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Abstract Life-long chronic inflammatory diseases of the
airways, such as asthma and Chronic Obstructive Pul-
monary Disease, are very common worldwide, affecting
people of all ages, race and gender. One of the most impor-
tant aspects for the effective management of asthma is
medication adherence which is defined as the extent to
which patients follow their prescribed action plan and use
their inhaler correctly. Wireless telemonitoring of the medi-
cation adherence can facilitate early diagnosis and manage-
ment of these diseases through the use of an accurate and
energy efficient mHealth system. Therefore, low complexity
audio compression schemes need to be integrated with high
accuracy classification approaches for the assessment of
adherence of patients that use of pressurized Metered Dose
Inhalers (pMDIs). To this end, we propose a novel solution
that enables the energy efficient monitoring of metered dose
inhaler usage, by exploiting the specific characteristics of
the reconstructed audio features at the receiver. Simulation
studies, carried out with a large dataset of indoor & out-
door measurements have led to high levels of accuracy (98
%) utilizing only 2 % of the recorded audio samples at the
receiver, demonstrating the potential of this method for the
development of novel energy efficient inhalers and medical
devices in the area of respiratory medicine.
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Introduction

Asthma is a chronic disease of the airways that affects more
than 235 million people worldwide [1]. In the region of
Europe, 30 million adults suffer from asthma [2], while the
number of children suffering from the disease is continu-
ously rising [3]. This diversity of asthma prevalence is a
global phenomenon [4] and reveals the inability of even
developed countries to effectively support asthma patients
[5]. Moreover, the socioeconomic consequences of asthma
disease that reduce the quality of life of patients and the
efficiency of the healthcare system [6], underline the need
for novel healthcare approaches and innovative devices in
support of patients and healthcare professionals.

One of the most important aspects for the effective man-
agement of asthma is medication adherence; the extent to
which patients follow their prescribed action plan and use
their inhaler correctly [7]. Reduced adherence has been
associated with asthma attack incidents and patient hospi-
talizations [8]. Wireless telemonitoring of the medication
adherence can facilitate early diagnosis and management of
these diseases.

Several experts from the fields of information and com-
munication technologies, respiratory medicine, and inhaler
devices, focus on designing novel mHealth systems for
monitoring medication adherence [9]. Most of these devices
give a day-to-day measure of inhaler use but they do not
assess inhaler technique. Detection of technique errors is
traditionally carried out through a face to face process with
a clinician [10]. However there is no way of assessing
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technique performance once the patient returns home.
Hence, the limitations of all of these methods suggest that
there is a need for a technology to longitudinally and
objectively monitor both temporal and technique adher-
ence. One promising sensing approach adopted by elec-
tronic inhaler devices that can be used for overcoming the
aforementioned limitation is the use of microphones.The
recorded audio sounds can be processed and used to indi-
cate not only inhaler actuation but also other critical events
like inhalations and exhalations. Apart from the obvious
advantages, wireless telemonitoring of inhalation technique
adherence through processing of audio recordings requires
new schemes and algorithms to be implemented in order to
optimize important parameters, such as: (i) the energy con-
sumption (ii) the total hardware cost and (iii) the accurate
monitoring of events related to medication adherence. Low
energy consumption significantly increases the battery life-
time of the audio sensor, while the hardware cost reduction
makes the mHealth system economically viable for indi-
vidual customers. Both requirements motivate the design
and integration of compression/reconstruction schemes with
high compression ratio capabilities, reduced computational
requirements with state-of-the-art sophisticated classifica-
tion methods.

The vast majority of audio compression schemes avail-
able in literature [11] charge the transmitter with most of the
processing, thus not coping effectively with the aforemen-
tioned requirements. Compressed Sensing (CS) approaches
for signal compression/reconstruction offers an affordable
solution for audio compression in wireless sensor net-
works [12]. To the best of our knowledge, this is the first
work that demonstrates the benefits of CS based compres-
sion/reconstruction schemes at the efficient telemonitoring
of medication adherence. More specifically, the contribu-
tions of our work can be summarized as follows: i) We
enhance the benefits of the conventional CS schemes pro-
posed in [12], by taking into account specific characteristics
(e.g., block sparsity, sample correlation) of the audio fea-
tures, using a novel recovery algorithm named Decorrelated
Group LASSO (DG LASSO), ii) we then integrate the DG
LASSO, with state of the art classifiers allowing high levels
of accuracy (98 %), from a very small number of linearly
encoded samples increasing significantly the system energy
efficiency, since then number of required encoded samples
corresponds to the 2 % of the recorded ones.

The rest of the paper is outlined as follows: Section 2
includes a detailed summary of prior art. Section 3, presents
preliminaries related to CS. The system model is discussed
in section 4. Section 5, describes the proposed compres-
sion/reconstruction schemes. In Section 6, we present the
adopted classification approaches. Section 7 presents the
performance of the proposed schemes, highlighting the

strengths and weaknesses. Finally, Section 8 concludes this
paper.

Related works

One of the most important aspects for the efficient and
effective management of asthma is the extent to which
patients adhere to their prescribed action plan and use their
medication correctly. Reduced adherence has been linked
with significant indicators of health degradation [8]. More
specifically, 24 % of the exacerbations and 60 % of hospi-
talizations can be credited to poor adherence [13]. A crucial
step in this direction, is the formation of a sensing frame-
work that can provide accurate information about the health
of patients and help their doctors understand potential dif-
ficulties that prevent their patients from using their inhalers
correctly [14]. Within this concept, a number of review stud-
ies have been recently published focusing on commercial
products and their characteristics from the clinical point of
view [9, 15–19].

The first of these studies has reviewed oral and nebu-
lized medication monitors in addition to inhaler monitoring
devices [16]. Two other studies provided a detailed review
of the currently available devices focusing on the clini-
cal point of view and producing a useful guide on how
researchers and clinicians can select the most appropriate
product and how to utilize the full spectrum of its capabili-
ties [17, 18]. Finally, a recent work has provided a summary
of the most common electronic monitors of inhaler adher-
ence, but focused on measured dose inhalers (MDI) and
mentioned some indicative devices for dry powder inhalers
(DPI) [9]. The modern adherence monitoring environment
has been also analyzed, dealing with the interpretation of
results and the design of interventions that promote adher-
ence [19].

The majority of devices presented above are based on
electromechanical sensing capabilities, ranging from sim-
ple push buttons attached on the top of the inhaler’s canister
up to force sensing elements attached on the back of the
inhaler’s plastic casing. However, this approach is capable
of identifying inhaler actuation, completely ignoring actions
related to inhalation, exhalation prior to or subsequently
to inhaler actuation [7]. One promising sensing approach
adopted by electronic inhaler devices that can be used for
overcoming the aforementioned limitation is the use of
microphones. The recorded measurements can be locally
processed and used to indicate not only inhaler actuation
but also other critical events like inhalations and exhala-
tions. A recent publication by Taylor et al. [20] introduced
a fundamental and robust approach for the detection of
MDI actuations, through context based audio classification
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in the laboratory environment. As an alternative approach,
the authors in [21] utilized Convolutional Neural Networks
aiming to produce more accurate results for real life envi-
ronments. Although the aforementioned works focus on
monitoring inhlaed medication using microphones, they
mostly focus on identifying inhaler actuation without taking
into account other critical events like inhalations and exha-
lations, while they completely ignore the energy required
for transmitting these sounds and the robustness of the
classification approaches to communication errors.1

Preliminaries on compressed sensing

CS provides a way of reconstructing a sparse signal x ∈ R
N

from a small number of linearly combined measurements
[24]. The Random Linear Combinations (RLC) y ∈ R

M ,
M < N , are generated using a random matrix A ∈ R

M×N

with i.i.d. elements as: y = Ax+w, where w is a vector with
noise samples..

Reconstruction by exploiting sample sparsity

In the noise-free case (w = 0N ), vector x may
be ideally recovered from y by solving the problem:
minx {‖x‖0 : y = Ax}, where ‖·‖0 denotes the �0-norm that
equals the number of nonzero entries in x.

In order for the signal reconstruction to be robust in
the presence of noise, the problem constraint is relaxed
to: minx

{‖x‖0 : ‖y − Ax‖22 ≤ ε
}
, where ε is an error tol-

erance and ‖ · ‖2 is the �2-norm of the input vector,
respectively. The above optimization problem cannot be
used for practical applications, since it is computation-
ally intractable. CS suggests replacing the �0 quasi-norm
by the convex �1-norm and solving the following prob-
lem: minx

{‖x‖1 : ‖y − Ax‖22 ≤ ε
}
, where the �1-norm is

defined as ‖x‖1 = ∑N
i=1 |xi |. By employing Lagrangian

relaxation, we are able to efficiently approximate the solu-
tion of the aforementioned problem by solving the �1
regularized least squares problem:

x̂ := argmin
x

‖y − Ax‖22 + λ‖x‖1, (1)

where the parameter λ controls the balance between the
two optimization objectives: (i) the noise level ‖y − Ax‖22
and (ii) the sparsity of vector x. Algorithmically, the convex
optimization problem in Eq. 1, known as the the LASSO

1Most of the energy consumption of a biosensor comes from the radio
frequency power amplifier [22]

problem, can be tackled by any generic second-order cone
program solver.

Reconstruction by exploiting block sparsity

A block sparse signal consists of clusters of zero and non
- zero coefficients. To be more specific, vector x can be
viewed as a concatenation of R blocks of length d:

x = [ x1, . . . , xd︸ ︷︷ ︸
xT [1]

, xd+1, . . . , x2d︸ ︷︷ ︸
xT [2]

, . . . , xN−d+1, . . . , xN︸ ︷︷ ︸
xT [R]

]T ,

(2)

where x [i] denotes the ith block and N = Rd .
Similarly to Eq. 2, we can represent matrix A as a

concatenation of sub-matrices A [i] of size M × d: A =
[ A [1] , A [2] , . . . A [R] ].

The block-sparse structure enables the signal recovery
from a reduced number of samples, compared to sample
sparse structures. To exploit block sparsity, we have to
reconstruct vector x by solving:

x̂ := argmin
x

‖y −
R∑

i=1

A [i] x [i] ‖22 +
R∑

i=1

λi‖x [i] ‖2, (3)

which is also known as the Group LASSO (GLASSO)
problem [23].

Reconstruction by exploiting sparsity in a transform
domain

In many applications, although the signal x is not sparse in
the time domain, it can be sparse in other domains. There-
fore, x can be expressed as x = Ws, where W ∈ R

N×N is
an orthonormal basis matrix of a transformed domain and s
is the representation coefficient vector, which is sparse. In
such cases, in order to exploit either the sample or the block
sparsity of s in the transformed domain, instead of Eq. 1 or
Eq. 3, we can solve:

ŝ := argmin
s

‖y − AWs‖22 + λ‖s‖1 (4)

ŝ := argmin
s

‖y − AWs‖22 +
R∑

i=1

λi‖s [i] ‖2 (5)

and then reconstruct x̂ = Wŝ.

System model and audio features

Figure 1 illustrates the telemonitoring system under study.
In particular, we consider two different settings, namely
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Fig. 1 Proposed architecture

the low encoding setup (LES) and the complex encoding
setup (CES). In the LES, the acoustic sensor (source node),
records a real time audio sound and transmits to the decoder
(e.g., smartphone) RLC’s of the recorded samples. At the
decoder, the features are reconstructed from the encoded
audio samples and then used for the audio classification
problem. This significantly reduces the processing require-
ments at the transmitter, since it allows the extraction of
features at the receiver side, and performs audio compres-
sion by simply generating random linear combinations of
the digitized samples. In the CES approach, the sensor
node evaluates the audio features and transmits random lin-
ear combinations of the features, allowing the decoder to
directly execute the audio classifiers using the reconstructed
features.

In both settings, the audio signal is recorded, digitized,
and divided into segments of N = fs/2 samples that corre-
spond to 0.5 sec of audio, e.g., x = [x1, . . . , xN ]T , where
xi ∈ R. In the LES, we assume that the transmitted samples
contains noise and, as a result, may be written as u = x+
ws , where u = [u1, . . . , uN ]T are samples of the noisy sig-
nal and ws = [w1, . . . , wN ]T is the random noise. For each
segment, the source generates M random linear combina-
tions (see Fig. 1) by using a random matrix A of dimension
M × N and performs quantization as follows:

yq = Q(Au) = Ax + wq, (6)

where Q : � → Yi is a scalar quantization function, andwq

represents the combination of the sensing and quantization

error. The encoded samples are then quantized, and yq is
transmitted to the decoder where the reconstruction of the
features and the classification of the audio segments takes
place.

In the CES, we extract the features at the encoder and
then compress them using a random matrix A. Motivated
by the fact that existing acoustic approaches [20] suggest
the use of time-frequency analysis to automatically detect
pMDI actuations, we suggest deriving the audio features
from the spectrogram of the samples that is generated by
applying a short time Fourier Transform. To be more spe-
cific, the audio features fi are represented by a one dimen-
sional vector containing a summation of all high frequency
content at a given time index i = 1, . . . , R.

At this point, it should be mentioned that there are sev-
eral ways of constructing matrix A for encoding the audio
samples/features that directly affects i) the storage and
processing requirements at the transmitter side, ii) the com-
munication load and iii) the storage requirements at the
receiver. Below we present the most widely used sensing
matrices in the literature of CS [24]:

Gaussian random encoding

By selecting the coefficient Ai,j ∼ N (0, 1/
√

N) as Gaus-
sian i.i.d. elements the recovery conditions are satisfied.
Even though the authors in [2]showed that the quantization
of the Gaussian elements do not affect significantly the sig-
nal quality loss, the aformentioned choice requires i) the
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implementation of a Gaussian distributed random generator,
ii) the multiplication of the audio samples/features with real
values iii) the storage of a large matrix with real values.

Binary random encoding

An alternative approach is to select the i.i.d. entries of
matrix A from the Bernoulli distribution, i.e. Ai,j =
±1/

√
N with probability 0.5. It has been shown that the

aforementioned matrix reduces significantly the processing
at the transmitter, while satisfying the recovery conditions.
Note that the transmitted data are generated by simply
adding/subtracting the original audio samples/features.

Sparse binary random encoding:

To reduce even more the required compression complex-
ity, the entries Ai,jmay be selected according to: Ai,j are
either {1, 0} with probabilities {1/s, 1 − 1/s} where s is
a parameter that determines the degree of sparsity of the
sensing matrix A. The authors in [26] showed that sparse
random matrices still yields good recovery properties. The
optimal choice of s depends on the structure of the audio
signal/features and the decoding algorithm that is used at the
receiver side.

In general, it is assumed that the encoding matrix A is
known at the destination in order to perform reconstruction
of the audio samples/features. To overcome this limita-
tion, the random linear matrix A is constructed both at the
encoder and decoder using a pseudo-random number gen-
erator (PRNG) that generates a sequence of numbers that
approximate the properties of random numbers, as shown in
Fig 1. The generated sequence, is completely determined by
a random seed, represented by a single real number that is
the only information that has to be transmitted at the receiver
side. To reduce even more the communication requirements
the same seed is used for encoding a large number of audio
segments/features. Therefore even if we take into account
the overhead for transmitting this seed, the calculated com-
pression ratio at the decoder is not affected at all, since the
same seed is used for encoding a large number of audio
samples/features.

Efficient recovery of the audio features

The DCT coefficients of audio signals are usually mod-
eled as multivariate Gaussian distributions with a specific
correlation matrix [25]. Thus, we assume that both the rep-
resentation of the audio samples in the DCT domain (s =
Dx, where D is the DCT matrix) and the time-frequency

features (f) in the CES setup are, to a certain degree, tempo-
rally correlated. In the following section, we propose a novel
recovery algorithm (DG LASSO) that efficiently exploits
these temporal correlations, enabling the features recon-
struction either the reconstruction of the DCT coefficients
(LES case) or the reconstruction of spectrogram features
(CES case), from less received measurements.

Temporal correlation-aware block sparse recovery

Let us assume that: (i) the matrix Ri ∈ R
d×d captures the

correlation structure of the i-th block of x, x [i], and (ii) the
correlation between elements of different signal blocks is
zero, e.g.,

E
[
x [i] xT [j ]

]
=

{
Ri if i = j

0 if i 	= j
(7)

Each block correlation matrixRi can be approximated by
a Toeplitz symmetric matrix:

Ri =

⎡

⎢⎢⎢
⎣

r0 r1 . . . rd−1

r1 r0 . . . rd−2
...

. . .
. . .

...

rd−1 . . . r1 r0

⎤

⎥⎥⎥
⎦

. (8)

The values of rk , k = 0, . . . , d − 1, can be estimated by
assuming that intra-block correlation follows an exponential
correlation model by making the approximation rk = rk ,
k = 0, . . . , d − 1 and selecting specific values for r that
capture the degree of correlation between adjacent samples.

Based on the fact that the GLASSO become more effi-
cient when the difference between the norms of non-zero
blocks is small, we propose a practical way to achieve
this (especially in highly correlated cases) by performing
block-sparse reconstruction of the decorrelated segment dx,
written as:

dx = R−1/2x, (9)

R−1/2 =

⎡

⎢⎢
⎣

R−1/2
1 0d . . . 0d

. . .
. . .

. . . . . .

0d . . . . . . R−1/2
R

⎤

⎥⎥
⎦ . (10)

Consequently, by solving the problem defined in Eq. 5 after
selectingW = R1/2:

d̂x:=argmin
dx

‖y − AR1/2dx‖22 +
R∑

i=1

λi‖dx [i] ‖2, (11)
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allows us to recover the coefficient of the original vector at
the receiver, by eliminating any temporal correlations within
signal blocks (intra-block correlation), therefore controlling
the block sparsity of the decorrelated segment dx ,.

In the LES, the recovery of the DCT coefficients
after adopting the aforementioned approach, maybe written
as:

d̂s:=argmin
ds

‖y − AD−1R1/2ds‖22 +
R∑

i=1

λi‖ds [i] ‖2, (12)

and ŝ = R1/2d̂s. Then, the features used for the classifica-
tion are evaluated as

fLES =
[∥∥ŝ [1]

∥∥
l2

, . . . ,
∥∥ŝ [R]

∥∥
l2

]
, (13)

where R = N/d .
Similarly, in the CES case we reconstruct the features as:

d̂f:=argmin
df

‖y − AR1/2df‖22 +
R∑

i=1

λi‖df [i] ‖2, (14)

and then we evaluate the features as: fCES = R1/2d̂f.

Feature classification for medication adherence

In order to differentiate inhaler actuations, exhalations and
inhalations from noise, we performed pattern classification.
Given a set of subjects described by features, including
a special categorical attribute called class, classification
aims to create a mapping between each class value and the
combination of values of the rest features. Then, a clas-
sifier is able to predict the unknown classes of subjects,
given their feature values (e.g., reconstructed features).
We used the following types of state-of-the-art classifiers
[31]:

Support vector machines (SVM)

The SVM is applied both to linearly and non-linearly
separable data, with the use of kernel transformations.
Specifically, it transforms the data to a higher dimension,
from where it can identify a hyperplane that separates the
data.

AdaBoost (AB)

AdaBoost is the most common boosting algorithm.2 It uses
decision trees as weak learners and treats them sequentially.
Subsequent decision trees are tweaked in favor of those
subjects misclassified by previous decision trees.

Random forests (R-F):

Each tree is constructed by a bootstrap sample from the data,
using a small set of attributes selected from a random set.
Once the forest is formed by the training data, test subjects
are percolated down each decision tree and trees make their
respective class predictions. The accuracy of random forest
overall depends on the strength of each individual tree and
the correlation between any two trees.

Simulation results

The focus of this study is to identify the strengths and
weaknesses of the two different setups (LES and CES),
and the energy efficiency (EE) of the mHealth system.
We also evaluate the effects of the different reconstruction
and classification approaches, with respect to the achieved
classification accuracy and EE. The proposed telemonitor-
ing schemes are studied by using audio segments recorded
during the used of an inhaler according to the guidelines
provided in [7]. In specific, the correct usage of a pMDI
is defined according to clinical expert’s suggestions by the
next steps. a) Remove the cap. b) Breathe out (exhale), away
from your inhaler. c) Bring the inhaler to your mouth. Place
it in your mouth between your teeth and close your mouth
around it. d) Start to breathe in (inhale) slowly. Press the
top of your inhaler once and keep breathing in slowly until
you have taken a full breath. e) Take away the inhaler from
your mouth and hold your breath for about 10 seconds, then
breathe out (exhale).

Those recordings are divided into 0.5 sec of audio
segment that are classified into noise, inhaler actuations,
inhlations and exhalations. The measurements are collected
from indoor and outdoor environments using a record-
ing device composed of a wireless Bluetooth microphone
attached to the pMDI and a smartphone. Due to the lack
of a single standard inhaler usage dataset, we constructed a
database consisting of 500 inhaler activation samples, and

2Boosting is a classification ensemble meta algorithm that was built
to answer the following question: can a set of weak learners create a
single strong learner? A weak learner is defined to be a classifier which
can classify subjects slightly better than random guessing. A strong
learner is a classifier that is correlated with the true classification
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Fig. 2 a Time frequency analysis & features of original signal (b) Evaluation in term of energy efficiency - LES case (Dataset 1) (c) Evaluation
in term of energy efficiency - CES case (Dataset 1) (d) Evaluation using (Dataset 2)

500 noise samples (Dataset-1) and a database that con-
sist of 200 inhaler actuations, 200 inhlation, 200 exhalation
and 200 noise samples (Dataset-2). Classification aims at

distinguishing these types of audio sounds using the set
of features that were extracted as described above. These
sounds were recorded using 4 kHZ sampling rate and 4-bit

Table 1 LES: CR vs
Classification accuracy using
Dataset 1

CR Decoder

Original LASSO GLASSO DGLASSO

SVM AB R-F SVM AB R-F SVM AB R-F SVM AB R-F

0.05 98.3 98.8 98.3 91.3 91.8 90.6 95.9 97 96.7 96.7 97.2 97.1

0.1 98.3 98.8 98.3 92.5 93.5 93.7 98 97.8 97.8 98.1 98 98

0.15 98.3 98.8 98.3 95.5 96.1 95.8 97.7 98.1 98.3 98.2 98.6 98.6

0.2 98.3 98.8 98.3 97 97.3 96.9 98.5 98.5 98.4 98.5 98.8 98.3
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Table 2 CES: CR vs
Classification accuracy using
Dataset 1

CR Decoder

Original LASSO GLASSO DGLASSO

SVM AB R-F SVM AB R-F SVM AB R-F SVM AB R-F

0.4 98.3 98.8 98.3 94.4 94.3 93.9 94.6 94.1 94 97.2 98.5 97.6

0.5 98.3 98.8 98.3 97 96.9 95.8 97 96.6 95.7 98.3 98.8 98.2

0.7 98.3 98.8 98.3 97.2 97.1 96.4 97.4 96.7 96.4 98.7 99 97.7

0.8 98.3 98.8 98.3 97.6 97.7 97 97.6 97.7 96.7 98.9 98.6 98.4

depth (lq = 4). Two healthy individuals participated in the
study and were used to produce the databases of the audio
samples.

Simulation setup

We assume that each breath signal, is divided into segments
of N = 2000 samples. In both the LES and CES, the encod-
ing is performed using a binary matrix and we consider
three types of decoders: (i) the conventional LASSO (ii) the
GLASSO and iii) the DG LASSO presented in section 5.
These algorithms were adopted to extract the features that
were then used for classification. Then, we employed the
different classifiers presented above (i) SVM, (ii) AB and
(iii) R-F. The first dataset used for classification (Dataset-
1) was composed of 1000 subjects (500 inhaler activation
samples and 500 noise samples) and 29 features. The sec-
ond dataset (Dataset-2) was composed of 800 subjects (200
inhaler activation samples, 200 exhalations, 200 inhalations,
and 200 noise samples) and 29 features. We did not use
a training or a test set; instead, in order to evaluate our
algorithms, 10-fold cross validation was performed on the
datasets that were generated for different compression rates.
Training a support vector machine was performed by utiliz-
ing the radial (RBF) kernel, cost equal to 1 and gamma equal
to 0.25. Training random forests was done by using 500
small decision trees without pruning and setting the num-
ber of features used by each tree as the floor of the squared
root of the total number of features. Finally, the multiclass
AdaBoost algorithm (SAMME) was executed by utilizing
100 small decision trees in sequence.

Table 3 DGLASSO in LES: CR vs Classification accuracy using
Dataset 2

CR Case studies

Drug vs. all Exhale vs. all Inhale vs. all

SVM AB R-F SVM AB R-F SVM AB R-F

0.1 64.8 89.5 90.1 99.6 97.9 100 85.4 92.1 92.1

0.2 66.0 93.2 91.4 99.6 98.7 100 85.4 92.7 93.9

The EE of the considered mHealth system, assuming that
the transmit and receive power is equal to 3.8 mW and
4.6 mW respectively, that the encoded measurements have
lq = 4 bits and the duration of a packet transmission is tp ≈
2.94 ms [27]3 can be evaluated by:

EE = Segment Bits

T otal Energy
= 8N

M(PT + PR)tp/10
bits/Joule.

(15)

Performance evaluation

In Fig.2a, the obtained features for the LES and CES are
plotted. A block length d = 16 was selected and the scal-
ing rules for the parameter λ in the LASSO and GLASSO
approaches follow the results of [29]. In Fig. 2b and Table 1,
the DG LASSO algorithm performs almost optimally; that
is, compared to the results of the original data, despite the
high CR. LASSO and GLASSO algorithms perform a bit
worse, while all the decoding algorithms achieve accura-
cies greater than 90 %. Among the executed classifiers, AB
performs better in most of the cases. As expected, when
the compression rate increases, the classification accuracies
increase as well, while it is clear that we achieve accuracies
over 96 % even for 2 % compression ratios (CR).

Similar conclusions are drawn from Fig. 2c (CES) and
Table 2. By comparing the two schemes, one can deduce
that the LASSO algorithm performs better in the second
case, the GLASSO algorithm performs better in the first
case, while the DGLASSO algorithm has almost identical
results. The robustness to quantization effects can be fur-
ther increased by adopting the policies described in [30].
Finally, it should be noted that the integration of DG LASSO
with AB allows us to adopt the LES scheme that achieves
similar results with the CES scheme, without requiring the
reconstruction of features at the transmitter.

Finally, in Fig. 2d and Table 3 we present experiments
with the second database using the LES setup and the

3We have assumed packets with 14 bytes header and 80 bytes payload
(10 audio samples/packet), and a data rate equal to 256 kbps [28].



J Med Syst  (2016) 40:285 Page 9 of 10 285 

DGLASSO decoder, in order to evaluate whether the pro-
posed system is capable of identifying not only inhaler
actuation but also, inhalations & exhalations. It should be
noted that the increased accuracies (> 92 %), even when
using a number of encoded samples equal to the 2 % of the
recorded ones, demonstrate the potential of this method for
the development of novel energy efficient inhalers that allow
the wireless monitoring of medication adherence.

Conclusion

Wireless telemonitoring of inhaler medication adherence
from acoustic sounds facilitate the early diagnosis and man-
agement of chronic inflammatory disease of the airways but
introduce challenges related to the real-time compression,
transmission and classification of the audio signals. To this
end, we propose a novel Compressed Sensing framework
that, when integrated with state-of-the-art classification
solutions, offers significant gains in terms of both energy
efficiency and accuracy of the considered mHealth system,
by exploiting the benefits of the group LASSO approaches
in the feature domain.

As future steps, the current study will be extended
by evaluating the accuracy of the algorithm for differ-
ent signal to noise ratios in order to better characterize
the performance of the algorithm in a variety of environ-
ments and types of acoustic noises. Moreover, the com-
pression efficiency of the proposed schemes will be investi-
gated when using data dependent dictionaries based on 2D
PCA and subspace tracking approaches instead of STFT.
Finally, it should be underlined that the proposed solu-
tion is aiming to be integrated with a miniaturized smart
blue tooth microphone that could be attached to tradi-
tional inhalers and extend their function with adherence
monitoring capabilities.
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