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A B S T R A C T   

The incorporation of a-priori knowledge on the shape of anatomical structures and their variation through 
Statistical Shape Models (SSMs) has shown to be very effective in guiding highly uncertain image segmentation 
problems. In this paper, we construct multiple-structure SSMs of purely geometric nature, that describe the 
relationship between adjacent anatomical components through Canonical Correlation Analysis. Shape inference 
is then conducted based on a regularization term on the shape likelihood providing more reliable structure 
representations. A fundamental prerequisite for performing statistical shape analysis on a set of objects is the 
identification of corresponding points on their associated surfaces. We address the correspondence problem using 
the recently proposed Functional Maps framework, which is a generalization of point-to-point correspondence to 
manifolds. Additionally, we show that, by incorporating techniques from the deep learning theory into this 
framework, we can further enhance the ability of SSMs to better capture the shape variation in a given dataset. 
The efficiency of our approach is illustrated through the creation of 3D models of the human knee complex in two 
application scenarios: incomplete or noisy shape reconstruction and missing structure estimation.   

1. Introduction 

The reconstruction of geometric shapes plays an important role in 
many fields such as computer vision, augmented and virtual reality, 
personalized computer-aided intervention, robotic mapping, and other. 
If 3D scans are available, as in the case of medical imaging, automated 
image segmentation is usually performed to localize and extract the 
object of interest. However, in real case scenarios with noise and 
intrinsic artifacts, such as pathologies, most of the automated algorithms 
produce invalid geometric representations if they rely solely on the 
image content. Image segmentation methods are also especially sensi
tive to missing or incomplete data producing unrealistic shapes. 

One way to reduce uncertainty in estimation is through the incor
poration of prior information on the shape variability of anatomical 
structures, known as statistical shape analysis (Dryden and Mardia, 1998; 
Goodall, 1991). The use of Statistical Shape Models (SSMs) in image 
analysis has been well established more than a decade ago, with the 
most popular variants being the Active Shape Models and Active 
Appearance Models that, in addition to the expected shape, represent 
also the texture (complete appearance) of the volumetric object 

(Heimann and Meinzer, 2009). Despite their success, the main disad
vantage of these methods is the excessive memory usage in case of high 
texture resolution that often requires to be scaled down radically. On the 
other hand, purely geometrical shape models, often referred to as Point 
Distribution Models (PDMs) (Cootes et al., 1995) are more intuitive, 
easy to implement, reasonably robust, and fast. 

Lately, there has been a growing interest in the construction of 
models that consist of multiple anatomical structures (Cerrolaza et al., 
2015, 2016, 2019; Saito et al., 2013). The key concept in such methods 
is to overcome the limitations of the small availability of training data, 
by considering the inter-relation between neighboring structures, i.e., 
they describe how the shape variation of one structure affects the shape 
of the other, and vice versa. This can potentially lead to more efficient 
and accurate shape representation, while also enabling us to conduct 
shape inference about adjacent structures. 

In this work we employ such methods for building statistical shape 
models of purely geometric nature and demonstrate their application in 
volumetric data, such as medical images. In particular, we are interested 
in constructing SSMs that capture the shape variation of multiple 
anatomical components, while also encoding the correlation between 
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neighboring structures. Moreover, by using more sophisticated methods 
like the manifold representation and deep learning techniques, we are 
able to better capture the variation of an object’s class. 

1.1. Shape correspondence 

The fundamental requirement in constructing an accurate shape 
model, is to first establish correspondence among the elements of the 
training shapes. The correspondence problem, or shape matching, is the 
most crucial task in order to capture true geometric variation, as false 
identification of point pairs may lead to unnatural shapes. 

Solving the problem of surface matching is an ambitious goal and is 
still not adequately addressed, although, there are many techniques that 
tackle effectively this problem (Biasotti et al., 2016; Van Kaick et al., 
2011; Sahillioğlu, 2020). For the construction of SSMs, the most popular 
shape matching method is the Iterative Closest Point (ICP) (Rusinkie
wicz and Levoy, 2001) which is based on repetitive rigid trans
formations and assignment of closest points, until convergence to a local 
minimum. However, proximity-based methods, are often insufficient to 
correctly identify corresponding points. Therefore, the focus of shape 
matching methods is on computing correct correspondences from an 
invariant and robust point of view. 

One promising framework was proposed by Ovsjanikov et al. called 
Functional Maps (FM) (Ovsjanikov et al., 2012), which is a generalization 
of the notion of point-to-point shape correspondence. The framework 
describes how mappings act on real-valued functions defined on mani
folds and allows the computation of point correspondences between two 
shapes in a non-rigid fashion and independently of their spatial orien
tation, assuming that the shapes undergo (near-) isometric de
formations. This method has achieved state-of-the-art performance in 
shape correspondence benchmarks for both full and partial shapes 
(Rodolà et al., 2017; Kovnatsky et al., 2015, 2013; Rodolà et al., 2017; 
Litany et al., 2016, 2017; Ren et al., 2018), but it has rarely been 
employed for estimation and refinement of anatomical structures in 
challenging situations including image noise, artifacts, and partial 
information. 

Recently, there has been a growing interest in techniques that 
attempt to generalize deep neural networks to non-Euclidean domains 
like manifolds, which are collectively referred to as geometric deep 
learning (Bronstein et al., 2017). For shape matching, it has been shown 
that the extracted information from shape data can be used in order to 
compute more accurate point-to-point correspondences (Monti et al., 
2017; Masci et al., 2015; Boscaini et al., 2016; Litany et al., 2017a; 
Roufosse et al., 2019). 

1.2. Goals and contributions 

The aim of this work is to investigate whether image-guided shape 
reconstruction methods can be further improved if SSMs are incorpo
rated for refinement of the reconstructed shape, where we propose a 
regularized multi-structure statistical shape modeling approach for 
estimation of partial or degenerate 3D data. Specifically, we address the 
issue of topological alterations (noise, artifacts, missing parts) in the 
segmentation outcome by formulating an optimization function that 
balances between the original subject-specific shape and a prior likeli
hood term. The advantage of this approach is two-fold:  

• We address cases where the full multi-shape model is fitted to new 
shapes (obtained from automatic image segmentation methods) that 
do not represent anatomically correct structures due to inaccuracies 
in image segmentation, such as in regions with low intensity 
contrast, inhomogeneity or imaging artifacts, resulting in missing 
parts or protrusions in the segmented image. A regularization term 
on the solution space can potentially prevent overfitting of the SSMs 
to such defective shapes.  

• We address cases where whole structures are missing (not detected) 
due to the low sensitivity of some imaging modalities to depict 
certain tissues. For example, the relationship of a tumor to adjacent 
normal structures, including joints and neurovascular structures, is 
better assessed with MRI, whereas CT is superior in visualizing 
calcific deposits and pathologic fractures (Zimmer et al., 1985). 
Multi-structure SSMs, once constructed, have the potential to infer 
unknown or missing structures (due to availability of a single mo
dality) through shape correlation analysis, by exploiting the 
observed shape conformations of one structure to approximate the 
shape of another highly correlated neighboring structure. 

We examine the application of our approach in data of the human 
knee complex. While there have been various approaches on the con
struction of statistical shape models of the knee joint (Rao et al., 2013; 
Fitzpatrick et al., 2011; Baldwin et al., 2010; Williams et al., 2010; 
Bredbenner et al., 2010), to our best knowledge, it has never been car
ried out in such way. 

To summarize, this work makes the following contributions to the 
field of 3D shape modeling:  

• We employ the recently proposed framework of Functional Maps for 
solving the isometric shape matching problem, and we also incor
porate deep learning techniques to enhance the ability of SSMs to 
capture shape variation. 

• We construct multiple-structure shape models that encode the rela
tionship between neighboring structures, and we jointly optimize 
reconstruction performance and shape likelihood to improve the 
quality of automated segmentation of the knee complex.  

• Finally, we exploit the knowledge captured by the model regarding 
the inter-dependence of related structures through Canonical Cor
relation Analysis, to conduct inference about unknown or missing 
structures. 

2. Methods 

An overview of our approach is presented in Fig. 1, which consists of 
the training and testing phase. The training phase involves the calcu
lation of the parameters of (i) the Deep Functional Maps network that 
finds point correspondences between two shapes, (ii) the SSM model 
that can be used to produce new realistic shapes for multiple structures, 
and (iii) the correlation matrix expressing the relationship between 
adjacent structures. The testing phase involves the search for the pa
rameters b of the built SSM and a global rigid transformation T that best 
describe a new shape 𝒮S acquired from a segmentation mask ℳS. Then 
inference of the new shape is performed by minimizing the following 
cost function: 

(T, b) = arg min
T,b

[d(𝒮S, T∘𝒮M(b|P)) + wℛ(b)] (1)  

where 𝒮M denotes the reconstructed shape that depends on the param
eters b of the shape model, given a set of orthogonal basis P that describe 
the shape variation; d(⋅) denotes a dissimilarity metric between two 
shapes (smaller values indicate higher similarity); w controls the weight 
of a regularization term ℛ on the shape variation. Next, we discuss 
separately the methods implemented for the shape matching problem 
and those involved with the construction of SSMs and how they are 
applied to new input data. 

2.1. Estimation of shape correspondence 

Manifolds. We model shapes as two-dimensional Riemannian 
manifolds 𝒳 possibly with boundary ∂𝒳 . Given scalar functions f , g : 𝒳→ 
ℝ defined on a manifold 𝒳 , the standard inner product is defined as 
〈f , g〉ℒ2(𝒳) =

∫

𝒳
f(x)g(x)dx, where dx denotes the area element induced by 
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the Riemannian metric. We denote with ℒ2(𝒳) = {f : 𝒳→ℝ |

〈f , f〉ℒ2(𝒳) < ∞} the space of square-integrable functions on 𝒳 . 
For shape representation we will utilize the positive semi-definite 

Laplace-Beltrami (LB) operator Δ, which generalizes the Laplacian to 
manifolds. It admits to an eigendecomposition problem Δϕi = λiϕi, 
where the eigenvalues λi form a discrete spectrum ordered from “low 
frequency” to “higher frequency” (λ0 = 0 ≤ λ1 ≤ λ2 ≤ …), and the 
eigenfunctions ϕ0,ϕ1,… form an orthonormal basis on ℒ2(𝒳) (i.e., 
〈ϕi,ϕj〉ℒ2(𝒳) = δij), allowing any function f ∈ ℒ2(𝒳) to be expanded into 
a Fourier series as: 

f =
∑

i≥0
〈f ,ϕi〉ℒ2(𝒳)ϕi (2) 

Functional Maps. FM (Ovsjanikov et al., 2012) are a generalization 
of the notion of point-to-point shape correspondence, as they describe 
how mappings act on real-valued functions defined on shapes. Let τ :

𝒳→𝒴 be a map between manifolds 𝒳 and 𝒴. The map τ induces a linear 
transformation τF : ℒ2(𝒳)→ℒ2(𝒴) on the functions f : 𝒳→ℝ and g : 𝒴→ℝ 
defined on manifolds 𝒳 and 𝒴, respectively, such that τF(f) = g. 

Assuming the two orthogonal sets of basis {ϕi} and {ψ i} on ℒ2(𝒳)

and ℒ2(𝒴), respectively, to be given, the functional map τF can be rep
resented as a matrix C with coefficients cij = 〈τF(ϕi),ψ j〉ℒ2(𝒴) leading to 
an expansion: 

τF(f ) =
∑

i,j≥0
〈f ,ϕi〉ℒ2(𝒳)cijψj (3) 

Truncating the Fourier series at the first k coefficients, functional 
correspondence becomes the problem of finding a matrix C of size k × k 
which is a rank-k approximation of the original map. Given a set of q 
corresponding functions fi ∈ ℒ2(𝒳) and gi ∈ ℒ2(𝒴), with spectral repre
sentations ai = (〈fi,ϕ0〉ℒ2(𝒳), …〈fi,ϕk〉ℒ2(𝒳)), bi = (〈gi,ψ0〉ℒ2(𝒴),… 
〈gi,ψk〉ℒ2(𝒴)) stored as columns in matrices A and B, respectively, the 
problem of functional correspondence boils down to a simple linear 
system: 

C = arg min
C

‖ CA − B ‖
2
F (4) 

In practice, fi and gi are q-dimensional shape descriptors (e.g., HKS 
(Sun et al., 2009), SHOT (Tombari et al., 2010)) that capture some shape 
properties around the neighborhood of a point of interest. In order for 
the system in Eq. (4) to be (over)-determined, we must select k ≤ q. 

Discretization. In the discrete setting, where the manifolds are 
represented as triangle meshes with n vertices, the discrete LB operator 
can be expressed as Δ = S− 1W using the classical cotangent weights 

scheme (Reuter et al., 2009); W is the n × n stiffness matrix of the edge 
weights, and S = diag(s1,…, sn) is the diagonal mass matrix of vertex area 
weights. The first k eigenfunctions are found solving the eigende
composition ΔΦ = ΛΦ, where Φ is a n × k matrix containing as columns 
the first k eigenfunctions and Λ = diag(λ0,…, λk− 1) is the diagonal matrix 
of the corresponding eigenvalues. A function on the manifold is repre
sented by an n-dimensional vector f = (f(x1)…f(xn)). The Fourier co
efficients are then computed as a = ΦTSf . 

2.1.1. Estimating the functional map 
Assuming that the shapes undergo (near-)isometric deformations, 

the underlying functional map is volume preserving, i.e., the matrix C is 
orthogonal CTC = I. Then: 

C = arg min
C

‖ CA − B ‖
2
F , s.t. CT C = I (5)  

This problem is referred to as the orthogonal Procrustes problem (Kov
natsky et al., 2013) which has a closed form solution obtained through 
Singular Value Decomposition (SVD) of M = BAT as C = UMVM

T, where 
the columns of UM and VM are the left-singular vectors and 
right-singular vectors, respectively. 

There are several regularizations and extensions that can help to 
improve this estimation significantly. For example, since the eigen
functions diagonalize the Laplacian, 〈ϕi,Δϕj〉L2(𝒳) = λiδij, the Dirichlet 
energy can be expressed as: tr(〈τF(ϕi),ΔτF(ϕj)〉L2(𝒳)) which is written in 
matrix form (for all eigenfunctions) as tr(CTΛ𝒳C) (Ovsjanikov et al., 
2017). By adding this term in Eq. (5), smoothness on the functional map 
is enforced: 

C = arg min
C∈S(k,k)

‖ CA − B ‖
2
F + α tr(CT Λ𝒳C) (6)  

where Λ𝒳 is the diagonal matrix of the eigenvalues of LB operator of 
manifold 𝒳 , α is a scalar weight parameter, and S(k, k) = {X ∈ ℝk×k :

XTX = Ik} denotes the Stiefel manifold of k × k orthogonal matrices. The 
above problem is an instance of manifold optimization and can be solved 
using efficient numerical techniques (Boumal et al., 2014). 

In both cases, the resulting matrix C can be interpreted as an align
ment of the spectral representations of manifolds 𝒳 and 𝒴, and it can be 
further processed using the refinement technique described in Ovsjani
kov et al. (2012). Point-to-point correspondence is then obtained by 
nearest neighbor assignment in the embedded functional space. 

Deep Functional Maps. In cases where the shapes undergo de
formations that are not strictly isometric, the methods described by the 
Eq. (5) or (6) do not necessarily result in the best solution that leads to 

Fig. 1. Schematic illustration of the statistical modelling methodology. Training phase: Given a population of shapes, point correspondence across shapes is 
calculated based on the Deep Functional Maps framework. The network learns correspondences from training examples. Then, a multi-structure SSM is constructed, 
parameterized to mimic other approaches based on the inter-correlation of adjacent structures. Testing phase: The SSM is fitted on potentially defected or partial 
shapes 𝒮S acquired from 3D image segmentation masks ℳS using a regularization scheme, and shape inference is then conducted in image space resulting in a 
redefined image ℳR. 
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correct shape correspondence. By incorporating deep learning tech
niques, it is possible to extract features from the functions defined on the 
manifolds which, when used in conjunction with the functional map 
framework, will define more accurate correspondences. 

In this work, we make use of the neural network presented by Litany 
et al. (Litany et al., 2017) called FMNet. Manually designed point-wise 
descriptors F and G from a pair of shapes are passed through a Sia
mese network with Residual blocks (He et al., 2016), resulting in refined 
descriptors F̂, Ĝ. These, in turn, are projected onto the Laplacian 
eigenbasis to produce the spectral representations Â, B̂, which are used 
to solve Eq. (5). FMNet is trained using a specialized soft error loss, 
which punishes geodesically distant predictions stronger than pre
dictions near the correct node. 

2.2. Reconstruction of partial or inconsistent shapes by regularized multi- 
structure SSMs 

Statistical Shape Models. SSMs are discrete, parametric models that 
capture the most prominent geometric variation in a given set of shapes. 
Each shape 𝒳 i in the dataset is represented in terms of a vector of 
landmarks xi. The fundamental prerequisite of building SSMs is the 
identification of corresponding landmarks on each surface. Shape 
analysis is then performed jointly by first aligning the shapes using 
Generalized Procrustes Analysis (Gower, 1975) (Goodall, 1991) to remove 
rigid or similarity transformations, and then using Principal Component 
Analysis (PCA) to extract the main modes that best describe the observed 
variation. Alternatively, Robust PCA (RPCA) Candès et al. (2011) can 
recover the principal modes of variation even if a fraction of computed 
correspondences is arbitrarily corrupted. 

Multi-structure SSMs. The previous procedure can be extended in 
the case of multiple structures by taking into consideration the indi
vidual shapes’ correlation. Let xi ∈ ℝ3ni×1 represent the vector form of a 
single structure i in a set of m structures, with ni landmarks. Then, the 
multi-structure shape can take the vector form 

X = {x1,…, xm}, X ∈ ℝ3n×1  

through the concatenation of the m structure vectors, with n =
∑m

i=1ni 

the total number of points. If N such multi-structure shapes (observa
tions) exist, let L ∈ ℝN×3n represent the centered data matrix (i.e., with 
zero mean) containing the vectors X as rows. 

In order to account for structure inter-dependence in the constructed 
multiple-structure SSMs, we employ the Soft Multi-Organ Shape models 
(SOMOS) framework (Cerrolaza et al., 2016), which uses the weighted 

variant of the generalized SVD (G-SVD) (Greenacre, 2021) of L to 
impose constraints on the left and right singular vectors. The matrix L 
can be written as ULΣLVT

L , where ΣL is a diagonal matrix, and UL, VL are 
(not necessarily) orthonormal matrices that satisfy UT

L WUL = VT
L ΩVL =

I, with W and Ω being specified positive-definite symmetric matrices. 
G-SVD solves the regular SVD of: 

L̃ = W1/2LΩ1/2 (7) 

This framework allows the creation of a statistical model for each of 
the m structures individually (instead of a single global model), while 
also taking into account the relationship (e.g., correlation) between the 
structures. We describe below the procedure for the SSM creation of 
each individual structure by omitting the index of this structure for 
simplicity. For the examined structure, we can select the matrix Ω to be 
diagonal with entries wi ∈ [0,1] representing the correlation of the 
examined structure with structure xi. To allow multiplication with the 
data matrix, the values wi are replicated for all points in the structure xi. 
Moreover, assuming that all observations are equally important, iden
tical weights are assigned such that W = I. Then, Eq. (7) becomes L̃ =

LΩ1/2, which corresponds to a weighted variant of the regular PCA. 
Fig. 2 shows a visual representation of matrices L and Ω in order to aid 
reader’s understanding. In case of correlated structures (i.e., wi > 0,∀i), 
the matrix L can then be expressed as: 

L = L̃Ω− 1/2⇒ULΣLVT
L = U

L̃
Σ

L̃
V

L̃
T Ω− 1/2 (8)  

where Σ
L̃ 

is a diagonal matrix whose diagonal elements are the singular 

values of the eigendecomposition of L̃, and U
L̃
, V

L̃ 
are unitary matrices 

whose columns are the left-singular and right-singular vectors, respec
tively. Thus: 

VL = Ω− 1/2V
L̃
, ΣL = Σ

L̃
, UL = U

L̃
(9) 

Like in the classic PCA-based PDM, each shape can be modeled as the 
best approximation of Y by a linear combination of the matrix Pc, which 
is sub-matrix of VL with rank c that describes the desired (e.g., 98%) 
shape variation, 

Y = (y1;…; ym)
T
≈ Ỹ = X + Pcb (10)  

where the vector b is obtained as: 

b = PT
c Ω1/2(Y − X) (11) 

This approach allows us also to replicate other approaches simply by 

Fig. 2. Visual representation of matrices L and Ω. The columns of matrix L consist of the vector form of each structure in the training dataset with size N. Thus, each 
row in the matrix represents the vector form of each of the m structures comprising the multi-structure shape. In order to form the matrix L̃, the columns of matrix L 
are multiplied with the square root of wi, which represents the correlation between the selected structure and structure i. 
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defining different inter-relation weights between the structures. For 
example, if the weight between structure i and j is wij = 1,∀i, j the 
problem becomes equivalent to the original PDM for multiple shapes, 
whereas if the weight is 1 only for i = j and 0 otherwise, the problem 
becomes equivalent to independent modeling of each structure. 

Canonical Correlation Analysis. The correlation factors between 
two structures are calculated using Canonical Correlation Analysis (CCA). 
CCA determines the linear combination of the components in structures 
xi and xj that are maximally correlated with each other. The overall 
inter-structure correlation factor, wij, is defined as the average correla
tion coefficient over all calculated canonical modes (Cerrolaza et al., 
2016). 

Prior to CCA, it is required to perform PCA on the point coordinates 
for each individual structure across the training set to reduce the 
dimensionality of the data, ensuring that a percentage (95%) of the 
variation is retained. The dimensionality reduction minimizes the 
computational memory burden and also eliminates co-linearity in the 
data which can cause instability in the calculation of CCA (Rao et al., 
2008). 

Regularization of Estimated Shapes. In case of missing structures 
or partial shapes, the method described by Eq. (11) for approximating a 
new shape can not be used, since Pc forms an orthonormal basis only for 
the entire shape Y. That is, if we denote by Yi = (y1;…; yi− 1; yi+1,…; ym)

T 

a new shape containing the coordinates of the m − 1 out of m structures, 
then projection on the truncated eigenvectors Pi

c will not provide the 
correct coefficients vector, since Pi

c does not necessarily constitute an 
orthogonal basis. 

The problem of finding the vector b that represents an expansion of 
Yi in terms of Pi

c can be formulated as an optimization problem, as 
proposed in a different setting (Mohamed et al., 2001), in which b is 
sought so that it yields a shape that fits Yi but has also high likelihood 
expressed by: 

g(b) =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(2π)cdet(Σc)

√ exp( −
bT Σ− 1

c b
2

) (12)  

which describes the probability density function of the coefficient vector 
b, assuming that the shapes xi follow the Gaussian distribution. The 
matrix Σc is the c-rank submatrix of Σ containing the eigenvalues of the 
corresponding modes of variation (Eq. (9)). A solution is then given by 
minimizing the cost function: 

ℰ(b) = ‖ X̂ i − Yi ‖
2 + w

1
g(b)

= ‖ Xi + Pi
cb − Yi‖

2
+ w

1
g(b)

(13)  

where 1/g(b) expresses the regularization term in Eq. (1), and w is the 
relative weighting factor. The first term in Eq. (13) seeks vectors that get 
as close as possible to the subject’s observed shape Yi, whereas the 
second term favors shape representations that are according to what has 
been observed in the training samples. The nonlinear Levenberg- 
Marquardt (Marquardt, 1963) optimization scheme is used to mini
mize this cost function. Since the parameters b determine also the global 
shape model described by Eq. (10), they can be used to provide an 
approximation of the missing structure yi. 

The same optimization scheme can also be used in cases of defected 
or partial shapes Y that contain all structures, in order to avoid unnat
ural representations due to overfitting. 

Shape Fitting. Suppose we wish to find the best pose and shape 
parameters to match a shape model to a new set of points Y. This is 
achieved by minimizing the sum of square distances between the model 
and the target shape: 

‖ Y − T(X + Pcb) ‖ (14)  

where T is a rigid transformation defining the translation and orienta
tion of the estimated model. An efficient iterative approach for 
achieving this, is described by the algorithm presented by Cootes et al. in 
Cootes et al. (2004) that uses repetitive transformations and matching of 
closest points, thereby mimicking the ICP (Rusinkiewicz and Levoy, 
2001) registration method. We modify the algorithm by replacing the 
step of finding the values of the vector b describing the target shape y, 
with that in Eq. (13) (regularized shape fitting) or Eq. (11) (exact shape 
fitting) if w = 0. 

The incorporation of the FM framework to the iterative process of 
shape fitting has a higher potential in the identification of correspon
dences. It is however less efficient computationally, since it requires, not 
only the solution of the linear algebraic system and the refinement of the 
resulting functional map, but also the additional calculation of the shape 
descriptors and LB eigenfunctions in every iteration. 

3. Implementation 

The previously described methods find several application domains, 
however our main focus was the generation of robust simulation models 
for osteoarthritis (a degenerative disease of the articular cartilage) for 
personalized treatment design. In particular, we discuss the application 
of the multi-structure SSMs for improving the results of automatic seg
mentation of the human knee extracted from MRI data. The knee com
plex consists of many different biological tissues, which are difficult to 
depict accurately in a single image sequence. Especially the regions 
representing the cartilage and connective tissue are usually difficult to 
distinguish due to low intensity contrast. Thus, the incorporation of a 
good shape prior can be crucial for conducting shape inference in 
ambiguous regions of the segmented mask, while also being able to 
transfer across different image modalities. 

Datasets. For the evaluation of the methods, we selected two sepa
rate datasets of annotated MRI of the human knee complex. 

1 OAI ZIB1 : The dataset consists of MRI sequences from the Osteoar
thritis Initiative2 database for which 507 manual segmentations of 
five anatomical structures of the right knee – Femur Bone (FB), Tibia 
Bone (TB), Femoral Cartilage (FC), Medial Tibial Cartilage (TCM) 
and Lateral Tibial Cartilage (TCL) – were carried out by experienced 
users at Zuse Institute Berlin. The dataset is split into 253 training 
and 254 testing subjects, as previously performed by Ambellan et al. 
(2019).  

2 OpenKnee3 : The dataset contains knee MRIs from a representative 
sample of young and elderly, male and female, and healthy and 
osteoarthritic subjects. MR images and corresponding segmentations 
from only 7 subjects were complete, thus this dataset was used just 
for evaluation purposes (and not for training), focusing on the same 
(5) anatomical structures as for the OAI ZIB dataset. 

Mesh Generation and Preprocessing. We construct triangle 
meshes from the given manual segmentation masks using the Marching 
Cubes algorithm (Lorensen and Cline, 1987). The meshes represent the 
different components of the knee structure. In order to alleviate the 
requirement for large computation power and memory footprint, the 
meshes are simplified (downsampled) using the Quadric Edge Collapse 
Decimation algorithm provided in Meshlab4 . The target number of 
resulting faces for each mesh was kept constant (∼ 8K faces, which is 
equivalent to ∼ 4K vertices). 

FMNet Implementation. The FMNet implementation and 

1 https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/6995  
2 https://nda.nih.gov/oai/  
3 https://simtk.org/projects/openknee  
4 http://www.meshlab.net 
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parameters are as described in Litany et al. (2017). The network extracts 
features from 352-dimensional SHOT (Tombari et al., 2010) descriptors 
defined on meshes, and uses those to find the mapping between a pair of 
shapes as described in Section (2.1.1). As orthonormal basis for the 
functional space of the surfaces we consider the eigenfunctions of the 
discrete LB operator derived from the Linear FEM scheme with the 
lumped mass matrix (Reuter et al., 2009). The first 35 eigenfunctions for 
each structure are kept, which proved sufficient for the functional map C 
to represent the ground truth map to a quality that is very close to the 
ground-truth point-to-point map. 

In every training iteration, the network takes as input concatenated 
pairs of ∼ 2K randomly chosen ground-truth matching descriptors (1K 
from each shape). Training is performed separately for all the anatom
ical structures. Thus in our case, five different versions of the neural 
network are constructed, one for each structure of the knee complex. 

The training session lasted 10 – 20 minutes (200–300 iterations). The 
average prediction runtime for the computation of the functional map C 
for a new pair of shapes was approximately 0.12 seconds using CUDA 
9.0 (CPU: Intel Core i7-4790    3.60 GHz; GPU: NVIDIA GeForce GTX 660 
2 GB). 

Creation of ground-truth correspondences. As any supervised 
learning method, in the training phase FMNet requires examples of pairs 
for which the ground-truth correspondence of their elements is known 
[Fig 3]. In the case of medical data, manual labeling for all corre
sponding points is infeasible and impractical, and thus we rely on other 
automatic methods for defining the correspondences. In order to create 
training examples of paired descriptors, 50 subjects within the training 
set of the OAI ZIB dataset are randomly selected, for which the standard 
ICP method (Rusinkiewicz and Levoy, 2001) is used to compute the 
mappings between the elements (vertices) of the paired meshes. A total 
of 50 × 50 = 2500 training examples were constructed for each knee 

component, by taking every possible combination of subjects within the 
dataset. 

Although the definition of correspondences using an automatic 
method, instead of manual labeling, reduces the quality of the ground 
truth (possibly affecting the accuracy of the network to learn anatomi
cally correct matches), in our experiments, we have observed that the 
network generalizes well even with imprecise input examples. This oc
curs mainly due to the fact that the randomly selected training examples 
can be bidirectional, meaning that, for a pair of shapes < 𝒳 ,𝒴 >, the 
mappings τi : 𝒳→𝒴 and τj : 𝒴→𝒳 can be used in both directions during 
the training session. The mappings created from the ICP are not 
invertible. However, the network adjusts accordingly to compensate for 
the matching points that differ if the input mapping is inverted. 

Perhaps a better way of creating ground-truth correspondences 
would be by exploiting volumetric anatomical information from image 
registration algorithms that are subject to regularization constraints. 
Such solutions take advantage of the rich local information content and 
therefore are expected to be anatomically much more valid than simple 
geometrical criteria of extracted surfaces. However, methods that 
address this problem are beyond the scope of this work which focuses on 
3D geometrical objects in the form of point clouds or meshes and does 
not require the availability of volumetric image intensity information. 

Construction of Statistical Shape Models. The definition of a 
common set of vertices across different shapes is a necessary step in the 
construction of SSMs. Therefore the order of vertices is fixed according 
to that of a reference subject within the OAI dataset (chosen to be close 
to the average subject) that does not exhibit a severe pathological 
condition. 

Next, all knee structures for each subject are concatenated and 
aligned jointly as a single point cloud by performing Generalized Pro
crustes Analysis. The modes of shape variation are subsequently 

Fig. 3. Correspondence results obtained by the FMNet model on a pair of femoral cartilages. Corresponding points are assigned the same color. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) The resulting functional map C (right) is sparse and diagonally 
dominant, indicating that the two shapes are approximately isometric. 

Fig. 4. Correlation coefficients resulting from the Canonical Correlation Analysis (CCA) of the five knee structures – Femur Bone (FB), Tibia Bone (TB), Femoral 
Cartilage (FC), Medial Tibial Cartilage (TCM) and Lateral Tibial Cartilage (TCL). 
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computed with the weighted variant of the classical PCA and RPCA, 
separately. Depending on the choice of inter-structure relation weights 
wij, two separate cases can be examined.  

• If the matrix Ω = I (in Eq. (9)), a single multi-shape PDM model is 
constructed, containing all the knee components. The resulting 
modes describe the shape variation of all the structures combined.  

• If the matrix Ω contains the correlation coefficients resulting from 
the CCA (Fig. 4), five individual multi-shape SSMs (i.e., as many as 
the number of anatomical structures) are constructed, where each 
SSM describes the variation of a particular structure and its rela
tionship with the other structures. 

The constructed models are fitted to a new shape complex.[Fig.5] To 

evaluate the performance of the constructed SSMs, the fitted shapes are 
first transformed from 3D triangle meshes back to a multi-labeled 
volumetric image based on ray intersection methods (Patil and Ravi, 
2005), and then they are compared with the ground-truth labelmap 
using appropriate measures. In many cases, there appear overlaps or 
intersections between the fitted shapes of the different components of 
the multi-shape model. This issue can be attributed to the representation 
of the multiple structures with a single point cloud in which some of the 
structures are in contact, and therefore strongly affected by small de
formations produced during reconstruction. Such conflicts are resolved 
in the volumetric image representation of the fitted SSM by assigning the 
overlapping area to the smaller structures (i.e., the cartilages). Although 
this approach might seem naïve, in practice the conflict areas are small 
in volume (one voxel layer between two structures), and thus in most 

Fig. 5. Visualization of the reconstructed structures (colored contours) overlaid with the ground-truth (colored regions) (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) in the volumetric image representation. 

Fig. 6. Statistical shape model of the human knee joint consisting of five different structures. A new shape can be estimated by changing the variable b in X̂ = X +

Pcb (shape differences are illustrated based on the distance, measured in mm, from the mean shape (b = 0) shown at the center). Top row shows how the first mode of 
variation (b1 = ±1) affects the estimated shape. Bottom row shows how the second mode of variation (b2 = ±1) affects the estimated shape. 
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cases there is no significant effect on the accuracy. 
SSM-based regularization of segmentation results. One common 

application of SSMs is to regularize the results of automatic segmenta
tion methods [Fig. 6]. Let, ℳS denote the initial segmentation mask 
depicting all the knee compartments of interest. After segmentation of 
the knee compartments in the image space, the previously constructed 
PCA-based and RPCA-based SSMs are fitted to meshes extracted from the 
segmentation masks, and then transformed back to a multi-labeled 
volumetric image ℳSSM. 

We seek for a solution that refines the initial segmentation mask ℳS 
based on the incorporated shape model ℳSSM and some topological and 
regularization constraints in the image space. Specifically, we apply the 
following steps:  

• Fill holes in ℳS that are located within the contour of the fitted 
model.  

• Remove unconnected components of ℳS that are located outside of 
ℳSSM.  

• Remove voxels that have distance larger than the 95% percentile of 
the calculated distances between ℳS and ℳSSM. 

4. Results 

This section is devoted to the evaluation of the individual compo
nents of our methods, and their application in two biomedical applica
tions. Note that, even if we focus particularly on the knee complex, the 
methods are general and can easily be applied to other datasets as well. 

4.1. Effect of registration technique on shape variation 

The first of our series of experiments is dedicated in examining the 
effect of the different shape matching techniques on the ability of the 
constructed SSMs to capture the shape variation in a given dataset. We 
analyze three separate approaches based on the Functional Maps 
framework. Namely, we examine the following cases:  

• Solving FM as the Orthogonal Procrustes problem (Eq. (5)).  
• Solving FM as the Manifold Optimization problem (Eq. (6)).  
• Solving FM using the FMNet model (Litany et al., 2017). 

All results are compared with those calculated with the ICP method 
(Rusinkiewicz and Levoy, 2001), which is one of the most widely used 
methods for point-set registration. All the FM-based approaches are 
post-processed with the correspondence refinement technique described 
in Ovsjanikov et al. (2012). 

Upon the calculation of shape correspondences, multi-shape SSMs 
are constructed with the 253 subjects of the OAI ZIB training set, 
without considering inter-structure correlation (i.e., Ω = I), using the 
classical PCA and RPCA approaches. The produced models are applied to 
reconstruct the remaining 254 subjects in the testing set. The shape 

matching performance is evaluated by the capability of the constructed 
models to represent new shapes. In Fig. 7 we present the results of the 
average DICE scores for the different shape correspondence techniques 
using the PCA-based and RPCA-based SSMs, respectively. 

The first observation is that the FMNet model produces better results 
compared to any other method used in this experiment. Although all 
methods are based on the FM framework, we see that the ability of the 
neural network to extract features from the functions defined on the 
manifolds and use them to compute correspondences, increases signifi
cantly the generalization properties of the constructed SSMs at the 
expense of increased computational complexity (Table 2). Another 
interesting aspect of the FMNet is that even though it is trained on ex
amples constructed using the ICP method, it surpasses the performance 
of the ICP in explaining shape variation. This observation is more 
prominent for the cartilage structures, which are rather thin-structured 
and small in volume, indicating that standard methods like the ICP are 
not the most appropriate for computing point correspondences on more 
subtle shape variation. 

In addition, we compared the compactness of the PCA-based and 
RPCA-based SSMs using the four described correspondence methods. 
The results are presented in Fig. 8 and show that the ICP method pre
sents higher compactness for both PCA and RPCA-based SSMs, whereas 
the FMNet achieves intermediate level of compactness for PCA-based 
models, and slightly lower level for the RPCA-based models. The dif
ference in compactness is mainly attributed to the first component 
which explains significantly higher variance when ICPis used. However, 
this does not necessarily mean that the explained variance originates 
from correctly computed matches across the training shapes using the 
ICP. 

Finally, we provide measurements on the specificity index for the 
constructed PCA-based and RPCA-based SSMs, respectively. First, we 
present the specificity index versus the increasing number of modes used 
to generate random shape instances from the constructed SSMs, illus
trated in Fig. 9. A total of 500 random shape instances are generated for 
each case by selecting random values of b in the range ( − 3

̅̅̅̅̅̅
λm

√
, +

3
̅̅̅̅̅̅
λm

√
), where λm is the m-th eigenvalue resulted from solving SVD as 

described in Eq. (9). In the case of PCA-based SSMs, it is observed that 
the specificity index is smaller only when a small number of modes is 
used. Whereas in the case of RPCA-based SSMs, the specificity index of 
the FMNet and ICP are comparable and approximately constant with 
increasing number of modes. The same applies for the FM Procrustes and 
FM Optimization methods, which show smaller specificity indexes 
compared to the FMNet and ICP. After computing the total number of 
modes required to explain the 98% variance, the final specificity index 
for each case is presented in Table 1. The results indicate that the 
specificity indexes are comparable across the various implemented 
techniques, with the ICP presenting slightly better specificity for the 
PCA-based SSMs and the FM-based correspondence methods being su
perior when RPCA is used for the construction of the SSMs. 

In conclusion, the FMNet presents higher accuracy compared to the 

Fig. 7. Evaluation of the effect of four different shape correspondence methods on the generalization properties of SSMs. The SSMs are built using classical PCA (left) 
and Robust PCA (right) considering the multi-shape PDM scheme for the five knee components. 
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other shape matching techniques, while maintaining comparable levels 
of specificity, though at the cost of being less compact. As a note, in 
many applications (including shape reconstruction and missing struc
ture estimation presented in the following sections), the accuracy of the 
constructed SSMs is considered more important than the compactness 
and the specificity indexes. 

Advantages and Limitations. The main advantage of the FMNet is 
that it does not necessarily require complete objects (different forms of 
partiality can be tackled if adequately represented in the training set 

(Litany et al., 2017)). However, there have still been a few cases where 
the method failed to recover correspondences under extreme partiality. 
The inefficiency to resolve precisely shape correspondence given partial 
shapes is actually a particular limitation of the FM-based methods. This 
is due to the use of Laplacian eigenfunctions, which are inherently 
sensitive to topological changes, and the fact that we did not implement 
explicitly any extension of the framework to account for shape partiality. 
Thus complete shapes cannot be correctly matched to partial shapes, and 
vice-versa. For example, in Fig. 10 we show an instance where some 
elements of a complete shape have no corresponding points due to shape 
partiality. Thus the mapping assigns these elements to those of the other 
shape that express similar local shape characteristics, without actually 
representing anatomically correct correspondences. 

However, since the solution under shape partiality is not invariant to 
the direction of the transformation, strong inconsistencies between the 
forward mapping (from the complete to the partial shape) and the in
verse mapping (from the partial to the complete shape) could reveal 
regions with strong topological changes, such as missing parts. These 
outlier regions might even prove to be useful for disease localization, as 
performed in imaging-based approaches that detect pathology as devi
ation from the expected distribution (Erus et al., 2014; Zacharaki and 
Bezerianos, 2011). 

4.2. Improving object segmentation 

In this experiment we wanted to investigate whether our developed 
SSMs could be used to improve image segmentation results. For that 

Fig. 8. Comparison of the compactness level of the constructed PCA-based (left) and RPCA-based (right) SSMs using the four shape correspondence methods. The 
explained variance and the accumulated variance are illustrated with increasing number of modes. 

Fig. 9. Evaluation of the effect of the four shape correspondence methods on the specificity index of the PCA-based (left) and RPCA-based (right) SSMs, with 
increasing number of modes. A total of 500 random shape instances are generated with the use of the SSM in each case by selecting random values of b in the range ( −
3

̅̅̅̅̅̅
λm

√
, + 3

̅̅̅̅̅̅
λm

√
), where λm is the m-th eigenvalue obtained by solving SVD in Eq. (9). 

Table 1 
Specificity index (measured in mm) of the PCA-based and RPCA-based SSMs, 
using the four shape correspondence methods.   

PCA RPCA 

FM Procrustes 115.52 113.12 
FM Optimization 115.58 112.95 
FMNet 114.41 114.04 
ICP 114.35 114.06  

Table 2 
Average execution time (in seconds) of the individual correspondence methods 
for a pair of shapes of the knee complex.  

ICP FM procrustes FM optimization FMNet 

0.36 1.75 13.11 2.74  
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purpose, we produced image-based multi-label segmentation masks of 
the bones and cartilages from the OpenKnee dataset using a method 
(Nikolopoulos et al., 5678) (recently implemented in our group) based 
on a multi-atlas segmentation with label fusion and corrective learning 
approach (Wang and Yushkevich, 2013). We fitted the constructed 
PCA-based and RPCA-based SSMs (with Ω = I) to meshes extracted 
from the segmentation masks and we applied the topological and reg
ularization constraints in the image space, as described in Section 3. We 
distinguish the cases where the models are fitted using Eq. (11) (exact 
fitting process) and Eq. (13) (regularized fitting process). 

After the SSM-based processing step, the DICE scores and Hausdorff 
distances of the initial masks ℳS and the regularized masks ℳR, 
compared to the ground truth masks outlined by human experts, are 
calculated and presented in Figs. 11 and 12 , respectively. It can be 
observed that the differences in DICE scores are marginal, but the 
improvement in the Hausdorff distances is quite noticeable, resulting in 
more robust estimation of the ground-truth label maps. In more details, 
the change in DICE is small when the shape of a structure changes only 
locally, whereas the average Hausdorff distance decreases considerably, 
i.e., 2.22 – 2.27 mm (13.55% – 14.11%) for the FB, 3.04 – 3.16 mm 

Fig. 10. Example of shape matching in case of extreme shape partiality due to osteoarthritis. In the top row, the FM framework fails to map elements of one shape 
(𝒳) to another (𝒴), as the mapping occurs from the full to the partial shape. In this case, points with no counterparts are mapped to regions of the partial shape that 
present highest similarity. In the bottom row, the mapping occurs from the partial to the full shape, in which corresponding points exist. 

Fig. 11. Average DICE scores of the regularized segmentation masks ℳR. The maximum decrease in average DICE score (0.36%) was observed for the TCM using the 
RPCA-based SSM model with the regularized fitting scheme. 
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(27.75% – 28.6%) for the TB, 0.32 – 0.81 mm (4.55% – 11.52%) for the 
FC, 0.29 – 0.4 mm (5.67% – 7.83%) for the TCL, and 0.26 – 0.29 mm 
(6.34% – 7.07%) for the TCM, indicating a better segmentation 
outcome. With the only exception of TCL, the RPCA-based SSMs produce 
better results compared to the classic PCA-based models. When com
bined with the regularized shape fitting process, the RPCA-based models 
achieve maximum decrease in Hausdorff distance for the FB, TB and 
TCM. As a note, one should also consider the additive effect of inter
polation artefacts from the change of coordinate systems, i.e., from a 
regular volumetric grid used in image-based segmentation to an un
structured point cloud for shape reconstruction, and vice versa. The 
differences in the resolution level between the two coordinate systems 
might smooth out local extremities. 

The execution time of the fitting process for the classical PCA-based 
and RPCA-based SSMs, using the exact or regularization fitting scheme 
are presented in Table 3. It is observed that the average processing time 
of the PCA-based model using the regularization fitting scheme is much 
longer than the other methods. This is mainly attributed to the larger 
number of variation modes required by the model to explain the pre
defined variation. Specifically, the PCA models are described using 135 
modes, whereas the RPCA models are described using only 29 modes. 

4.3. Prediction of missing structures 

In the last experimental setup, we try to exploit the ability of SSMs to 
encode information about the shape variation of neighboring structures 
in order to infer the shape and pose of a missing structure in a new shape 
complex. In particular, using the individual SSMs that encode the 
interdependence between structures through CCA, we conduct shape 
inference about each missing structure modeled by the corresponding 
SSM. That is, knowing how the shape variation of the known structures 
affects the shape variation of the unknown one, we calculate an estimate 
of the missing structure that is close to the shape observed in the training 
set. For example, in the case of severe varus osteoarthritis, if the bone 
attrition in the medial tibia increases, the cartilage degeneration in the 
lateral femoral condyle and tibial plateau tends to increase too 

(Nakagawa et al., 2015). 
For a new shape complex we assume that only a single structure is 

missing, although the methods can be used for multiple missing struc
tures as well. The procedure begins by first fitting the SSMs using the 
optimization scheme described in Eq. (13) where the target shape is 
described by the matrix Yi =

(
y1;…; yi− 1; yi+1,…; ym

)T containing the 
coordinates of the four out of five structures in a new multi-structure 
complex. Since we are interested in estimating structures that are 
difficult to segment, we assume that the missing structure yi is one of the 
cartilage tissues. The calculated parameters b can be used for the full 
SSM containing all five structures to produce an estimate ỹi of the 
missing structure. 

In order to assess the effect of regularization, we present in Fig. 13 
the average DICE score and Hausdorff distance for each reconstructed 
missing structure, across 10 randomly selected test subjects, for regu
larization weight w ranging from 0 to 1. We selected a rather small 
number of subject to illustrate our concept because the computational 
time for multiple experiments (PCA, RPCA, 3 cartilage structures, mul
tiple regularization weights) was very large. Nevertheless, the subjects 
were selected to include evenly distributed easy and difficult cases. This 
was performed by sorting the subjects according to the obtained fitting 
accuracy without regularization and then uniform sampling across the 
whole range. The graphs show the average (across subjects) perfor
mance (blue line) and the standard deviation (cyan region) for each 
regularization weight. It can be observed that small values of the regu
larization weight can improve the reconstruction outcome, while larger 
values tend to reduce accuracy. A single value, that exhibits optimal 
performance in terms of both DICE scores and Hausdorff distances 
(namely 1e− 10), was selected and held constant throughout the 
following experiments. 

We predict the shape and pose of the femoral and tibial cartilages for 
all the subjects within the testing set of the OAI ZIB dataset, using the 
PCA-based and RPCA-based models and we measure the average DICE 
scores of the predicted structures with respect to the ground-truth. The 
prediction accuracy is also compared with results derived from shape 
reconstruction by exact fitting presented in the first experiment (Section 
(4.1)) where all shapes where known. The results for the PCA-based and 
RPCA-based models are shown in Fig. 14. The difference in accuracy 
between shape reconstruction and prediction was expected since for the 
latter no information was used for the pose, orientation or conformation 
of the unknown structure. In addition, the cartilages exhibit severe cases 
of osteoarthritis, which is difficult to predict based on the knowledge of 
the remaining structures. 

In Fig. 15 we illustrate the spatial distribution of the distance error of 

Fig. 12. Average Hausdorff distance of the regularized segmentation masks ℳR. The maximum reduction in Hausdorff distance was achieved with RPCA and 
regularized fit for 3 (out of 5) structures, i.e., the FB (11%), the TB (28.6%) and the TCM (7.83%). 

Table 3 
Average execution time (in seconds) of (exact and regularized) fitting process 
using the constructed PCA and RPCA-based SSMs.  

PCA PCA RPCA RPCA 
(Exact fit) (Regularized fit) (Exact fit) (Regularized fit) 

15.5 672 5 15.8  
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the predicted shapes from the ground-truth mapped in the common 
space of the mean shape of the PCA-based SSM and averaged over all test 
subjects. Largest error values tend to occur at the boundary regions of 
the structures with higher curvature, indicating that the model has 
higher uncertainty in the representation of finer details in the shape of 
the structures. Moreover, we observe that in contrast to the femoral 

cartilage and lateral tibial cartilage, all regions of medial tibial cartilage 
are predicted with high consistency. This might be attributed to higher 
variability of the former two in comparison to the latter. In any case, the 
aim of this approach is not to accurately represent the missing shape, but 
rather to provide a first estimate of the unknown structure that can be 
used as an initialization process of other automatic segmentation algo
rithms. Lastly, recall that this procedure can be transferred across any 
imaging modality, so the shape inference can be conducted in cases 
where cartilages, or any other modeled structures, cannot be easily 
distinguished in the available images, such as, e.g., in computed 
tomography. 

5. Discussion and conclusions 

In this work we provided an overview of the principles of 3D shape 
modeling and presented a novel approach that combines statistical and 
deep learning techniques for reconstruction and estimation of anatom
ical compartments. The advantages of our approach were illustrated in 
the challenging task of modelling the human knee under various con
ditions (normal or pathological state and complete or partial shapes). 
We specifically focused on building multi-structure shape models, while 
taking into consideration the relationship between the individual 
anatomical structures through correlation analysis. This framework can 
be considered as a generalization of the methods used for statistical 
shape modeling, which efficiently characterize individual structure 
variability and relationship between different structures. The con
structed models can also be parameterized differently to be equivalent to 
a wide variety of alternative SSM approaches, including the classic PDM. 

The most fundamental requirement for the construction of statistical 
models is the identification of pairwise correspondences across the 
shapes. In particular, our main focus has been on the recently proposed 
framework of Functional Maps which generalizes the notion of shape 
matching. By creating different representations of the shapes using 
shape descriptors, and projecting them on an orthonormal basis in the 
function space of the shapes, the problem of shape correspondence be
comes a system of linear algebraic equations. We investigated the per
formance of different approaches exploiting the Functional Maps, and 
we compared them with standard methods found in literature. In addi
tion, we have demonstrated that by incorporating machine learning 
techniques, and specifically deep neural networks, it is possible to in
crease the captured shape variability and concomitantly the general
ization properties of SSMs. To the best of our knowledge there are no 
other studies examining the potential of Deep Functional Maps to 
enhance the ability of SSMs to capture shape variation, avoiding the 
need of high correspondence quality in advance. Note that Functional 
Maps require the shapes to differ only by isometric deformations, an 
assumption that might not hold in the case of real anatomical structures 
that usually differ significantly among different subjects. However, since 
our main focus has been on the individual anatomic compartments of 
the knee complex, it is reasonable to assume that the variation of these 
smaller structures across individuals can be expressed by isometric de
formations and that the intrinsic geometry of the shape is preserved. 
This assumption is mainly violated in case of a pathology like 
osteoarthritis. 

An important application of SSMs is their adaptation to an initial 
shape. Model fitting allows to transfer any knowledge encoded in the 
statistical model directly to a new shape instance. In the case of defective 
shapes obtained from imprecise image segmentation, in order to avoid 
overfitting, we introduced an optimization scheme that constrains the 
allowed variation to plausible shapes. We applied this regularized 
approach on structures of the knee complex acquired from MRI data, and 
showed an improvement in accuracy over multi-atlas based image seg
mentation. In particular, the Hausdorff distance was reduced on average 
by 13.8% across all structures. From an image segmentation perspective, 
volumetric approaches, e.g., based on deep learning (Ambellan et al., 
2019), are much more stable than point cloud-based approaches, as they 

Fig. 13. Effect of the regularization weight w in Eq. (13) on the average DICE 
scores and Hausdorff distances after the reconstruction of missing structures, 
using the PCA and RPCA SSMs. Shaded regions represent the standard deviation 
from the mean value. 
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have significantly more information content, such as the texture of 
surrounding structures. Nevertheless, medical image segmentation 
based on deep learning requires a large amount of data with delineated 
structures for training, whereas the construction of SSMs requires a 
significantly smaller amount of data, and the data do not even have to be 
volumetric (i.e., 3D images). Therefore, our aim was to illustrate the use 
of SSMs as a supplementary step that could help improve segmentation 
in the case of data-related limitations, as in the case of the OpenKnee 
dataset which contains only 7 subjects that can be used for training. 

Finally, we took advantage of the ability of SSMs to encode the 
relationship between neighboring structures in order to estimate the 
shape and pose of a missing or unknown structure in a new data com
plex. This has the potential of conducting shape inference on image 
modalities that are not sensitive in visualizing certain biological tissues, 
or it can be used as an initialization process for other automatic seg
mentation methods. 

One problem that arises in the context of multi-structure shape 
modeling is the joint alignment of the structures as a single point-cloud. 
Besides the shape differences, the alignment of a global point cloud also 
neglects subtle pose differences of one shape in respect to another. This 
affects significantly the ability of linear shape models to represent new 
shapes, especially smaller and flexible structures like the cartilages, 
which exhibit considerable amount of natural variability. 

In future work, we intend to tackle the problem of joint modeling of 
multiple shapes, by modeling the rigid transformations and the shape 
variation of individual structures. Creating separate statistical models 
for the pose and shape parameters can potentially allow us to better 
characterize locality of each structure and thereby capture more accu
rately the shape variation. Also, we will further examine the use of 
regularization constraints and shape priors to better address the problem 
of shape partiality. Finally, we envision an approach for statistical shape 
analysis in the functional eigenspace, where shape variability is 

described through changes in the harmonic content of shape descriptors. 

Supplementary Material 

Online information related to this publication, including source 
code, data, and results, can be found at the following link: https://gitlab. 
com/vvr/publications/regularized_knee_ssm 
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respectively. 

Fig. 15. Spatial distribution of the distance error of the predicted shapes (FC (left), TCM (middle) and TCL (right)) compared to the ground-truth geometries 
averaged for 15 random subjects in the common space of the mean shape of the PCA-based SSM. 
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