error rates across the whole dataset.

4) Computational complexity: Concerning the computa-
tional complexity of the clustered consolidation dCoPC, it is
known that, the distributed techniques allow for parallelization
of the computationally heavy part of the per-cluster processing,
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TABLE II
QUALITY MEASUREMENTS FOR THE PROPOSED CONSOLIDATION TECHNIQUES: COPC, SCOPC, DCOPC

Table II.A (perfectly known Laplacian)

Ratio Normalized MSE KG error
LSM CoPC sCoPC LSM CoPC sCoPC

10% 0.0091 0.0217 0.0087 2.13 4.42 1.77
30% 0.0048 0.0034 0.0032 1.14 0.82 0.76
50% 0.0042 0.0024 0.0019 0.86 0.49 0.39

10% 0.0091 0.0152 0.0067 2.13 3.58 1.57
30% 0.0048 0.0035 0.0027 1.14 0.82 0.63
50% 0.0033 0.0012 0.0012 0.78 0.29 0.29

10% 0.0119 0.0047 0.0045 2.26 0.89 0.85
30% 0.0064 0.0015 0.0015 1.22 0.28 0.28
50% 0.0044 0.0009 0.0009 0.83 0.16 0.16

Table II.B (estimated Laplacian)

Normalized MSE KG error
LSM sCoPC LSM sCoPC

Handstand [28]

0.0533 0.0421 10.82 8.56
0.0062 0.0035 1.27 0.72
0.0042 0.0032 0.86 0.65

Samba [28]

0.0712 0.0548 16.78 12.90
0.0049 0.0032 1.15 0.74
0.0033 0.0018 0.78 0.43

Squat [28]

0.0446 0.0248 8.44 4.69
0.0064 0.0026 1.22 0.46
0.0044 0.0015 0.84 0.29

Table II.C (distributed)

Normalized MSE KG error
dLSM dCoPC dLSM dCoPC

0.0164 0.0139 3.33 2.83
0.0064 0.0057 1.29 1.16
0.0044 0.0037 0.86 0.76

0.0102 0.0118 2.40 2.79
0.0049 0.0045 1.15 1.05
0.0033 0.0029 0.79 0.70

0.0120 0.0144 2.27 2.73
0.0064 0.0053 1.00 0.99
0.0044 0.0036 0.83 0.68

HandStand Frame 1

sCoPCCoPC+LSMOriginal Original CoPC+LSM sCoPC

Samba Frame 80

Original CoPC+LSM sCoPC

Squat Frame 229

Fig. 8. Results for the noisy case with 30% under-sampling ratio (i.e., only 3000 vertices from 10002 are known). The Laplacian matrix has been estimated
after averaging the reconstructed animation sequence provided by Algorithm 1.

Fig. 9. Heatmap visualization of the normalized mean square visual error
(NMSVE) for the three animation models. Comparison between the proposed
techniques CoPC, sCoPC and the LSM [19], SLI [37] and STLI [37], showing
NMSVE per vertex.

achieving significant reduction in computational complexity
when compared to the global case of sCoPC which works on
the whole dataset. The speed up for the case of 32 parallel
streams is shown in Table III. The distributed consolidation
provided at least 35% speed up for all three models, percentage

TABLE III
COMPARISON OF INDICATIVE EXECUTION TIMINGS (IN SECONDS) FOR 32

PARALLEL STREAMS.

Model
Technique Handstand Samba Squat

sCoPC - global 454s 496s 784s
(working on the whole dataset)

dCoPC - distributed 188s 187s 353s
(working on dataset parts)

Speedup 40% 37% 45%

that can be increased by increasing the computational streams.

VI. CONCLUSION

In this work, we have considered the consolidation of
dynamic point clouds given only a small number of geometry
data. First we have described a geometry-myopic technique
which exploits only the structure of the underlying subspace of
the geometry data. Then we have extended this technique so as
to jointly exploit the spatial coherence of the 3D points. Since
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the animation data are usually massive, we have proposed a
distributed technique with low communication overhead which
is able to divide the animation matrix and perform in parallel
manner. To overcome the ill-conditioning of this problem, we
have proposed the exploitation of the time coherence between
the successive frames. Through simulation results we have
verified that the proposed techniques are able to faithfully
recover the missing points.

APPENDIX

A. Proof of eq. (16):
Eq. (15) can be written as follows: EΩ ◦Y − ρY = EΩ ◦

M̂−ρX(i+1)−Z(i) ⇒ vec(EΩ ◦Y−Y) = vec
�
EΩ ◦M̂−

ρX(i + 1) − Z(i)
�
⇒

�
diag

�
vec(EΩ)

�
− ρI3FN

�
vec

�
Y) =

vec(EΩ ◦ M̂− ρX(i + 1)− Z(i)
�

where the last equation is
obtained utilizing the properties of the vectorization function,
i.e., vec(AXB) = (BT ⊗ A)vec(X) and vec(EΩ ◦ Y) =
diag

�
vec(EΩ)

�
vec(Y) [39].

B. Proof of eq. (20):
Eq. (20) is in the form of the generalized Sylvester equation

as it has been defined in [31]. To show this, let us write (19)
as follows: EΩ ◦ (Y − M̂) + γYLTL+ ρ(Y −X(i+ 1))−
Z(i) = 0 ⇒ EΩ ◦ Y + γYLTL + ρY + C = 0, where
i indicates the ADMM iteration. Based on the properties of
the Hadamard product [40], the first term of the last equation
can be written as: EΩ ◦Y =

�3FN
i=1 EiiYdiag([EΩ]i), where

Eii is an all zero matrix except one entry in position (i, i)
which is one, and [EΩ]i is the i-th column of the EΩ matrix.
Based on the definitions of (21) - (22), it is straightforward
to obtain (20). Also, it is known that the necessary condition
for the uniqueness of the solution is the non-singularity of the
matrix

�
i B

T
i ⊗Ai. Since (20) includes the term ρI3FN , this

condition is satisfied for ρ > 0.

C. Proof of Proposition 1

For τ = 0 eq. (18) is expressed as:

min
X

1

2
�EΩ ◦ (X− M̂)�2F +

γ

2
�XL�2F (28)

which has the minimizer: EΩ ◦X−EΩ ◦ M̂+ γXLTL = 0.
Following the analysis of Appendix A, the minimizer of (28)
can be obtained as the solution of the 3FN × 3FN linear
system:
�
diag(vec(EΩ))+γLTL⊗I3F

�
vec(X) = vec

�
EΩ◦M̂

�
(29)

It can be seen that the non zero values of the right hand side
vector are the anchor points of the mesh M, i.e., vec(Re) =
Π·vec(EΩ◦M) where Π is a matrix that rearranges the entries
of the vector vec(EΩ ◦M) by grouping first the zero and then
the non zero values. Hence, by applying the rearrangement
matrix to (29), we have:

Π
�
diag(vec(EΩ)) + γLTL⊗ I3F

�
ΠΠvec(X) = z

⇒
�
Πdiag(vec(EΩ))Π+ γΠ

�
LTL⊗ I3F

�
Π
�
Πvec(X) = z

(30)

where ΠΠ = I and z � Πvec
�
EΩ ◦ M̂

�
. Note that

Π diag(vec(EΩ))Π =
�
0T
3F (N−K)×3FN IT3FK×3FN

�T

and Π vec
�
EΩ◦M̂

�
=

�
0T
3F (N−K)×1 vec(R)T

�T
. Hence,

(30) can be decomposed into the following two systems:
�

(γLTL⊗ IN−K)vec(X) = 0N

(I3FK + γLTL⊗ IK)vec(X) = vec(R)

or equivalently�
XLTL = 0

X(IN + γLTL) = R
⇒

�
XLTL = 0

XLeL
T
e = ReL

T
e

⇒
�

XL = 0
XLe = Re

This can be written as:

X
�
IN + γLTL γLTL

�
=

�
R 03F×N

�

which is identical with to the solution of (17).

D. Solution of eq. (27)

The augmented Lagrangian of (27) is written as:
L
�
{Xc}c , {Yc}c , {Zc,�}c,� , {Vc}c

�
=

�C
c=1

�
τ�Xc�∗ +

1
2�EΩc

◦ (Yc −Mc)�2F +
�

�∈Nc

1
2�EΩc,�

◦Yc −Vc,��2F +

�Zc,Xc−Yc�+ ρ
2�Xc−Yc�2F

�
. The solution of (27) can be

obtained by expressing the optimality conditions with respect
to the primal and dual variables:

• The minimization of L with respect to Xc requires the
computation of the subgradient ∂L

∂Xc
= τ ∂�Xc�∗

∂Xc
+Vc +

ρ(Xc − Yc), which alternatively can be expressed as:
Xc = argminXc

τ
ρ�Xc�∗ + 1

2�Xc − (Yc − 1
ρVc)�2F .

Based on [29, Theorem 2.1], the minimizer of this
expression is obtained using the SVT operator on the
matrix Yc − 1

ρVc.
• The minimization of L with respect to Yc is written

as ∂L
∂Yc

= EΩc
◦ Yc + γYc(L

T
c Lc) − EΩc

◦ Mc +�
�∈Nc

�
EΩc,�

◦ Yc − Zc,�

�
− Vc − ρ(Xc − Yc) =

0 ⇒
�
EΩc +

�
�∈Nc

EΩc,�
+ ρE

�
◦ Yc = EΩc ◦ Mc +�

�∈Nc
Zc,�+Vc+ρXc. Following Appendix B analysis,

the minimizer of the previous expression is provided
by the solution of the following system of equations:
Acvec(Yc) = bc, where Ac � γ

�
(LT

c Lc) ⊗ Ifc
�
+

diag
�
vec(ξEΩc,�

+ EΩc
+ ρE)

�
and bc � vec

�
ξVc,� +

Zc + ρXc +EΩc
◦Mc

�

• The minimization L with respect to Vc,� requires the
computation of the gradient ∂L

∂Vc,�
= EΩc,�

◦Yc−Vc,�+
EΩ�,c

◦ Y� − V�,c. Since V�,c = Vc,�, we have that:

Vc,� =
EΩc,�

◦Yc+EΩ�,c
◦Y�

2 .
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