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a b s t r a c t

This paper presents a novel framework for unobtrusive biometric authentication based on the spatiotem-
poral analysis of human activities. Initially, the subject’s actions that are recorded by a stereoscopic
camera, are detected utilizing motion history images. Then, two novel unobtrusive biometric traits are
proposed, namely the static anthropometric profile that accurately encodes the inter-subject variability
with respect to human body dimensions, while the activity related trait that is based on dynamic motion
trajectories encodes the behavioral inter-subject variability for performing a specific action. Subse-
quently, score level fusion is performed via support vector machines. Finally, an ergonomics-based
quality indicator is introduced for the evaluation of the authentication potential for a specific trial. Exper-
imental validation on data from two different datasets, illustrates the significant biometric authentication
potential of the proposed framework in realistic scenarios, whereby the user is unobtrusively observed,
while the use of the static anthropometric profile is seen to significantly improve performance with
respect to state-of-the-art approaches.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction necessary to identify the portion of the sequence supposedly
Human recognition has always been a field of primary concern
in applications such as access control in secure infrastructures. In
this respect, biometrics have recently gained significant attention
from researchers, while they have been rapidly developed for var-
ious commercial applications, ranging from surveillance and access
control against potential impostors to the management of voters to
ensure no one votes twice [1,2]. Reliable personal recognition
schemes are thus required to either confirm or determine the iden-
tity of an individual requesting their services. In the following, the
linking between activity detection and behavioral based recogni-
tion of humans is attempted via a short introduction, since both
scientific fields are combined in the framework presented herein.

1.1. Activity detection

Activity detection can be either performed as a pre-processing
step in behavioral analysis or as a stand-alone application for trig-
gering several types of alarm in surveillance areas (i.e. detecting
suspicious movements or eventual threats and taking up the prop-
er actions to prevent unwanted effects). In both cases, the main
challenge lies in the segmentation of the activity of interest in a
given frame sequence [3]. In other words, it is in some sense
ll rights reserved.
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corresponding to an action, in order to recognize each action that
appears in a given sequence.

In this respect, monitoring of activities has been extensively
researched during the last decades, either for identifying ongoing
events and activities [4], or for detecting anomalies in their execu-
tion [5], or for providing access control to restricted areas, etc. The
results of this research field can be directly applied to surveillance
[6], identity verification [7] and in medical applications [8].

In general, activity recognition methods can be divided in two
main categories: (i) sensor-based methods and (ii) video-based
methods. Regarding the first category, the authors of [9] mounted
multiple accelerometers and a small low-power sensor board on
single or multiple locations on the subject’s body in order to esti-
mate activities such as standing, walking or running. In the same
concept, a hybrid multimodal approach for the automatic monitor-
ing of everyday activities of elderly people was suggested in [4],
whereby video analysis from multiple cameras was installed in
an apartment and combined with information from sensors in-
stalled on doors, windows and the furniture. Similarly, a system
for recognizing activities in the home setting using a set of state-
change sensors was introduced in [10].

On the other hand, a real-time, less obtrusive, video under-
standing system was presented in [11], which automatically recog-
nizes activities occurring in environments observed through video
surveillance cameras. In the same respect, Wang et al. [12] man-
aged to cluster spatiotemporal action of low dimensionality into
manifolds using Locality Projective Projections (LPP). Thus, the
detection of outdoor activities was achieved via geometrical simi-
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larity measures between manifolds. Going a step further, Junejo
et al. presented in [13] a novel vision based method for view-
invariant action recognition by exploiting the advantages of tem-
poral self-similarity matrices (SSM), as they are derived from the
joints’ extracted motion trajectories.

1.2. Biometric authentication

The variations exhibited by different users in the execution of
the same activity [14] forms the main difficulty for an activity
detection system. However, this significant issue for activity recog-
nition systems turns into a fundamental advantage when dealing
with user recognition systems, that try to exploit these variations
to identify/authenticate individuals [14].

In this concept, a number of approaches have been described in
the past to satisfy the different requirements of each application
such as reliability, unobtrusiveness, permanence, etc. In general,
biometric methods are categorized to (a) static or physiological
and (b) behavioral human biometric characteristics [15], depend-
ing on the type of features used.

Physiological biometrics are based on biological measurements
and inherent characteristics of each human. Static biometrics in-
clude fingerprint [16], DNA, face [17], iris and or retina [18] and
hand geometry [19] or palm print [20] recognition. Despite their
high accuracy, a general shortcoming of these biometric traits is
their obtrusive process of obtaining the biometric feature. The sub-
ject has to stop, go through a specific measurement procedure,
which can be very uncomfortable, wait for a period of time and
get clearance after authentication is positive. Besides being obtru-
sive and uncomfortable for the user, static physical characteristics
can be digitally duplicated, i.e. the face could be copied using a
photograph, a voice print using a voice recording and the finger-
print using various forging methods. Moreover, static biometrics
could be intolerant of changes in physiology such as daily voice
changes or appearance changes.

On the other hand, behavioral biometrics, could overcome these
drawbacks since they are related to specific actions and the way that
each person executes them [21]. They can potentially allow the non-
stop (on-the-move) authentication or even identification in an
unobtrusive and transparent manner to the subject and become
part of an ambient intelligence environment. Behavioral biometrics
are the newest technology in biometrics and they have yet to be re-
searched in detail. Even if physiological biometrics are considered
more reliable, behavioral biometrics have the inherent advantage
of being less obtrusive [22] and simpler to implement [15].

Similarly to the categorization of action recognition methods,
previous work on human identification using behavioral signals
can be roughly divided into: (a) sensor-based recognition [23]
and (b) vision-based recognition. Recent research trends have been
mainly moving towards the second category, due to various rea-
sons, such as increased unobtrusiveness [24], continuous authenti-
cation capability, etc. Additionally, recent work and efforts on
human recognition have shown that the human behavior (i.e.
extraction of facial dynamics features [25]) and motion exploiting
human body shape dynamics during gait ([26] or joints tracking
analysis [27]), provide the potential of continuous authentication
for discriminating people, when considering behavioral signals.

Gait, the first and most famous behavioral biometric trait since
the late 1990s [28], has advantage of being a frequent periodic
activity. In the same concept, recent works and efforts on human
recognition have shown that there is high discriminative capacity
in a series of other regularly executed activities [29] that also exhi-
bit significant potential towards unobtrusive, continuous user
authentication.

As the reader would notice, vision-based biometric methods re-
quire high precision tracking algorithms in order to accurately cap-
ture the humans movements. In this respect, several tracking
methods have been proposed in the bibliography, mainly dealing
with gestural analysis of the human body [30]. Some exemplary
works are shortly described hereafter.

An early and one of the most promising approaches towards ini-
tializing the upper-body shape has been proposed by Plankers and
Fua [31], whereby an implicit ellipsoidal metaball representation
has been fitted to stereo point clouds prior to tracking. However,
by using a single pose which is updated at each time step there lies
always the danger of tracking failure with a rapid movement or vi-
sual ambiguities pose estimation. Later, Ziegler et al. managed to
map each point of an articulated human model on the correspond-
ing 3D point cloud, derived from disparity data, for long sequences
[32]. However the slow performance (�1 fps) that has been
achieved, made this method unappropriate for real-time applica-
tions. A great improvement has been performed by Micilotta
et al. [33], whereby the 3D gesture could be estimated in real time
from 2D color images, by utilizing adaBoost trained detectors com-
bined with heuristic and hard anthropometric rules. Still, the fact
that they use color images makes it vulnerable to bad illumination
or other lightning problems. Last but not least, a novel method for
view invariant gesture recognition, utilizing spherical harmonics
on high accuracy depth data (ToF camera) has been presented in
[34].

1.3. Motivation

Recent trends in biometrics research deal with the analysis of
the dynamic nature of various modalities targeting at users’ conve-
nience and optimal performance in various realistic environments.
The idea behind using activity-related biometrics for recognition
purposes is based on the observation that complex multijoint
movements, such as walking or reaching an object, are planned
and executed according to one’s personal behavior and style. Fur-
thermore, a number of natural ‘‘restrictions’’, such as the physiol-
ogy of the human body, possible impairments or the perceived
environment [35] are bound to influence constantly the type and
the art of specific movements. Thus, it can be claimed that biomet-
ric recognition would be potentially feasible by basing on all these
dynamic environmentally invariant properties (i.e. movement’s
distance, direction, starting/ending position, external load, etc.)
[36].

One of the initial approaches to activity-related biometrics has
been attempted in [21]. Specifically, Kale et al. measured signals
from various modalities, while the subject performed various
activities during walking. Then, these signals have been used to
create either unimodal or multimodal activity-related biometric
signatures for each subject. In this concept, the potential towards
robust discrimination between subjects, as well as the persistence
in some movements’ characteristics has been exhibited.

Based on the above concept, a novel method for activity-related
biometric authentication is proposed and demonstrated in the con-
text of an office environment, within the current paper. In particu-
lar, the users are authenticated by analyzing the invariant features
of their movement during several office related activities (i.e. a
phone conversation and an interaction with a microphone panel).
The analysis of the movements is based on the processing of the
extracted motion trajectories, in order to retrieve unique signa-
tures of dynamic nature that would form reliable biometric traits
for authentication. The authentication performance of these dy-
namic traits is further augmented by exploiting the static anthro-
pometric profile of the users’ upper-body.

It can be claimed that the Universality requirement is by defini-
tion satisfied within the current approach, provided that a valid
biometric characteristic should satisfy the following set of require-
ments [15]:
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� Universality: Each user should posses it.
� Distinctiveness: The extracted features are characterized by

great inter-individual differences.
� Reproducibility: The extracted features are characterized by

small intra-individual differences.
� Permanence: No significantly change over time, age, environ-

ment conditions or other variables.
� Collectability & Automatic processing: Recognize or verify a

human characteristic, which can be measured quantitatively,
in a reasonable time and without a high level of human
involvement.
� Circumvention: It should be difficult to alter or reproduce by an

impostor who wants to fool the system.

Moreover, there is a plenty of models that indicate the users’
tendency of seeking the ‘‘most convenient’’ or the least effort-
demanding pose when performing a movement. In particular,
according to Flash and Hogan’s Minimum Jerk Model [37], the hand
paths in extrinsic space should be straight, while curved hand
paths can be generated as a concatenation of straight-line seg-
ments. Similarly, the Uno, Kawato and Suzuki Minimum Torque
Change Model [38] assumed a hand movement according to the
minimization of the torque during the movement. Based on these
observations, but also on Turvey et al.’s [35] and Goodman
et al.’s [36] findings, it can be proved that the Distinctiveness, Repro-
ducibility but also the Permanence requirements are fulfilled as
well, since all these parameters are related to the user’s anthropo-
metric variables, that exhibit significant variance within the popu-
lation. Moreover, Permanence is guaranteed, given that an adults’
body remains rather unchanged over the years, in terms of the dis-
tances between the joints. Finally, the combination of physiological
with stylish and behavioral characteristics is bound to be very hard
to circumvent or to mimic by an impostor.

A few further issues that should be considered when design-
ing a practical biometric system are its recognition performance
(i.e. accuracy, speed), the resources required to achieve the de-
sired recognition accuracy and speed, as well as some operational
and environmental factors (i.e. frequency of the performed activ-
ity on daily basis and the degree of societal approval). Given that
the proposed method is totally unobtrusive to the user, but also
given that the recognition process is incorporated in the users’
everyday activities, it can be stated that the acceptability and
frequency criteria are covered to an accepted extent. Last, the
Automatic processing requirements including the recognition
accuracy and the speed are highly dependent on the
features and algorithms deployed and will be presented in the
following.

In this respect, the current paper extends the activity-related
biometric framework proposed in [39] by utilizing a new, faster
and more accurate method for the extraction of the static anthro-
pometric profile. A quantitative comparison between the two
methods in terms of speed and recognition capacity is included.
Compared to [39] the proposed framework is herein evaluated also
with respect to a further office activity, the interaction (i.e.
approaching and talking) with a microphone panel.

The rest of the paper is organized as follows: In Section 2, the
overview of the proposed system is presented. The architecture
proposed for the event detection framework is described in Section
3.1, while in Section 3.2 the basis for the current authentication ap-
proach is briefly reviewed. The contribution of static biometric
information to an existing dynamic biometric system is presented
in Section 3.3, followed by the introduction of a quality factor esti-
mation based on the human ergonomics in Section 3.5. Finally, a
short description of the database used and the experimental vali-
dation of our framework are presented and thoroughly discussed
in Section 4.2.
2. Framework overview

An overview of the proposed biometric system is depicted in
Fig. 1. Initially, the event detection module identifies and extracts
by annotating the image sequence that corresponds to a specific
activity. This sequence is then processed, so as to extract the user’s
static anthropometric profile that refers to the upper-body’s skele-
ton model and the activity related dynamic features. The latter re-
fer to information provided by the motion trajectories of the head
and the hands. The full signature for the claimed user’s ID is re-
stored from the database and the actual extracted features are used
to classify the user as a client or an impostor to the system via a
Hidden Markov Model (HMM) classifier, concerning the dynamic
motion, and an Attributed Graph Matcher (AGM), concerning the
static anthropometric information. Finally, a score level fusion of
both classifiers is performed by a Support Vector Machine (SVM)
algorithm implemented on a Gaussian kernel and the validity of
the final score is then verified by a quality factor based on ergo-
nomic restrictions.
3. Activity related biometric authentication

In the following paragraphs follows an extensive description of
each of the modules that form the proposed framework. The Activ-
ity Recognition module acts also auxiliary to the Biometric Recogni-
tion module, aiming primarily at verifying the integrity of the
ongoing movement. Thus, if the phone falls from the user’s hands,
during a phone conversation, an alarm event will be raised and
thus the current activity will be considered as non-valid for bio-
metric recognition purposes.
3.1. Activity detection

Activity recognition is performed utilizing the concept of Mo-
tion History Images (MHI) [40]. Specifically, a MHI is a temporal
template, where the intensity value at each point is a function of
the motion properties at the corresponding spatial location in an
image sequence according to Eq. (1)

MHITðx; y; tÞ ¼
s; if Dðx; y; tÞ ¼ 1
maxð0;MHITðx; y; t � 1Þ � 1Þ; otherwise

�
ð1Þ

where s is the number of frames contributing to the MHI generation
and is proportional to the duration of the detected event (i.e. s = 15
for a panel interaction activity and s = 30 for a phone conversation
activity). Further, D(x,y, t) equals 1 if there is a difference in the
intensity of a pixel between two successive frames It�1(x,y); It(x,y).
The older a change is, the darker its depiction on the MHI will be,
while changes older than 15 frames are discarded (Fig. 2).

The proposed system for activity recognition is presented in
Fig. 3.

A MHI is extracted for each frame, using the last s frames. The
value of s is different for each activity and has been experimentally
selected. The criterion used, was the required maximum time
needed for an activity to be completed by the user’s. Given the
camera’s frame rate the value of s was calculated. The general rule
is indicates that the longer the duration of an activity, the bigger
the value of s.

Then, the MHI is transformed according to the Radial Integra-
tion Transform (RIT) and the Circular Integration Transform (CIT),
which are used due to their aptitude to represent meaningful
shape characteristics. The location of the head (x0,y0) is detected
following the approach in [41] and is used as the center of integra-
tion for both transformations.



Fig. 1. User authentication system overview.

Fig. 3. Event detection system overview.

Fig. 2. MHI Samples: (a) Phone conversation – (b) typing pin on a wall-keyboard – (v) talking to microphone.
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In particular, the RIT transform of a function f(.., ..) is defined as
the integral of f(.., ..) along a line starting from the center of the
image (x0,y0), which forms angle h with the horizontal axis
(Fig. 4/left). In our feature extraction method, the discrete form
of the RIT transform is used, which computes the transform in
steps of Dh and is given by Eq. (2).



Fig. 4. Visual description of RIT (left) and CIT (right) for the activity ‘‘Phone Conversation’’ and ‘‘Talking to Mic. Panel’’ respectively.
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RITðtDhÞ ¼ 1
J

XJ

j¼1

MHIðx0 þ jDu � cosðtDhÞ; y0 þ jDu � sinðtDhÞÞ ð2Þ

for t = 1, . . . , T with T = 360o/Dh, where Dh and Du are the constant
step sizes of the distance u and angle h and J is the number of the
pixels that coincide with the line that has orientation R and are
positioned between the center of the head and the end of the
MHI in that direction.

In a similar manner, the CIT is defined as the integral of a func-
tion f(.., ..) along a circle curve with center (x0,y0) and radius q. Sim-
ilar to the RIT transform, the discrete form of the CIT transform is
used, as illustrated in Fig. 4/right, which is given by Eq. (3)

CITðtDqÞ ¼ 1
T

XT

t¼1

MHIðx0 þ kDq � cosðtDhÞ; y0 þ kDq � sinðtDhÞÞ

ð3Þ

for k = 1, . . . , K with T = 360o/Dh, where Dq and Dh are the constant
step sizes of the radius and angle variables and finally KDq is the
radius of the smallest circle that encloses the gray-scaled MHI
(Fig. 4-right).

The database of supported activities consists of several sets of
MHIs transformed according to RIT and CIT methods for each activ-
ity. Thus, an incoming transformed signal x is compared to a stored
one y according to two separate classifiers; namely an Euclidian
distance classifier, which deals with the transformed signals’ abso-
lute value (Eq. (4)) and a correlation factor classifier, which com-
pares the fluctuations of the signals (Eq. (5)).

DE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� yÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðxi � yiÞ
2

vuut ð4Þ

corrðx; yÞ ¼ qx;y ¼
covðx; yÞ

rxry
¼

Eððx� lxÞðy � lyÞÞ
rxry

ð5Þ

The detected event is the one that has the most matches with
the prototype MHIs from several subjects, stored in the database,
according to a majority voting rule. Accordingly, an activity is con-
sidered to be performed within the successive appearance of a
starting and an ending event. Moreover, an event is only then de-
tected, when the returned scores from both classifiers exceed the
experimentally selected thresholds, so as to minimize the false
positives.

3.2. Dynamic motion trajectories

The core of the proposed authentication system is based on the
dynamic motion tracking is presented in [29] and is briefly de-
scribed in the following so as to make the paper self-contained.
The user’s movements are recorded by a stereo camera and the
raw captured images are processed, in order to track the users head
and hands via the successive application of filtering masks on the
captured image. Specifically, a skin-color mask [42] combined with
a motion-mask [40] can provide the location of the palms, while
the head can be accurately tracked via a combination of a head
detection algorithm [41] and a mean-shift object tracking algo-
rithm [43]. The 2.5D information can be easily derived performing
disparity estimation from the input stereoscopic image sequence.

The question that should be answered at this point is whether:
‘‘Does the position of the palm contain enough information to de-
scribe the movement of the whole arm or not’’. The answer is po-
sitive and it can be justified according to Lacquaniti and Soechting
[44]. Specifically, they have proved that there is a clear dependency
between the user’s elbow and shoulder angular positions from trial
to trial regardless the movement speed and the target orientation.
The same idea about the consistency of reaching and grasping
movements was presented later in [14] as well. Thus, it is rational
to claim that the palm can be representative for the movement of
the whole arm.

During the tracking session, a series of post-processing algo-
rithms [29] applied on the raw tracked points, manage to extract
smooth motion trajectories which are then used as biometric sig-
natures. Finally, both the training and the identification procedure
are implemented by a HMM. Specifically, a five state, left-to-right,
fully connected HMM is trained from several enrollment sessions
of the same user. This setting has been selected, given that the ex-
plored activities are not expected to return to a previous state. Sim-
ilarly, it has been both intuitively found out and experimentally
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proven that the five states optimally describe the corresponding
motion trajectories. Accordingly, in the verification step the ex-
tracted features from a user are used as input to the stored HMM
and the user is classified as client or impostor to the system.

3.3. Static anthropometric profile

A significant enhancement to the authentication performance of
the system described in Section 3.2 can be achieved by exploiting
the static anthropometric information of each user, i.e. a user-
specific skeleton model. At this point, it should be clarified that
the development of a new gesture recognition technique or the
further improvement of an existing one is out of the scope of the
current work. On the contrary, the goal is to exhibit the potential
of static anthropometric features towards biometric recognition.

Thus, two state-of-the-art methods are utilized in the current
section for the extraction of the users’ static biometric profile.
The first is described in [45], whereby hierarchical particle filtering
is utilized towards the accurate shape adjustment of an articulated
model to the user’s body. The multi-camera environment re-
quested by this approach is provided by two calibrated cameras:
a stereo frontal camera and a usb-simple camera, which is placed
on top of the user.

Alternatively to the aforementioned method, a faster and more
accurate method has been lately released. The latter utilizes the
PrimeSense

�
advanced depth-sensor in combination with the

OpenNI [46] library. Thus, the human form is segmented automat-
ically from the high precision depth image, while 48 essential
points of the human body are simultaneously tracked in the 3D
space.

The core of the OpenNI library is a machine learning algorithm
that has been statistically trained by millions of images of people
Fig. 5. Adjusted skeleton model based on: a) h

Fig. 6. Anthropometric G
in different poses. The statistical compilation of all these data al-
lows OpenNI to adjust the most appropriate skeleton model to
each human body in terms of size and pose. The implemented
methodology is covered by an international patent and is described
in [47].

When comparing these two approaches, one could notice that
in the current setting the particle filtering algorithm utilized in
[45] requires �15 s for the processing of a single shot (1 shot
� 1 frame

camera). However, it has been found out that an initial approxi-
mate manual annotation of the user’s joints may significantly in-
crease the performance of the algorithm with respect to the
achieved accuracy.

On the other hand, the OpenNI algorithm exhibits much lower
computational requirements (30 fps), with a slight decrease in
accuracy. A comparison in terms of biometric recognition perfor-
mance between the aforementioned methods, as well as their con-
tribution to the carried out experiments follow in Section 4.2.

Once the location of all body’s joints have been estimated, the
extracted user’s skeleton model can represented by an Attributed
Relational Graph (ARG) G = {V,E, {A},{B}} [48], whereby V are the
nodes, E the edges, and A and B the corresponding attributes,
respectively. The nodes and the edges stand for the joints and
the limbs of the actual body, respectively, as shown in Fig. 6.
Attribute matrix A is not used, since no attributes for the joints
are utilized in the current framework, while attribute matrix B
corresponds to the lengths of the limbs (� distances between the
adjacent joints).

3.4. Attributed graph matching

Possible noisy estimation of the limbs’ lengths is compensated
when calculating the mean value of each anthropometric attribute
ierarchical filtering, b) OpenNI algorithms

raphs’ Comparison.
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among several enrollment sessions. However, there are some
cases, where partially connected anthropometric graphs may be
generated. This may be due to either partial occlusions of specific
limbs from other foreground objects or low confidence tracking
(i.e. bad illumination). The Attributed Graph Matcher (AGM) based
on Kronecker Graphs [48] has been utilized, whereby comparison
between fully and partially connected graph is possible.

Let us assume two random anthropometric Graphs G and G0 as
shown below:

G ¼ V ; E; fBgn
i¼1

� �
; where n :¼ jV j

G0 ¼ V 0; E0; fB0gn0

i¼1

n o
; where n0 :¼ jV 0j

ð6Þ

where Bk carries the lengths of the user’s upper-body limbs.
The case of n – n0 indicates a Sub-Graph Matching (SGM), while

n = n0 a Full-Graph Matching (FGM). In any case, Graph G is claimed
to match to a sub-graph of G0, if there exists an n � n0 permutation
sub-matrix P so that the following equation is fulfilled.

Bj ¼ P0B0jP
T
0 þ ðeMjÞ; where j ¼ 1; . . . ; s ð7Þ

where Mj is an n � 1 noise vector and e is related to the noise power
and is assumed to be independent of the indices i and j.

To accommodate inexactness in the modeling process due to
noise, the AGM problem can be expressed as the combinatorial
optimization problem of equation:

� ¼ min
p

Xs

j¼1

WjþrkBj � PB0jk
q

 !
ð8Þ

where k � k represents some norm P 2 Per(n,n0) denotes the set of all
n � n0 permutation submatrices and fWigrþs

k¼1g is a set of weights
satisfying 0 6Wk 6 1, k = 1, . . . , r + s and

Prþs
k¼1Wk ¼ 1.

In this respect, the minimum error � stands for a metric for the
similarity between the graphs under comparison.
3.5. Ergonomy – quality factor

In order to fulfill the repeatability/reproducability requirement
(see Section 1.3) the same or almost the same environmental con-
ditions should remain stable among different sessions. Moreover,
the stylish and behavioral analysis of a person’s movements always
refers to a relaxed state. Otherwise, unwanted artifacts may ap-
pear, which will act as noise to the measurements. In the following,
a method based on ergonomical studies is presented, which can
handle the ‘‘extreme’’ cases of movements.
Fig. 7. Human convenien
3.5.1. Ergonomic spheres
Due to restrictions set by the structure of the human body, it is

easy to understand that there are regions around the human,
where the movement of the hands is more convenient than in
other regions. These assumptions have been scientifically formu-
lated in [49]. Specifically, it has been proven that the area in front
of a seated human can be divided in three different spheres,
according to the easiness with which the user can reach an object
within certain regions (Fig. 7). It is suggested that the darkly gray
area is the one where the user moves most convenient and is thus
called the ‘‘convenient zone’’. On the contrary, the light gray area
indicates the ‘‘kinetosphere’’, whereby the user has to stretch or
to bend his body in order to reach something. The white areas on
Fig. 7 are out of reach for the user.

Thus, it can be assumed that the user performs more relaxed
movements within the ‘‘convenient zone’’ than in the
‘‘kinetosphere’’. During run-time, it can be claimed that the move-
ments within the ‘‘convenient zone’’ reveal more information
about the user’s behavioral response, since they are performed un-
der no pressure or with force. On the other hand, the movements
within the ‘‘kinetosphere’’ can be considered as forced movements.
Thus, the ergonomic zones taken into account are dependent on
the distance between the user’s torso and the interaction objects.

In this respect, an important metric about the quality and the
evaluation of the extracted signature is proposed and is defined
in Eq. (9) as the product of the tracking quality factor fq (Eq.
(10)), enhanced by a user-object distance factor b(0 6 b 6 1), which
changes over the human ergonomic spheres (Eq. (11)).

fq;final ¼ b � fq ð9Þ

fq ¼ 1� NmissHead þ NmissRHand þ NmissLHand

3Nframes
ð10Þ

where NmissHead, NmissRHand, NmissLHand are the amount of frames in
which the Head, the right and the left Hand were not detected,
respectively. Nframes is the total number of frames of the sequence.

b ¼
0:1 � dtorso;object þ 0:5; if dtorso;object < 5cm

1; if 5cm 6 dtorso;object 6 35cm

�0:02 � dtorso;object þ 1:7; if dtorso;object > 35cm

8><
>: ð11Þ

The lowest the quality factor the less probable the extracted dy-
namic features to contain valuable biometric information for
authentication. Accordingly, if fq,final 6 0.5 the extracted features
are discarded and no authentication process takes place.

The quality factor can be used in favor of the authentication rate
of the system as follows: Forced movements that include the
stretching of the user are inherently different both in style and in
ce zones on a table.



Fig. 8. Object detection: (a) Top camera view, (b) contour extraction (c) objects’ area detection, and (d) tagging of objects.
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type. Thus, no authentication potential is expected to be found in
such movements, given that in the current study the user is ex-
pected to act under regular, relaxed conditions, similar to the ones
during the enrollment session. In this respect, the quality factor de-
scribed above contributes to the implicit detection of such move-
ments, in order to be excluded from classification.

3.5.2. Torso – object distance estimation
The proposed multicamera environmental setting (Fig. 5) con-

sists of two calibrated cameras (i.e. a frontal stereo-camera and a
top monocular camera). In order to calculate the distance dtorso,ob-

ject, both the torso and each object have to be first detected on
the recording setting. Given that the head position is detected as
described in Section 3.2, the underlying body part refers to the
user’s torso. On the other hand, each object can be detected by
the top camera as shown in Fig. 8 and . Generally, objects are coar-
sely described in a rotation-invariant way based on their contours
(Fig. 8b). Specifically, each object is described by its aspect ratio,
the area it occupies and its color.
Fig. 9. ROC Curves for the static biometric traits.
Since the two cameras are calibrated with each other, the dis-
tance dtorso,object can be easily calculated as illustrated by the red
dotted lines shown in Fig. 8d.

3.6. Fusion

In order to combine the results from the two different biometric
traits, namely the dynamic and the static one, a score-level fusion
algorithm has been utilized. Specifically, the fusion is performed by
a support vector machine (SVM) classifier that bases on a gaussian
kernel with a width value of 0.01. The trade-off factor between
training error and margin was set at 100,000, while all input
score-data have undergone a ‘‘min �max’’ normalization. The
training of the SVM has been performed on a 19 � subjects cus-
tom-dataset, which is described in paragraph Section 4.1.3.

4. Databases and results

The proposed framework has been evaluated in the context of
the following verification scenarios, namely ‘‘a short phone conver-
sation’’ (scenario A) and ‘‘talking to a microphone panel’’ (scenario
B). In both cases, the verification results based on the static anthro-
pometric profile of each user, the dynamic motion trajectories and
their fusion are presented.

4.1. Databases

For the evaluation of the current framework the following three
databases have been utilized:

4.1.1. ACTIBIO database
This database was captured in an ambient intelligence indoor

environment and is extensively described in [29]. More precisely,
the current, manually annotated database consists of 29 subjects,
performing a series of everyday office activities, i.e. a phone
conversation, typing, talking to a microphone panel, drinking
water, etc., with no special protocol. Each subject has performed



Fig. 10. Scenario A – ROC Curves for the fused scores.

Fig. 11. Scenario B – ROC Curves for the fused scores.
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8 repetitions in total, equally split in two sessions. Among the five
cameras which have been recording each user from different an-
gles, only the recordings from a frontal stereo camera and a top
monocular camera have been used for the current work.

4.1.2. Anthropometric database
In order to acquire the appropriate recordings for the OpenNI

algorithms, a custom dataset has been recorded by the Prime-
Sense

�
camera sensor. This dataset consists of 29 subjects perform-

ing the activities indicated in the scenarios A and B in 3 repetitions.
200 frames from each of the first two repetitions have been used
for extracting the user’s anthropometric profile, by which each
user was registered to the database. Similarly, the anthropometric
profile that has been used for authentication was formed by
averaging the results of 200 sequential frames from the third
repetition.

4.1.3. Fusion training database
The training of the SVM has been performed on the data ac-

quired from a third, 19-subjects custom-dataset. Specifically, this
dataset has been recorded in a multi-camera scenario, which con-
sisted of a frontal stereo camera and a top usb-camera. All subjects
performed the activities indicated in the two aforementioned sce-
narios in 2 sessions of 5 repetitions in total.

4.2. Results

In the following, the performance of the main modules of the
proposed framework (i.e. the activity detection module and
the activity-related authentication module) is evaluated, during
the performance of several activities.

4.2.1. Activity detection performance
The performance of the proposed activity detection framework

(Section 3.2) exhibited high accuracy, as described in the confusion
matrix of Table 1. The performed experiment forced a simulta-
neous search for the detection of the four supported activities.
Table 1 presents the high detection potential of the proposed ap-
proach in realistic unobtrusive conditions.

Activities with high motion content in close areas of the frame,
i.e. glass and phone are both brought towards the user’s head, are
most likely to be mismatched. On the other hand, activities exhib-
iting high motion variance, i.e. the users picks the phone with the
left hand and speaks to the microphone on his right side, are highly
probable to be correctly detected.

4.2.2. Authentication performance
Considerable improvements in the authentication performance

compared to [29] have been observed when augmenting the mo-
tion trajectory based algorithm with the static anthropometric
information. In the new experiments that have been carried out,
the authentication performance of the dynamic traits from the
two scenarios are illustrated with the red line in Figs. 10 and 11.
The reader can easily notice that scenario B exhibits a higher
authentication rate (EER = 10.32%) compared to the scenario A
(EER = 16.7%). This can be explained by the fact that during a short
Table 1
Activity detection confusion matrix.

Events Phone (%) Panel (%) Microphone (%) Drinking (%)

Phone 93.1 0 0 6.9
Panel 0 89.7 10.3 0
Microphone 0 10.3 86.2 3.44
Drinking 13.8 0 0 86.2
phone conversation the user’s head remains almost fixed at the
same position. Thus, the recognition capacity of the movement is
mainly concentrated in the movement of the hand. On the other
hand, the second scenario required the leaning of the user towards
the microphone. In this respect, both the head and the user’s hand
covered a significant distance. Thus, more valuable biometric infor-
mation is potentially encoded in the second movement.

Fig. 9 exhibits the authentication potential of the static anthro-
pometric characteristics, as they are processed based on the ap-
proaches described in Section 3.3. The blue line depicts the
authentication potential of the particle filtering method[45].
Although, the tracking of the user seems to be accurate, the reader
can notice that the method fails to provide significant authentica-
tion potential with respect to the individual’s anthropometric
information. On the contrary, when the initialization of the algo-
rithm is augmented by manual annotation of the user’s joints,
the algorithm exhibits high robustness. In this semi-automatic ver-
sion of the algorithm the authentication rate lies at 11.3%.

The superiority of the proposed method, which utilizes the
Primesense sensor with the OpenNI algorithms is clear in both
computational time and accuracy. Specifically, the fully automatic
method implemented be the OpenNI algorithms achieves an
authentication rate score of 13.23%, which is very close to the per-
formance of the semi-automatic particle filtering method de-
scribed above. Moreover, the computation time needed has
significantly decreased, and thus a real-time anthropometric pro-
file extraction is possible.

As expected, when combining both static and dynamic ex-
tracted information the authentication performance of the system



Table 2
Scenario A – authentication performance (EER).

Dynamic Static (%) Fusion (%) Fus. and Ergon. (%)
[45] [46] [45] [46] [45] [46]

Scenario A 16.7 11.3 13.23 8.3 10.8 7.9 10.1
Scenario B 10.32 11.3 13.23 7.2 9.12 6.7 8.4
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improves further. Specifically, the fusion performed by the SVM
presented in Section 3.6 achieved an EER score of 8.3% in scenario
A and 7.2% in scenario B, when the fully automatic has been uti-
lized. The EER scores are even lower in the case the semi-automatic
particle filtering method has been utilized as shown in Table 2.

The EERs are summarized in Table 2, whereby the improvements
of the proposed ergonomy-based quality factor (Sections 3.5.1 and
3.5.2) are included. Specifically, it is shown that the EER when the
ergonomy restrictions are applied falls with a mean value of 0.6%
in the both experimental scenarios. This improvement stems from
the fact that specific repetitions have been excluded from evaluation
in the authentication step, since they exhibited low ergonomic con-
fidence. Thus, a reduced false rejection rate has been achieved.

5. Conclusions

In this paper an extension to an activity-related, unobtrusive
authentication framework has been presented, that is related to
activity-related biometrics and includes both the dynamic and
the static characteristics derived when performing everyday activ-
ities. The proposed framework can be expanded to various activi-
ties, which include the reaching, grasping or interacting with an
object in the vicinity of a user.

The system is triggered by a robust event detection algorithm,
while the quality of the extracted features is verified with respect
to both, the accuracy of the tracking algorithm and the ergonomy
of the setting. The proposed framework is seen experimentally to
provide very promising verification rates in real time. Moreover,
the proposed static anthropometric profile is seen to have a signif-
icant contribution to the overall authentication capacity. Last, tak-
ing also into account that no hard constraints have been forced
during the capture of the input signals, the proposed approach
makes a step forward in the context of the very challenging prob-
lem of unobtrusive on-the-move-biometry.
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