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a b s t r a c t 

Recently, the new generation of different 3D scanner devices (e.g., conoscopic holography, structured 

light, photometric systems, etc.) has attracted a lot of attention due to their ability to provide more re- 

liable results. The easiness of capturing real 3D objects has created revolutionary trends in many areas 

(e.g., gaming, prominence of heritage, military, medicine, etc.) and has significantly increased the interest 

for static and dynamic 3D models. However, despite the technological evolution of the 3D acquisition de- 

vices, there are still limitations, deteriorating the quality of the generated results (e.g., noise, outliers, and 

other abnormalities). These issues need to be addressed before the 3D models are used by other applica- 

tions (such as segmentation, object recognition, tracking, etc.). In this paper, we introduce a novel method 

which exploits similarities at the spectral frequencies of individual meshes in soft or rigid body 3D ani- 

mations. The noise is mainly distributed over high frequencies, while the spectrum of the graph Fourier 

transform of sequential meshes in a 3D animation, exhibits a low-rank which can be effectively exploited 

using robust principal component analysis (RPCA). Extensive evaluation studies, carried out using a vari- 

ety of different arbitrarily complex 3D animations and noise patterns, verify that the proposed technique 

achieves plausible denoising results despite the constraints posed by arbitrarily motion scenarios. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

Despite the rapid advancements in applications of 3D mesh 

and point cloud processing, little attention has been given in the 

area of dynamic 3D mesh denoising. The main reason is that each 

frame of a dynamic sequence can be considered as an individual 

mesh which can be handled separately. Although such an approach 

would result in an efficient exploitation of the spatial properties 

[1] , it completely neglects temporal coherences, ignoring a crucial 

factor to achieve higher reconstruction quality. 

Motivated by this trend, we developed a simple and robust 

method for denoising noisy 3D mesh sequences. More specifically, 

the proposed approach is capable of exploiting both small and 

large scale geometric features at significantly lower computational 

complexity as compared to denoising approaches that are applied 

to each frame independently. The main contributions of this work 

are: 

• The fast execution time, achieved also when processing in 

dense meshes. This remarkable low-computational complex- 

ity is attributed to the use of fast ortho-normalization ap- 

proaches for tracking the graph Fourier subspaces. 
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• The preservation of geometric features, by exploiting 

the low-rank spectral properties of the graph Fourier 

coefficients. 
• All the used parameters are pre-defined, based on our ex- 

perimental analysis, so the users do not need to search for 

ideal values of parameters per model. 
• Despite the theoretical simplicity of the proposed ap- 

proach, extensive simulation studies show that it can ac- 

curate denoise dynamic 3D meshes which share the same 

connectivity. 

Possible applications of the proposed approach include: (i) de- 

noising to improve compression efficiency of state-of-the-art dy- 

namic mesh compression approaches [2] , (ii) denoising after the 

shape completion of motion captured animation [3–5] and (iii) 

removal of skinning artifacts on 3D frames captured using joint 

skeleton tracking [6] . 

The rest of this paper is organized as follows: Section 2 presents 

related work and prior art in detail. Section 3 presents an overview 

of our approach, describing in details the workflow of the proposed 

method. Section 4 presents the experimental results showing the 

effectiveness of our methods in comparison with other state-of- 

the-art methods and finally, Section 5 draws the conclusions and 

we discuss limitations and future directions. 
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2. Previous works 

3D mesh denoising (static or dynamic) is a vital pre-processing 

step which usually takes place before other more complicated pro- 

cesses (e.g., transmission, segmentation, deforming, compression, 

etc.) occur. These processes require fully denoised 3D models in 

order to provide accurate and high-quality reconstruction results. 

Without a doubt, a lot of works have been presented in the area 

of 3D mesh denoising. However, despite the significant good re- 

sults that some of them provide (Zhang et al. [7] , Sun et al. [8] , Lu 

et al. [9] , Arvanitis et al. [10] ) many artifacts are still perceivable, 

indicating the need for using more sophisticated approaches. 

A strict constraint of many works that are not always valid, is 

the assumption that the noise, affecting the surface of the 3D ob- 

ject, has a Gaussian distribution. This assumption in many cases 

is not satisfied since in several real-life applications the type and 

the form of noise have different characteristics (e.g., staircase ef- 

fect, outliers, devices noise, etc.). Another severe limitation is the 

fact that many state-of-the-art methods utilize different parame- 

ters for each model (He and Schaefer [11] , Yadav et al. [12] , Wei 

et al. [13] ) and only some parameter-free approaches Wang et al. 

[14] have been proposed, which also have limitations mainly be- 

cause they rely on a large dataset for the training process. At the 

following, we summarize the most important categories that can 

be found in the denoising literature: 

Bilateral filtering and geometrical features-preserving approaches. 

The majority of the state-of-the-art approaches are trying to de- 

noise a mesh taking advantage of spatial similarities of the noisy 

object’s surface. The most popular technique is the bilateral filter- 

ing (Fleishman et al. [15] , Zheng et al. [16] , Jones et al. [17] ). Wang 

et al. [18] proposed an approach for mesh denoising by using a 

combination of bilateral filtering, feature recognition, anisotropic 

neighborhood searching, surface fitting and projection techniques. 

Despite the good results that this method achieves, it also requires 

the execution of many processes, making the method complex. Lu 

et al. [9] presented an approach for robust feature-preserving mesh 

denoising. The method first estimates an initial mesh, then per- 

forms feature detection, identification and grouping, and finally, it- 

eratively updates vertex positions based on the constructed feature 

edges. Centin and Signoroni [19] introduced a feature-preserving 

denoising technique. They proposed a two stage filtering where 

the normal filtering is guided by a scale-invariant saliency mea- 

sure while the vertex filtering is subject to metric accuracy bounds 

related to the original surface. The main common limitation of the 

aforementioned approaches is the utilization of different parame- 

ters for different models. 

Sparse optimization approaches. Another important and very 

popular category for mesh denoising is the sparse optimization 

methods. Zeng et al. [20] proposed a graph Laplacian regulariza- 

tion based 3D point cloud denoising algorithm. To utilize the self- 

similarity among surface patches, they adopted the low dimen- 

sional manifold prior, and collaboratively denoise the patches by 

minimizing the manifold dimension. Dinesh et al. [21] proposed to 

apply graph total variation to the surface normals of neighboring 

3D points as regularization. This leads naturally to a l 2 − l 1 -norm 

objective function, which can be optimized elegantly using ADMM 

and nested gradient descent. Despite their accurate reconstruction, 

their increase computational complexity renders them improper 

for real-time applications. 

Tensor voting approaches. Wei et al. [22] proposed an approach 

which exploits the synergy when facet normals and quadric sur- 

faces are integrated to recover a piecewise smooth surface, while 

the existing mesh denoising techniques focus only on either the 

first-order features or high-order differential properties. However, 

they adopt a cascaded operation, which is time-consuming for 

large models. 

Spectral processing approaches. Signal processing approaches 

have played an important role in many applications related to 

3D surfaces as demonstrated by Taubin [23] , Rustamov and Raif 

[24] and Zhang et al. [25] . Regarding denoising, Mattei and Cas- 

trodad [26] proposed a technique for the restoration of noisy 

point clouds using a Moving RPCA technique that is based on 

low-rank and sparse modeling tools. However, this method is 

time-consuming and the estimated normals are not oriented con- 

sistently. Pauly and Gross [27] presented a spectral processing 

pipeline that extends standard Fourier techniques to general point- 

sampled geometry. This approach operates directly on points and 

normals, requiring no vertex connectivity information. Rosman 

et al. [28] proposed an approach for patch-collaborative spectral 

denoising of surfaces combining similar patches from the denoised 

surface. Beltrami operator is used to selectively smooth the sur- 

face while preserving sharp surface features. Schall et al. [29] in- 

troduced a similarity-based neighborhood filtering technique for 

static and dynamic data, introducing a non-local similarity mea- 

sure which determines the resemblance of two points on a surface. 

Data-driven approaches. Most of the aforementioned categories 

assume that the noise, affecting the quality of the 3D object, has 

a Gaussian distribution. This assumption is far from real-life appli- 

cations in which the type and the form of noise are much more 

different (staircase effect, outliers, etc.) of this simplified assump- 

tion. Only a few parameter-free approaches have appeared pro- 

viding good results (data-driven methods Wang et al. [14] , Remil 

et al. [30] ), but not without limitations mainly because of the large 

dataset for the training process that they require making them 

very time-consuming. 

In this work, we present a novel approach which investigates 

the problem of 3D animated sequence denoising from a differ- 

ent view (i.e., spectral denoising) making it distinctive from all of 

the aforementioned categories. To the best of our knowledge, this 

is the first time that a method performs denoising on a 3D ani- 

mated sequence not directly using the geometric information (i.e., 

points, normals, etc.) of a 3D object but processing the correspond- 

ing graph Fourier coefficients. 

3. Denoising of dynamic 3D meshes 

In this section, we present our assumptions and the mathemat- 

ical background which is necessary for the rest part of the arti- 

cle. We also discuss in detail any step of the process. In Fig. 1 , the 

framework of the proposed approach is briefly presented. 

3.1. Preliminaries of static and dynamic 3D meshes 

Let us assume the existence of a sequence of n static meshes 

M i ∈ R 

k ×3 so that A = [ M 1 ; M 2 ; · · · ; M n ] representing a dy- 

namic 3D mesh A . Each static mesh consists of k vertices repre- 

sented as a matrix of vertices V = [ v T 
1 
; v T 

2 
; · · · ; v T 

k 
] ∈ R 

k ×3 in a 

3D coordinate space, where v = [ v x v y v z ] ∈ R 

1 ×3 indicates a vertex. 

Each j face f j = { v j1 v j2 v j3 } , ∀ j = 1 , . . . , k f constitutes a trian- 

gle (i.e., the basic surface) and v j 1 , v j 2 and v j 3 define the indices of 

the corresponding vertices. The vertices of a noisy mesh ˜ M i satisfy 

the following identity: 

˜ v i = v i + ̃

 z i , ∀ i = 1 , . . . , k (1) 

where v i are the noise free vertices and ˜ z i represents a 1 ×3 

noise vector (e.g., with distribution N (0 , σ ) in the case of Gaus- 

sian noise). 

3.2. Spectrum of a graph 

The spectrum of a graph is defined in terms of the eigenvalues 

and eigenvectors of the Laplacian matrix L . The Laplacian matrix 
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Fig. 1. Steps of the proposed framework for denoising of dynamic 3D meshes via spectral low-rank matrix analysis. 

of a graph G = (E, V, F ) , assuming that a set of edges E can be 

directly derived from a set of V and the indexed faces F of the 

mesh, can be defined as: 

L = D − C (2) 

where C ∈ R 

k ×k is the binary connectivity (or adjacency) matrix of 

the mesh with elements: 

C i j = 

{
w i j = 1 if i, j ∈ E 

0 otherwise 
(3) 

and D = diag{ d 1 , d 2 , . . . , d k } is a diagonal matrix with d i = 

∑ k 
j=1 C i j . 

The decomposition of the Laplacian matrix L is estimated accord- 

ing to: 

L = U�U 

T (4) 

where U = [ u 1 , u 2 , . . . , u k ] is an orthonormal matrix with the 

eigenvectors and � = diag { λ1 , λ2 , . . . , λk } is a diagonal matrix with 

the corresponding eigenvalues. The eigenvectors and eigenvalues 

of the Laplacian matrix L provide a spectral interpretation of the 

graph signals. The GFT of the i th mesh/frame M i , represented 

by the matrix of vertices V i , is defined as its projection onto the 

eigenvalues of the graph, according to: 

ˆ V i = T (V i ) = U 

T V i , ∀ i = 1 , . . . , n (5) 

where ˆ V ∈ R 

k ×3 is a matrix representing the GFT of the matrix of 

vertices V and T (. ) represents the GFT function. We can easily ob- 

serve that the number of components of a GFT matrix is equal to 

the number of vertices of the mesh. Correspondingly, the inverse 

GFT (IGFT) of each i frame is given by: 

V i = T −1 ( ̂  V i ) = U ̂

 V i , ∀ i = 1 , . . . , n (6) 

where T −1 (. ) represents the IGFT function. At any noisy mesh 
˜ M i , the information corresponds to the shape of the mesh lies 

in a low dimensional subspace of size m , while noise usually 

has a flat spectrum that is easily identifiable at the k − m higher 

frequencies in which the small-scale features are also apparent. 

Previous works of Arvanitis et al. [10] , Vallet and L ́e vy [33] and 

Lalos et al. [34] suggest performing denoising or smoothing of 

noisy 3D meshes by removing the high-frequency components 

in which the component of noise lie. Despite the fact that these 

works effectively remove the noise of a GFT representation, they 

also inevitable remove high-frequency components representing 

small-scale features. One of the contributions of this approach is 

that these components are not removed but properly processed in 

order to preserve the small-scale features. 

3.3. Noisy meshes 

The most common types of artifacts introduced in 3D meshes 

due to scanning operations are: (i) non-uniform sampling, (ii) 

Gaussian and/or (iii) impulsive noise. Surfaces with holes that 

can be simulated using (iv) temporal and/or (v) spatial masks. 

Another type of processing artifact is the noise caused by (vi) 

lossy compression approaches (e.g., coddyac by Vasa and Skala 

[31] , FAMC-DCT by Mamou et al. [32] ) or (vii) communication 

failures (network error). In Fig. 2 we present an example of a 

3D mesh (Armadillo) affected by different types of noise. Due to 

this large variety of different types of noise, we focus on design- 

ing an approach that can successfully mitigate any type of the 

aforementioned artifacts (if possible). 

3.4. Overview of our method 

The proposed method exploits the coherence of the GFT coef- 

ficients corresponding to the high spectral frequencies of sequen- 

tial frames in soft and rigid body animations. On the other hand, 

the low-frequency components, representing the main shape of a 

3D object, have a different form since the shape of the moving 

object is changing frame by frame. To be more specific, in rigid 

and soft body animations the 3D shape inevitably changes, af- 

fecting the low-frequency components, while the high-frequency 

components of GFT remain almost unaffected. Fig. 3 presents an 

example of four different frames of the same dynamic mesh se- 

quence and their corresponding spectral components. As we can 

see, only a few components (representing the low-frequency com- 

ponents) significantly change while the rest values remain almost 

the same. The “right” values of the GFT coefficients represent the 

low-frequency components (i.e. large-scale spatial features) while 

the “left” values represent the high-frequency components (i.e. 

small-scale spatial features) (see Fig. 3 (a)). 

Low-frequency components are essential for the proper rep- 

resentation of a mesh since they are related to the basic shape. 

On the other hand, changes in the high frequencies are not easily 

perceived, depending of course of the amount of the components 

which will be removed. In Fig. 4 , we present an example in 

which different amount of high-frequency components have been 

removed from a mesh. Specifically, in Fig. 4 (e), we can see that 

even if 90% of the high-frequency components are removed, the 

basic shape of the 3D object is still recognizable. 
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Fig. 2. (a) Original mesh (armadillo frame 1) and the corresponding noisy meshes affected by: (b) coddyac compression by Vasa and Skala [31] , (c) FAMC-DCT compression 

by Mamou et al. [32] , (d) gaussian, (e) impulsive, (f) spatial masking, (g) uniform noise. 

a b c d

GFT of Frame 1 GFT of Frame 2 GFT of Frame 16 GFT of Frame 77
High-frequency 

components
Low-frequency 

components

Fig. 3. GFTs ( ̂ V x ∈ R k ×1 ) of different frames of the same dynamic 3D mesh (Handstand model). We can easily observe that most of the components have similar magnitude 

values while very few components (low-frequency components), representing the information related to shape of the object, have significant different values. 

3.4.1. Temporal matrices and estimation of the ideal number of the 

remaining low-frequency components 

The main objective of this research is the accurate estimation 

of the denoised GFTs, in order to use them for the reconstruc- 

tion of the denoised vertices by applying the IGFT according to 

Eq. (6) . Although the matrix U has been estimated once, accord- 

ing to Eq. (4) , it is used for the estimation of the n GFTs ˆ V j = 

[ ˆ v 1 j ; ˆ v 2 j ; · · · ; ˆ v k j ] of any other frame ∀ j = 1 , . . . , n, according to 

Eq. (5) , where ˆ v i j = [ ̂ v x i j ˆ v y i j ˆ v z i j ] ∀ i = 1 , . . . , k . Once the GFTs co- 

efficients have been estimated, we create 3 coherent matrices E x , 

E y , E z where E i ∈ R 

n ×k̄ ∀ i ∈ { x, y, z} , according to: 

E i = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

ˆ V 
i (1: ̄k )1 

ˆ V 
i (1: ̄k )2 

. . . 
ˆ V 
i (1: ̄k ) n 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

ˆ v i 11 ˆ v i 21 . . . ˆ v i 
k̄ 1 

ˆ v i 12 ˆ v i 22 . . . ˆ v i 
k̄ 2 

. . . 
. . . 

. . . 
. . . 

ˆ v i 1 n ˆ v i 2 n . . . ˆ v i 
k̄ n 

⎤ 

⎥ ⎥ ⎦ 

, ∀ i ∈ { x, y, z} (7) 

where ˆ V 
i (1: ̄k ) n 

denotes the k̄ first components of the n th frame GFT 

of the i ∈ { x , y , z } coordinates. It is worth mentioning that we do 

not use all the k components of the GFT for the generation of the 

temporal matrices but only the k̄ highest frequency. The main rea- 

sons why we exclude a number of low-frequency components are: 

• The low-frequency components represent the basic informa- 

tion of the 3D object’s form and they should be preserved 

otherwise the original shape of the 3D object is deformed 

or significantly deteriorated. 
• Additionally, there are not significant coherences between 

low frequencies of sequential frames, attributed to the fact 

that small pose changes result in different low spectral 

frequencies. 
• Finally, it has been observed that the distribution of noise, 

with respect to the GFT domain, mostly affect the high- 

frequency components since low frequency errors cannot be 

easily perceived by the human attention system. 

For the estimation of the ideal value of k̄ , which represent 

the number of the high-frequency components per frame that we 

use for the creation of the coherent matrix, we follow the next 

steps. Firstly, we estimate the total energy E s of the GFT per each 

frame, taking into account all the k components, based on the 
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Fig. 4. (a) Original mesh having 10 0 02 components in total, and reconstructed models while components of the GFT have been removed: (b) 60 0 0 components have been 

removed, (c) 70 0 0 components have been removed, (d) 80 0 0 components have been removed, (e) 90 0 0 components have been removed, (f) 9800 components have been 

removed, (g) 9900 components have been removed. (Samba model frame 1). 

next formula: 

E s j = 

k ∑ 

i =1 

‖ ̂

 v i ‖ 

2 , ∀ j = 1 , . . . , n (8) 

Then, we assume that the 99.99% of this energy must be preserved 

and the corresponding low-frequency components must remain 

unaffected. So we start adding high-frequency components, from 

the component 1 to k̄ j , until their cumulative energy reaches the 

0.01% of the total energy E s j : 

k̄ j ∑ 

i =1 

‖ ̂

 v i ‖ 

2 = 10 −4 E s j , ∀ j = 1 , . . . , n (9) 

where k̄ j < k . The value of k̄ j may vary from frame to frame, 

however, each row of the E matrix must have equal length. For 

this reason, the selected value of k̄ is defined as: 

k̄ = max ( ̄k 1 , . . . , ̄k n ) (10) 

In Fig. 5 , we present an example showing how many components 

are required for preserving: (i) the 99.99% of the GFT’s energy 

(112 lower frequencies components), (ii) the 99.995% of the GFT’s 

energy (1179 lower frequencies components) and (iii) the 99.999% 

of the GFT’s energy for a frame of the Dinosaur model (12255 

lower frequencies components). In Fig. 6 , we present an example 

showing how the number of the unchangeable low-frequency 

components affect the quality of the reconstruction results. For 

the evaluation, we use different energy thresholds, in a range of 

[99.5%–99.999%]. A large threshold value (yellow line) means that 

we maintain many noisy components while small value (red line) 

means that we may change components that represent the main 

shape of the mesh and they must have been unaffected. 

3.4.2. Properties of robust principal component analysis 

Once the temporal matrices E i ∀ i ∈ { x , y , z } have been created, 

we use RPCA in order to estimate their low-rank representation 

(i.e., reconstructed results). Generally, RPCA has been used in many 

application in the area of 3D meshes processing mostly for outliers 

removal of unorganized point clouds, Arvanitis et al. [35–37] . 

Our motivation for using RPCA is based on the observation that 

the high-frequency components of each GFT have a big coherence 

with the corresponding components of other frames, with respect 

to their form and their magnitude. RPCA specializes in finding the 

low-rank matrix of coherent data (i.e., very relevant data). Addi- 

tionally, despite the fact that the noise has a unified distribution in 

the spatial domain (all vertices of the 3D surface can be affected 

equally), we observed that the noise follows a sparse distribution 

at the GFT domain in which the high-frequency components are 

mostly affected. One of the contributions of this approach is that 

we use RPCA to estimate the low-rank representation (smoothed) 

of the GFTs values in the spectrotemporal domain which are equal 

to a denoised representation of the 3D animation in the spatiotem- 

poral domain. 

3.4.3. Estimation of the low-rank matrix using an RPCA approach 

Generally, a coherent matrix K , may be decomposed as: 

K = S + N (11) 

where S is a low-rank matrix representing the real (denoised) data 

while N is a sparse matrix representing the space where the out- 

liers lie. According to Candès et al. [38] , the low-rank matrix S 

can be recovered by solving the following convex optimization 

problem: 

minimize ‖ S ‖ ∗ + λ‖ N ‖ 1 , subject to: S + N = K (12) 

where ‖ S ‖ ∗ denotes the nuclear norm of the matrix which is the 

sum of the singular values of S . This convex problem can be solved 

using an Augmented Lagrange Multiplier (ALM) algorithm, as de- 

scribed by Lin et al. [39] : 

l(S , N , Y , μ) 
. = ‖ S ‖ ∗ + λ‖ N ‖ 1 + 〈 Y , K − S − N 〉 + 

μ

2 
‖ K − S − N ‖ 

2 
F 

(13) 

Nevertheless, despite the effectiveness and the very good results, 

presented also in the work of Lalos et al. [40] , the exact decompo- 

sition of the Eq. (11) does not always exist especially in real noisy 

data E as those considered in the following section. In this case, 

an adaptive model is required, taking into account the presence of 

noise E = K + G . So the matrix E can be decomposed as: 

E = S + N + G (14) 
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where S + N approximates E and G is the noisy part. For the sake 

of simplicity, in this analysis, we use the notation E for the coher- 

ent matrix, representing however all the cases of Eq. (7) . For this 

kind of problems, Zhou and Tao [41] proposed that the low-rank 

matrix can be modeled in a bilateral factorization form WT for the 

purpose of developing an SVD free algorithm. We follow the same 

line of thought, by replacing S with its bilateral factorization: 

S = WT (15) 

and regularizing the l 1 norm of the entries of the sparse matrix 

N : 

min W , T , N ‖ E − WT − N ‖ 

2 
F + λ‖ vec (N ) ‖ 1 

subject to: rank (W ) = rank (T ) ≤ r (16) 

The l 1 regularization induces soft-thresholding in updating N , 

which is faster than sorting, caused by cardinality constraint, as 

suggested in a previous work of Zhou and Tao [42] and by Xiong 

et al. [43] . Optimizing the matrices W , T and N in Eq. (16) , we take 

the following updating rules: 

W 

(t+1) = (E − N 

(t) ) T (t) T (T (t) T (t) T ) + 

T (t+1) = (W 

(t+1) T W 

(t+1) ) + W 

(t+1) T (E − N 

(t) ) 

N 

(t+1) = D λ(E − W 

(t+1) T (t+1) ) (17) 

where ( t ) denotes the t th iteration, (. ) + is the Moore–Penrose 

pseudo-inverse and D λ is an element-wise soft thresholding op- 

erator with threshold λ such that: 

D λ = { sign (E i j ) max (| E i j | − λ, 0) : (i, j) ∈ [ n ] × [ ̄k ] } (18) 

To simplify the updating rules in Eq. (17) , we assume that the 

product W 

(t+1) T (t+1) equals to the orthogonal projection of E onto 

the column space of W 

(t+1) . According to Eq. (17) , the column 

space of W 

(t+1) can be represented by arbitrary orthonormal ba- 

sis for the columns of (E − N 

(t) ) T (t) T . It can be computed as Q via 

fast qr(.) decomposition: 

QR = qr 
(
(E − N 

(t) ) T (t) T 
)

(19) 

Then, the product W 

(t+1) T (t+1) can be equivalently computed as: 

W 

(t+1) T (t+1) = QQ 

T (E − N 

(t) ) (20) 

According to the above analysis, we can observe that the ma- 

trices W 

(t+1) and T (t+1) in Eq. (17) can be replaced by Q and 

Q 

T (E − N 

(t) ) respectively, while the product W 

(t+1) T (t+1) is kept 

the same. These replacements change the Eq. (17) , providing a 

faster updating procedure: 

W 

(t+1) = Q , QR = qr ((E − N 

(t) ) T (t) T ) 

T (t+1) = Q 

T (E − N 

(t) ) 

N 

(t+1) = D λ(E − W 

(t+1) T (t+1) ) (21) 

3.4.4. Reconstruction of the denoised model 

The low-rank matrix S ∈ R 

n ×k̄ , constituting the denoised values, 

is estimated via the Eq. (15) . More specifically, each i row of this 

matrix consists of the k̄ high-frequency denoised components of 

the GFT values of the i frame. The total denoised GFT matrix ˙ ˆ V i of 

each i frame is estimated according to: 

˙ ˆ V i = [ 

k̄ i components ︷ ︸︸ ︷ 
S i [1 : k̄ i ] 

(k −k̄ i ) components ︷ ︸︸ ︷ 
ˆ V i [(k − k̄ i + 1) : k ] ] , ∀ i = 1 , . . . , n (22) 

keeping the k̄ i ≤ k̄ denoised components of the i th row of the ma- 

trix S , following the assumption presented in Section 3.4.1 . Then, 

the final denoised vertices ˙ V i of each i frame are estimated using 

the IGFT, applied to the denoised GFT matrix ˙ ˆ V i : 

˙ V i = T −1 ( ̇ ˆ V i ) , ∀ i = 1 , . . . , n (23) 

As shown in Eq. (23) , the reconstruction of the denoised models 

can be performed either in an adaptive (frame by frame) or in a 

block adaptive mode (e.g., groups of frames) increasing, even more, 

the time-efficiently performance of the proposed method. All the 

aforementioned steps of the proposed approach are summarized 

at the Algorithm 1 . 

Algorithm 1: Spectral Denoising of Dynamic 3D Meshes. 

Input : Noisy sequence of meshes 
˜ A = [ ˜ M 1 ; ˜ M 2 ; · · · ; ˜ M n ] ; 

Output : Denoised 3D animation 

˙ A = [ ˙ M 1 ; ˙ M 2 ; · · · ; ˙ M n ] ; 
1 Decompose the Laplacian matrix L of the first frame 
Eq. (4); 

2 for i = 1 . . . n do 

3 Estimate the GFT ˆ V i of the vertices via Eq. (5) 
4 Estimate the total energy E s i of the GFT matrix via 

Eq. (8) 
5 Estimate the ideal value k̄ i of high-frequency 

components via Eq. (9) 
6 end 

7 Select the common used value of k̄ via Eq. (10) 
8 for ∀ j ∈ { x, y, z} do 

9 Create the coherent matrix E j via Eq. (7) 
10 Estimate the low-rank matrix S j via Eqs. (19)–(21) 

11 end 

12 for i = 1 . . . n do 

13 for ∀ j ∈ { x, y, z} do 

14 Estimate the denoised GFT ˙ ˆ V ji via Eq. (22) 

15 Estimate the denoised vertices ˙ V ji of the mesh 

via Eq. (23) 
16 end 

17 end 

4. Results 

In this section, we present the results of our approach using a 

variety of dynamic 3D models affected by different types of noise. 

Extensive evaluation studies carried out using a broad set of com- 

plex noise patterns and models with different geometrical features, 

verify the superiority of our approach as compared to other state- 

of-the-art methods, in terms of reconstruction quality and compu- 

tational complexity. 

4.1. Datasets 

The experiments and any other presented figure of this work 

is carried out using dynamic 3D models of three different well- 

known datasets. 

• A dataset consisting of artificial sequences of moving models 

with different types of noise by Torkhani et al. [44] . 
• A dataset consisting of real motion capture animations rep- 

resenting humans (real scanned models) in different kind of 

motion scenarios by Vlasic et al. [45] . 
• A dataset consisting of real motion silhouettes captured us- 

ing joint skeleton tracking by Gall et al. [6] . 

At this point, it should be noted that the noisy models, affected 

by Gaussian noise, are created using the dataset of Vlasic et al. 

[45] , by adding noise to the vertices of the ground truth meshes 
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Fig. 7. Three different frames (i.e., 40, 80 and 120) of Bouncing model. (a) Original mesh, (b) Noisy mesh, (c) Bilateral normal denoising by Zheng et al. [16] , (d) Fast and 

effective by Sun et al. [8] , (e) L 0 minimization by He and Schaefer [11] , (f) Guided mesh normal filtering by Zhang et al. [7] , (g) Two stage graph spectral processing by 

Arvanitis et al. [10] , (h) Our approach. 

along the vertex normals, similar to Zhang et al. [7] . The intensity 

of the noise is described using a relative variance parameter: 

σl = 

σ

ˆ l 
(24) 

where σ denotes the variance of the Gaussian function, and ˆ l is 

the average edge length l of the ground truth mesh. 

4.2. Metrics 

The quality of the reconstructed results is evaluated using a va- 

riety of different metrics that are shortly presented below: 

• θ : represents the mean angle γ (expressed in degree) be- 

tween the normals of the ground truth face and the result- 

ing face normals. 

• HD: representing the average one-sided Hausdorff distance 

(HD) from the denoised mesh to the known ground truth 

mesh. 
• Heatmap visualization which highlights, in different colors 

(colormap), the angle γ between the normals of the de- 

noised ˙ M and original mesh M per each vertex. Dark blue 

color denotes a big similarity between two normals (practi- 

cally the angle γ goes to zero), while dark red color denotes 

a big difference in respect to their directions (please refer to 

Figs. 9 and 10 ). 

4.3. Experimental results 

The quality performance of the proposed technique is evaluated 

by comparing its denoising results with them of other well-known 

and robust techniques of the literature, such as: (i) bilateral normal 

denoising by Zheng et al. [16] , (ii) fast and effective by Sun et al. 
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Fig. 8. Denoising results of different noisy models (i.e., Horse, Chinchilla, Dinosaur) affected by different types of noise (i.e., Impulsive, Noise because of compression using 

the FAMC-DCT method and Uniform noise). (a) Original mesh, (b) Noisy mesh, (c) Bilateral normal denoising by Zheng et al. [16] , (d) Guided mesh normal filtering by Zhang 

et al. [7] , (e) Two stage graph spectral processing by Arvanitis et al. [10] , (f) Our approach. 

[8] , (iii) l 0 minimization by He and Schaefer [11] , (iv) guided mesh 

normal filtering by Zhang et al. [7] and (v) two stage graph spectral 

processing by Arvanitis et al. [10] . 

For the experiments, we chose a variety of different models and 

types of noise. In Table 1 , we present information related to the 

noisy models that are used, namely: (i) the number of vertices, (ii) 

the number of faces, (iii) the number of frames that each anima- 

tion has and (iv) the type of noise which each animation has been 

affected with. 

The benefits of our method are apparent in all of the following 

experimental scenarios. In Fig. 7 , we present the denoised results 

of three different frames (i.e., 40, 80 and 120) of the same model 

(Bouncing) affected by Gaussian noise. We additionally provide the 

values of the HD metric, for each reconstructed model, and enlarge 

details (in red boxes) providing an easier comparison among the 

meshes and techniques. 

Similar results are presented in Fig. 8 . However, in this case, 

each model has been affected by a different noise patterns. More 
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Fig. 9. (a) Noisy [up] and Original [down] meshes of two models (i.e., Swing, Jumping). We also provide heatmap of metric θ [up] and denoising results [down] using: 

(b) Bilateral normal denoising by Zheng et al. [16] , (c) Fast and effective by Sun et al. [8] , (d) L 0 minimization by He and Schaefer [11] , (e) Guided mesh normal filtering by 

Zhang et al. [7] , (f) Two stage graph spectral processing by Arvanitis et al. [10] , (g) Our approach. (For interpretation of the references to colour in this figure, the reader is 

referred to the web version of this article.) 

Fig. 10. Two different frames of the Dog animated model [6] and the corresponding heatmap visualization of the mean curvature for the: (a)-(c) Real noisy meshes, (b)-(d) 

Denoised using our approach. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 
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Fig. 11. Different frames of the same animated 3D model (Human) having been affected by spacial masks of noise. This means that each frame has been affected by the 

same magnitude of noise in the same areas. 

Table 1 

Brief description of the used animated noisy models. 

Name of model Vertices Faces Frames Type of noise 

Bouncing 10,002 20,0 0 0 150 Gaussian σl = 0 . 2 

Chinchilla 4307 8550 84 FAMC-DCT 

Dinosaur 20,218 40,432 152 Uniform 

Dog 2502 50 0 0 59 Capturing method [6] 

Horse 8431 16,858 48 Impulsive 

Human 18,890 37,776 162 Spacial mask 

Jumping 9971 19,938 150 Gaussian σl = 0 . 2 

Swing 10,002 20,0 0 0 150 Gaussian σl = 0 . 2 

specifically, we show the reconstructed results of three synthetic 

animations (i.e., Horse, Chinchilla, Dinosaur) affected by (i) impul- 

sive noise 1 , (ii) noise attributed to lossy compression using the 

FAMC-DCT method 2 and (iii) uniform noise, respectively. This fig- 

ure highlights the effectiveness of our approach which efficiently 

reconstructs the denoised models without making special assump- 

tions about the distribution and the type of noise. More impor- 

tantly, the steps of the proposed method are always the same, as 

well as the used parameters, making it ideal for using it under 

different cases without requiring any special parameterization. Our 

method handles each model with exactly the same way regardless 

of the geometry of the model (e.g., different geometrical features, 

intense edges and corners, etc.) or the type of noise. 

In Fig. 9 , we present the reconstructed results of different tech- 

niques, for one frame of two different animated models (namely, 

the frame 6 of the Swing model and frame 65 of Jumping model). 

We additionally provide the heatmap visualization of the angle γ
colorizing differently each vertex according to the value of γ and 

the mean angle θ . As it can be seen, in any of the presented ex- 
amples, the proposed method overcome the results of the other 

comparison methods. 

Fig. 10 illustrates the denoising results of our method in mod- 

els with real noise due to the capturing technique by Gall et al. 

[6] . Our approach removes the artifacts, appeared in the surface 

of the models, preserving the small-scale features. Additionally, we 

1 Synthetic but simulates real noise of Lidar point clouds [46] 
2 Real noise because of the encoding/decoding processes 

provide the heatmap visualization of the mean curvature for easier 

comparison. 

5. Conclusions and open issues 

In this work, we presented an approach which performs fea- 

ture preserving denoising on a sequence of noisy frames that con- 

stitute a dynamic 3D mesh. The proposed method achieves plau- 

sible reconstruction results using an RPCA approach applied to a 

coherent matrix E consisting of the high frequencies of sequential 

frames of soft and rigid body animations. More specifically, each 

row of this matrix consists of the k̄ high-frequency components of 

the corresponding frame. The low-frequency components are kept 

unaffected since they represent the basic pose of the mesh. Finally, 

the denoised vertices occur by applying IGFT to the denoised GFT 

components. 

Nonetheless, despite the very good results that this method 

provides, there are still limitations that need to be addressed. The 

extension of the proposed method to dynamic meshes with vary- 

ing connectivity and a different number of vertices still remains a 

challenge. Moreover, the performance of the proposed approach is 

also deteriorated if we assume that the exact same type of noise 

(in respect of the magnitude and direction) is applied in any se- 

quential frame. Fig. 11 illustrates an example in which correspond- 

ing vertices of a sequence of meshes have been affected by spatial 

masks of noise and as a result, they maintain the exact the same 

form in any frame. 

Declaration of competing interest 

The authors declare that they have no known competing finan- 

cial interests or personal relationships that could have appeared to 

influence the work reported in this paper. 

References 

[1] Yadav SK, Reitebuch U, Polthier K. Mesh denoising based on normal voting ten- 

sor and binary optimization. IEEE Trans Vis Comput Graph 2018;24(8):2366–
79. doi: 10.1109/TVCG.2017.2740384 . 

[2] Dybedal J, Aalerud A, Hovland G. Embedded processing and compression of 

3d sensor data for large scale industrial environments. Sensors 2019;19(3):636. 
doi: 10.3390/s19030636 . 

[3] Bogo F , Romero J , Loper M , Black MJ . FAUST: dataset and evaluation for 3D 
mesh registration. In: Proceedings IEEE conference on computer vision and 

pattern recognition (CVPR). Piscataway, NJ, USA: IEEE; 2014 . 

https://doi.org/10.1109/TVCG.2017.2740384
https://doi.org/10.3390/s19030636
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0003
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0003
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0003
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0003
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0003


G. Arvanitis, A.S. Lalos and K. Moustakas / Computers & Graphics 82 (2019) 140–151 151 

[4] Xu Z, Zhang Q, Cheng S. Multilevel active registration for kinect human body 
scans: from low quality to high quality. Multimedia Syst 2018;24(3):257–70. 

doi: 10.10 07/s0 0530- 017- 0541- 1 . 
[5] Anguelov D, Srinivasan P, Koller D, Thrun S, Rodgers J, Davis J. Scape: shape 

completion and animation of people. In: Proceedings of the ACM SIGGRAPH 
2005 papers. In: SIGGRAPH ’05. New York, NY, USA: ACM; 2005. p. 408–16. 

doi: 10.1145/1186822.1073207 . 
[6] Gall J , Stoll C , de Aguiar E , Theobalt C , Rosenhahn B , Seidel H . Motion capture 

using joint skeleton tracking and surface estimation. In: Proceedings of the 

CVPR. IEEE Computer Society; 2009. p. 1746–53 . 
[7] Zhang W, Deng B, Zhang J, Bouaziz S, Liu L. Guided mesh normal filtering. 

Comput Graph Forum 2015;34(7):23–34. doi: 10.1111/cgf.12742 . 
[8] Sun X , Rosin PL , Martin RR , Langbein FC . Fast and effective feature-preserving 

mesh denoising. IEEE Trans Vis Comput Graph 2007;13(5):925–38 . 
[9] Lu X, Deng Z, Chen W. A robust scheme for feature-preserving mesh denois- 

ing. IEEE Trans Vis Comput Graph 2016;22(3):1181–94. doi: 10.1109/TVCG.2015. 

2500222 . 
[10] Arvanitis G, Lalos AS, Moustakas K, Fakotakis N. Feature preserving mesh de- 

noising based on graph spectral processing. IEEE Trans Vis Comput Graph 
2019;25(3):1513–27. doi: 10.1109/TVCG.2018.2802926 . 

[11] He L, Schaefer S. Mesh denoising via l0 minimization. ACM Trans Graph 
2013;32(4) 64:1–64:8. doi: 10.1145/2461912.2461965 . 

[12] Yadav SK, Reitebuch U, Polthier K. Robust and high fidelity mesh denoising. 

IEEE Trans Vis Comput Graph 2018 1–1. doi: 10.1109/TVCG.2018.2828818 . 
[13] Wei M, Huang J, Xie X, Liu L, Wang J, Qin J. Mesh denoising guided by patch 

normal co-filtering via kernel low-rank recovery. IEEE Trans Vis Comput Graph 
2018 1–1. doi: 10.1109/TVCG.2018.2865363 . 

[14] Wang P-S, Liu Y, Tong X. Mesh denoising via cascaded normal regression. ACM 

Trans Graph 2016;35(6) 232:1–232:12. doi: 10.1145/2980179.2980232 . 

[15] Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoising. In: Proceedings of 

the ACM SIGGRAPH 2003 papers. In: SIGGRAPH ’03. New York, NY, USA: ACM; 
2003. p. 950–3. doi: 10.1145/1201775.882368 . ISBN 1-58113-709-5. 

[16] Zheng Y , Fu H , Au OK-C , Tai C-L . Bilateral normal filtering for mesh denoising. 
IEEE Trans Vis Comput Graph 2011;17(10):1521–30 . 

[17] Jones TR , Durand F , Desbrum M . Non-iterative, feature-preserving mesh 
smoothing. ACM Trans Graph 2003;22(3):943–9 . 

[18] Wang J, Zhang X, Yu Z. A cascaded approach for feature-preserving 

surface mesh denoising. Comput Aided Des 2012;44(7):597–610. 
doi: 10.1016/j.cad.2012.03.001 . http://www.sciencedirect.com/science/article/ 

pii/S0 0104485120 0 0516 
[19] Centin M, Signoroni A. Mesh denoising with (geo)metric fidelity. IEEE Trans 

Vis Comput Graph 2018;24(8):2380–96. doi: 10.1109/TVCG.2017.2731771 . 
[20] Zeng J, Cheung G, Ng M, Pang J, Yang C. 3d point cloud denoising using graph 

Laplacian regularization of a low dimensional manifold model; 2018 . https: 

//arxiv.org/abs/1803.07252 
[21] Dinesh C, Cheung G, Bajic IV, Yang C. Fast 3d point cloud denoising via bi- 

partite graph approximation & total variation; 2018 . https://arxiv.org/abs/1804. 
10831 

[22] Wei M, Liang L, Pang W, Wang J, Li W, Wu H. Tensor voting guided mesh de- 
noising. IEEE Trans Autom Sci Eng 2017;14(2):931–45. doi: 10.1109/TASE.2016. 

2553449 . 
[23] Taubin G. A signal processing approach to fair surface design. In: Proceed- 

ings of the 22nd annual conference on computer graphics and interactive 

techniques. In: SIGGRAPH ’95. New York, NY, USA: ACM; 1995. p. 351–8. 
doi: 10.1145/218380.218473 . ISBN 0-89791-701-4. 

[24] Rustamov RM. Laplace-beltrami eigenfunctions for deformation invariant 
shape representation. In: Proceedings of the fifth eurographics symposium on 

geometry processing. In: SGP ’07. Aire-la-Ville, Switzerland, Switzerland: Euro- 
graphics Association; 2007. p. 225–33 . ISBN 978-3-905673-46-3; http://dl.acm. 

org/citation.cfm?id=1281991.1282022 

[25] Zhang H, Kaick Ov, Dyer R. Spectral methods for mesh processing and analy- 
sis. In: Schmalstieg D, Bittner J, editors. Eurographics 2007 - state of the art 

reports. The Eurographics Association; 2007 . doi: 10.2312/egst.20071052 . 
[26] Mattei E, Castrodad A. Point cloud denoising via moving rpca. Comput Graph 

Forum 2017;36(8):123–37. doi: 10.1111/cgf.13068 . 

[27] Pauly M, Gross M. Spectral processing of point-sampled geometry. In: Pro- 
ceedings of the 28th annual conference on computer graphics and interac- 

tive techniques. In: SIGGRAPH ’01. New York, NY, USA: ACM; 2001. p. 379–86. 
doi: 10.1145/383259.383301 . ISBN 1-58113-374-X. 

[28] Rosman G, Dubrovina A, Kimmel R. Patch-collaborative spectral point-cloud 
denoising. Comput Graph Forum 2013. doi: 10.1111/cgf.12139 . 

[29] Schall O, Belyaev A, Seidel H-P. Adaptive feature-preserving non-local denois- 
ing of static and time-varying range data. Comput Aided Des 2008;40(6):701–

7. doi: 10.1016/j.cad.2008.01.011 . Selected Papers from the ACM Solid and Phys- 

ical Modeling Symposium 2007; http://www.sciencedirect.com/science/article/ 
pii/S0 0104485080 0 0353 

[30] Remil O, Xie Q, Xie X, Xu K, Wang J. Surface reconstruction with data-driven 
exemplar priors; 2017 . https://arxiv.org/abs/1701.03230 

[31] Vasa L, Skala V. CODDYAC: connectivity driven dynamic mesh compression. 
In: Proceedings of the 3DTV conference; 2007. p. 1–4. doi: 10.1109/3DTV.2007. 

4379408 . 

[32] Mamou K, Zaharia T, Preteux F. FAMC: The MPEG-4 standard for animated 
mesh compression. In: Proceedings of the 15th IEEE international conference 

on image processing; 2008. p. 2676–9. doi: 10.1109/ICIP.2008.4712345 . 
[33] Vallet B, Lévy B. Spectral geometry processing with manifold harmonics. Com- 

put Graph Forum 2008;27(2):251–60. doi: 10.1111/j.1467-8659.2008.01122.x . 
[34] Lalos AS, Arvanitis G, Dimas A, Moustakas K. Block based spectral processing 

of dense 3d meshes using orthogonal iterations. Proceedings of the 13th inter- 

national joint conference on computer vision, imaging and computer graphics 
theory and applications: GRAPP, INSTICC, Volume 1. SciTePress; 2018. p. 122–

32. doi: 105220/0 0 06611401220132 . ISBN 978-989-758-287-5. 
[35] Arvanitis G, Spathis-Papadiotis A, Lalos AS, Moustakas K, Fakotakis N. Outliers 

removal and consolidation of dynamic point cloud. In: Proceedings of the 25th 
IEEE international conference on image processing (ICIP); 2018. p. 3888–92. 

doi: 10.1109/ICIP.2018.8451099 . 

[36] Arvanitis G , Lalos AS , Moustakas K , Fakotakis N . Real-time removing of outliers 
and noise in 3d point clouds applied in robotic applications. In: Ronzhin A, 

Rigoll G, Meshcheryakov R, editors. Interactive collaborative robotics. Cham: 
Springer International Publishing; 2017. p. 11–19 . ISBN 978-3-319-66471-2 

[37] Arvanitis G, Lalos AS, Moustakas K, Fakotakis N. Outliers removal of highly 
dense and unorganized point clouds acquired by laser scanners in urban en- 

vironments. In: Proceedings of the international conference on Cyberworlds 

(CW); 2018. p. 415–18. doi: 10.1109/CW.2018.0 0 080 . 
[38] Candès EJ, Li X, Ma Y, Wright J. Robust principal component analysis? J ACM 

2011;58(3) 11:1–11:37. doi: 10.1145/1970392.1970395 . 
[39] Lin Z , Chen M , Ma Y . The augmented lagrange multiplier method for exact 

recovery of corrupted low-rank matrices. CoRR 20 09;abs/10 09.5055 . 
[40] Lalos AS, Vlachos E, Arvanitis G, Moustakas K, Berberidis K. Signal process- 

ing on static and dynamic 3d meshes: Sparse representations and applications. 

IEEE Access 2019;7:15779–803. doi: 10.1109/ACCESS.2019.2894533 . 
[41] Zhou T , Tao D . Greedy bilateral sketch, completion & smoothing. In: Proceed- 

ings of the international conference on artificial intelligence and statistics; 
2013 . 

[42] Zhou T, Tao D. GoDec: randomized low-rank & sparse matrix decomposition 
in noisy case. In: Proceedings of the 28th international conference on inter- 

national conference on machine learning. In: ICML’11. USA: Omnipress; 2011. 
p. 33–40 . ISBN 978-1-4503-0619-5; http://dl.acm.org/citation.cfm?id=3104482. 

3104487 

[43] Xiong L , Chen X , Schneider JG . Direct robust matrix factorizatoin for anomaly 
detection. Proceedings of the IEEE 11th international conference on data min- 

ing; 2011. p. 844–53 . 
[44] Torkhani F, Wang K, Chassery J-M. Perceptual quality assessment of 3D 

dynamic meshes: Subjective and objective studies. Signal Process Im- 
age Commun 2015;31(2):185–204. doi: 10.1016/j.image.2014.12.008 . https://hal. 

archives-ouvertes.fr/hal-01118984 

[45] Vlasic D , Baran I , Matusik W , Popovi ́c J . Articulated mesh animation from mul- 
ti-view silhouettes. ACM Trans Graph 2008;27(3):97:1–97:9 . 

[46] Awadallah MST . Image analysis techniques for lidar point cloud segmentation 
and surface estimation, Virginia Tech: Virginia Polytechnic Institute and State 

University; 2016. Ph.D. thesis . 

https://doi.org/10.1007/s00530-017-0541-1
https://doi.org/10.1145/1186822.1073207
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0006
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0006
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0006
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0006
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0006
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0006
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0006
https://doi.org/10.1111/cgf.12742
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0008
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0008
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0008
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0008
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0008
https://doi.org/10.1109/TVCG.2015.2500222
https://doi.org/10.1109/TVCG.2018.2802926
https://doi.org/10.1145/2461912.2461965
https://doi.org/10.1109/TVCG.2018.2828818
https://doi.org/10.1109/TVCG.2018.2865363
https://doi.org/10.1145/2980179.2980232
https://doi.org/10.1145/1201775.882368
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0016
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0016
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0016
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0016
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0016
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0017
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0017
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0017
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0017
https://doi.org/10.1016/j.cad.2012.03.001
http://www.sciencedirect.com/science/article/pii/S0010448512000516
https://doi.org/10.1109/TVCG.2017.2731771
https://arxiv.org/abs/1803.07252
https://arxiv.org/abs/1804.10831
https://doi.org/10.1109/TASE.2016.2553449
https://doi.org/10.1145/218380.218473
http://dl.acm.org/citation.cfm?id=1281991.1282022
http://dx.doi.org/10.2312/egst.20071052
https://doi.org/10.1111/cgf.13068
https://doi.org/10.1145/383259.383301
https://doi.org/10.1111/cgf.12139
https://doi.org/10.1016/j.cad.2008.01.011
http://www.sciencedirect.com/science/article/pii/S0010448508000353
https://arxiv.org/abs/1701.03230
https://doi.org/10.1109/3DTV.2007.4379408
https://doi.org/10.1109/ICIP.2008.4712345
https://doi.org/10.1111/j.1467-8659.2008.01122.x
https://doi.org/105220/0006611401220132
https://doi.org/10.1109/ICIP.2018.8451099
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0036
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0036
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0036
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0036
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0036
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0036
https://doi.org/10.1109/CW.2018.00080
https://doi.org/10.1145/1970392.1970395
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0039
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0039
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0039
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0039
https://doi.org/10.1109/ACCESS.2019.2894533
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0041
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0041
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0041
http://dl.acm.org/citation.cfm?id=3104482.3104487
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0043
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0043
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0043
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0043
https://doi.org/10.1016/j.image.2014.12.008
https://hal.archives-ouvertes.fr/hal-01118984
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0045
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0045
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0045
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0045
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0045
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0046
http://refhub.elsevier.com/S0097-8493(19)30078-0/sbref0046

	Denoising of dynamic 3D meshes via low-rank spectral analysis
	1 Introduction
	2 Previous works
	3 Denoising of dynamic 3D meshes
	3.1 Preliminaries of static and dynamic 3D meshes
	3.2 Spectrum of a graph
	3.3 Noisy meshes
	3.4 Overview of our method
	3.4.1 Temporal matrices and estimation of the ideal number of the remaining low-frequency components
	3.4.2 Properties of robust principal component analysis
	3.4.3 Estimation of the low-rank matrix using an RPCA approach
	3.4.4 Reconstruction of the denoised model


	4 Results
	4.1 Datasets
	4.2 Metrics
	4.3 Experimental results

	5 Conclusions and open issues
	Declaration of competing interest
	References


