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Abstract—This letter presents a novel probabilistic framework
for augmenting the recognition performance of biometric systems
with information from continuous soft biometric (SB) traits. In
particular, by modelling the systematic error induced by the esti-
mation of the SB traits, a modified efficient recognition probability
can be extracted including information related both to the hard
and SB traits. The proposed approach is applied without loss of
generality in the case of gait recognition, where two state-of-the-art
gait recognition systems are considered as hard biometrics and the
height and stride length of the individuals are considered as SBs.
Experimental validation on two known, large datasets illustrates
significant advances in the recognition performance with respect
to both identification and authentication rates.

Index Terms—Feature space partitioning, gait recognition, soft
biometrics, systematic error.

I. INTRODUCTION

T is a common place that security in computer systems is an

increasingly critical issue that affects a series of diverse ap-
plications, ranging from granting access control in restricted in-
frastructures to e-commerce transactions. Such applications re-
quire reliable personal recognition schemes to either confirm or
determine the identity of an individual requesting their services.
To this extent, biometrics have been proven to provide unique
and powerful advantages over other traditional technologies for
identity verification, such as PINs or tokens that can be easily
forgotten, lost or stolen.

In general, biometric traits can be divided in two main
categories. Namely, hard biometrics include both the common
physical biometrics (e.g., fingerprint) and the behavioural ones
that describe activity-related patterns of the user (e.g., gait [1]),
while soft biometrics can be divided into continuous (e.g.,
height, weight, etc.) or discrete human characteristics (i.e.,
gender, race/ethnicity etc.) [2].

Soft biometrics (SBs) lack the distinctiveness and perma-
nence to sufficiently differentiate any two individuals and thus,
they cannot deterministically predict the identity of the user [4].
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However, they manage to straightforwardly provide useful in-
formation towards user identification in large datasets [3], by
either verifying hypotheses or reducing the search space in typ-
ical biometric systems [6]. Specifically, they allow the overall
query to be answered better and faster by contributing to a much
smaller candidate pool and by minimizing the size of compar-
isons. Moreover, it has been stated that the automatic inference
of SB traits outperforms human observation, which may be sub-
consciously biased [7].

The idea of improving the performance of typical biometric
systems via combination with soft traits has been proposed in
the bibliography several times until today. For instance, Nan-
dakumar et al. proposed quality-based fusion of static biomet-
rics for the improvement of the recognition accuracy [8]. Later,
Moustakas et al. have proposed a Bayesian framework for im-
proving the authentication rates from behavioral gait traits with
gait-related SBs [9], while Marcialis et al. proposed a similar
approach for facial recognition in [10].

A. Contribution

The current letter proposes a novel and highly efficient proba-
bilistic framework for augmenting the recognition performance
in biometric systems via the integration of one or more SB traits
and the modelling of the induced systematic error during their
measurement.

This way, some serious open issues from [9] and [10] are
addressed. In [10], the users are categorized into “minority” and
“majority” groups, according to the frequency of appearance of
their SB traits. Moreover, only the extreme cases of SB traits
are boosted in [9], while the fact that they are defined in a single
dimension leads to a uniform, linear quantization of the feature
space, not applicable for most real scenarios. Last but not least,
despite its seemingly smooth function, both works are based on
the invalid assumption of independent conditional probabilities
of the geometric trait when multiple SBs are available.

In this context, the following framework proposes a two-step
process for augmenting the matching scores of genuine users,
initially by assigning them to specific clusters in the feature
space and then by evaluating the systematic error of the in-
coming measurement according to a predefined statistical
model. Most important, the error measurements of the SBs are
claimed to be independent, since they are in direct connection
with distinct measurement processes.

II. AUGMENTING RECOGNITION PERFORMANCE
VIA SOFT BIOMETRICS

Let €2 be the set of all identities in the A -sized user popu-
lation @ = {w1,ws....,war}, %, be the hard biometric infor-
mation (e.g., geometric gait) and x; be a continuous soft bio-
metric (SB) trait (i.e., the height of the user) from a set X with
N available SBs X = {z,,, %5y, ..., Tsy }. Assuch, p(w|z.) =
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1 — p(@|x.) is the matching score of the conventional biometric
system.

A. Partitioning the Feature Space

Contrary to the simple 3-stage partitioning (i.e., small-,
normal- and large-sized population) [9], [10], a more sophisti-
cated spatial partitioning of the feature space £’ in N¢ clusters
C;, that exhibit notable variation in terms of their defining SBs,
is proposed herein.

The authentication probability of a client user is augmented,
when the incoming SB traits refer to the same cluster as the
claimed ID. In all other cases, the matching probability p(w|z.)
remains intact and is solely based hard biometric trait of the user.
Although there is no actual limitation in the dimensionality of
the feature space, the simple case of 2D clusters will be studied
herein, without loss of generality.

In this respect, a cluster C; of the multidimensional soft bio-
metric feature space, associated to a subset S; € §2 of the set of
identities ), is characterized as a valid cluster iff the following
hold.

The a-priori probability of an identity w to belong to a cluster
has to be low:

0<plwe Cilrg,, ..., 25y) =mi(w) € 1
and there should exist a subset .5; of €1, so as

L Yw e S p(zs € Cilw) > a
38, c Q v : '
G {‘v’w ¢ ;. p(zs € Cilw) = p;(w)
where « is a minimum non-zero value, C' is the union of all
clusters whose number N¢ should be significantly lower than
the size |€2| of the identity set £2:

C=uUC,VYi=1,...,N¢
No < 9]

Three different partitioning alternatives have been imple-
mented herein, all of which fulfil the requirements of a cluster:

Uniform Orthogonal Clustering (UOC) is a linear way of par-
titioning the feature space. The dimensions of the prototype or-
thogonal cluster are defined by using a brute force iterative algo-
rithm on an adequately large reference SB feature dataset. The
major drawback of the current clustering method, is that it deals
with each biometric feature separately. This way, some clusters
are left “empty”, while some other are “overcrowded”.

Hexagonal Cell Clustering (HCC) is a more efficient way for
partitioning the feature space. The isotropy is preserved along
the whole feature space via data normalization to the standard
deviation, while a more uniform distribution of the samples
among the cells is provided. Hereby, only the radius of the pro-
totype hexagon has to be estimated.

Gaussian Clustering (GC) refers to the generation of multi-
dimensional gaussian clusters on the feature space and offers
increased flexibility in grouping similar users. To this direction,
an unsupervised clustering approach was implemented, based
on the ISODATA and the expectation-maximization (£M ) al-
gorithms, so that the whole feature space is described as mixture
of multidimensional Gaussians

1

( )Z/Z ‘1/2 Ci%u‘wfﬂk)Tz;l(f»*Nk)
2r : |Ek

N e, Ze) =
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Fig. 1. Distribution of the Systematic Error in (a) Height and (b) Stride Mea-
surements and the corresponding fitting curve.

Vector f,. includes all utilized SB trait values, f, =
{#s, 1(w),..., 25, z(w)}, while g and Xy are the Z-di-
mensional mean vector and the and Z X Z covariance matrix
of the kth Gaussian, respectively.

At the authentication stage, the assignment of an incoming
SB feature vector of a user to a cluster is performed according
to the maximum likelihood (M L) criterion.

B. Modelling the Systematic Error Probability

Let us now define the ground truth value =9 ~as the SB trait
n~0f user w and &, ; as the [th value measured by the system
(X5, (w) = {&s, 1(w),..., %5, r(w)}, where L is the total
number of measurements. For an adequately large number T' =
M x L of measurements, the noise distribution that is induced
as error in the measurement (i.e., noise) by the system can be
estimated as described hereafter.

As long as 7' is large enough for reliable statistical estimates,
the normalized values 5, ;(wim) = &5, 1(Wm) — 27 (wn) can
be produced. Having these data for the whole registered popu-
lation, it is trivial to fit the normalized values distribution by a
1D Gaussian Mixture of the following type:

K

pleslw) = Z T Np (s, or)

k=1

where N}, (es| ik, o) stands for the kth single Gaussian distri-
bution that contributes to the mixture. The values 7y, j45 and
o can be easily computed by utilizing the iterative Expec-
tation-Maximization (EM) algorithm on the data’s histogram,
until convergence. The initial parameter regarding the number
K of single Gaussian distributions in the 1.0 mixture model is
experimentally selected, as the one that produces an acceptable
error value in the x? — test.
Consequently, p(e;|w) can be calculated as

p(es) - p(w)p(es\w)
1—p(w)

where p(w) = 1/M and p(es) = 1/L are priors.

At this point, it becomes evident that a separate clustering
process in the multidimensional measurement error space would
be meaningless, since the feature distribution is known, from the
corresponding probability density functions (pdf) of the mea-
surement errors are known (Fig. 1) and that the measurement
errors themselves are i.i.d. variables. The exploitation of the in-
formation provided by the raw soft biometric features is herein
achieved, as described in Section II.A, so as to further improve
the recognition performance.

ples|@) = (1)

C. Estimation of the Recognition Probability

In this paragraph, the augmentation process is presented that
is applied only to these users, whose SB traits resemble the
claimed ones. Yet, it is important to highlight that the previous
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frameworks for augmenting biometric recognition with SBs as-
sumed independence between the SBs in an ad-hoc manner,
which does not hold per se. Herein, the independence between
the inserted systematic error for each SB is guaranteed by defi-
nition, since the produced distributions refer to the uncorrelated
measurement errors (not to the SB traits).

In this context, the goal herein is to find a generic expression
of the conditional probability p¢; = p{w|z., es,,. ... es, ) that
denotes the final recognition score:

D@ Ty sy Con) =1 —plw|ze, e, esy)  (2)

while according to Bayes’ theorem

P = p(@|Te,€sy0. sy ) =

D(Tey CoyyovsCon)

By assuming that the error measurements stem from dis-
tinct and uncorrelated measurement processes, the variables

es, can be held as iid. As such, p(@c es,,...,€54) =
plz)p(esy) - plesy ).
Finally, according to the calculations presented in

http://www.iti.gr/~drosou/SystematicError/EquationProof.pdf,
(2) is expressed by the following generic formula

AT
py =1-p5 =1- ] ples, [o)p(@|z.)
n=1

III. CASE STUDY: ENHANCING GAIT RECOGNITION
WITH SOFT BIOMETRICS

Gait recognition is offering high level of unobtrusiveness
and performance. Contrary to model-based approaches, fea-
ture-based methods are generally seen to perform better in
terms of both accuracy and computational complexity, while
other limitations, such as clothing or slight changes in walking
direction, are compensated via non-canonical view gait recog-
nition and superfluous clothing removal [5].

Herein, the feature vector z. (see Section II), that refers to the
dynamic gait features (i.e., hard biometric), is extracted using
two gait recognition algorithms. The first algorithm is presented
in [11] and is based on the two well know Radon Transforms
that are applied to gait sequence silhouettes (i.e., BS — RIT
and BS — CTIT). The second algorithm is based on matching
spatiotemporal descriptors of the human gait, the so-called Gait
Energy Images (i.e., GEI — RIT and GEI — CIT).

Moreover, the “height” and “stride length” soft biometric
(SB) features should be extracted. This is trivially achieved
from the stereoscopic gait sequences, as the highest-lowest
part of the subject and to the largest distance between the legs
within a gait cycle, respectively. It becomes evident that the
process followed for the estimation of the stride length is prone
to bad illumination and the corresponding shadows that are
created on the walking floor, which may have as result the
occlusion of the edges of the feet. On the other hand, since the
height is estimated as the mean height value of all recorded
frames is robust to illumination changes along the walking path.
Thus, the errors in measurements mainly stem from possible
variations in the types of shoes/hills worn by the users and
from the natural hopping of humans during walking. Further,
uncorrelatedness between the error measurements between the
soft biometric traits is supported, according to the correlation
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Fig. 2. Three alternatives for partitioning the feature space are studied:
(a) UOC, (b) UHC and (c) non-linear 2D GC.

analysis performed on our data (http://www.iti.gr/~drosou/Sys-
tematicError/SBsIID.pdf). In this context, the independent
probabilities p(es, |w) are modelled as noise-related pdf's.

Following the steps in Section II.C, the parameters of the
Gaussian Mixtures that best fit the normalized height and stride
measurement’s errors are illustrated in Fig. 1(a) and Fig. 1(b),
respectively (see (1)).

Finally, the three described methodologies (i.e., UOC, HCC,
GC) for partitioning of the feature space are applied and the out-
comes are illustrated in Fig. 2. In the following Section inten-
sive tests of the proposed methodology are performed on two
well known and large 3.D-gait databases, so as to evaluate the
integrity and the recognition performance of the system.

IV. EXPERIMENTAL RESULTS

The proposed framework was tested both in terms of state
of the art curves (i.e., ROC, CMS and score distributions) and
experimental evaluation on well known datasets, whereby se-
quences from different recording sessions are used for enrol-
ment ( “gallery”) and identification/authentication ( “probe ).

The proposed algorithms have been tested in both the HUM-
ABIO and ACTIBIO databases that include gait sequences cap-
tured with stereoscopic cameras. The HUMABIO database was
captured in an indoor environment and includes two sessions of
75 and 51 subjects [11], respectively, while the ACTIBIO data-
base includes multiple repetitions on similar scenarios in two
sessions with 28 subjects, covering a wide range of real-world
use-cases. These datasets (esp. the HUMABIO dataset) are ade-
quately large, compared with other SoA datasets for gait recog-
nition, to extract safe conclusions regarding the performance.

Herein, only the gallery measurements of the HUMABIO
database have been used as the reference for both error mod-
elling (Fig. 1) and feature space partitioning (Fig. 2). The per-
formance of the system was evaluated via the probe recordings.
Similarly, the ground truth values for the SB data of each user
have been measured by a manual annotator on the recorded 3D
data. Moreover, these measurements have been verified via ac-
tual (i.e., real world) measurements and questionnaires during
the capturing of the databases.

Concerning the authentication performance of the proposed
approach, the False Acceptance (FAR) and False Rejection
Rates (FRR) are illustrated in Fig. 3(a) and 3(b) for the GEI-RIT
experiment on both databases. It should be highlighted that the
proposed framework manages to decrease the FAR and FRR
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Fig. 3. Receiver Operating Characteristics (ROC) for the GEI-RIT algorithm.

TABLE I
EER SCORES COMPARISON BETWEEN THE PROPOSED METHOD AND [9]

Experiment H Initial ‘ 9] ‘ uocC ‘ HCC ‘ GC ‘
ACTIBIO - BS/RIT 28% 16% 11% 8.5% 4.3%
HUMABIO - BS/RIT 19% 16% 13.5% 9% 3.25%
ACTIBIO - GEI/RIT-Time 25% 15% 18.5% | 14.8% | 11.1%
ACTIBIO - BS/RIT-Time 28% 152% | 17.3% | 14.8% | 11.5%
HUMABIO - BS/CIT-Time || 17.5% 15% | 8.07% | 6.9% 52%
i 'CMS Curves using GEI-RIT-Pantofle Experiment in HUMABIO database o CMS Curves using GEI-RIT-Pantofle Experiment in ACTIBIO database
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Fig. 4. Cumulative Matching Scores (C'A S) for the GEI — RIT algorithm.
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Fig. 5. Scores Distribution (a) before and (b) after the application of the pro-
posed framework (GC) in the HUMABIO RIT-Time experiment.

in the equal error rate EER point from 15.28% to 3.57% in
the (GEI-RIT experiment) ACTIBIO database in the GC case,
while slightly lower improvements can be noticed in the OC
and the HC cases.

Moreover, it is notable that the proposed approach signifi-
cantly improves the behaviour of the False Rejection Rate of the
system (Fig. 3(b)), while only slight improvements can be no-
ticed in its False Acceptance performance. This is achieved by
boosting the matching score of the client users above the rejec-
tion threshold value. Moreover, both Fig. 3 and Table I exhibit
the fact that the proposed system performs equally good in both
small datasets (i.e., ACTIBIO), but also in demanding cases of
large datasets (i.e., HUMABIO).

The ROC diagram representation in Fig. 3(a) was chosen so
that they are consistent and straightforwardly comparable with
the results in [11], while the representation in 3(b) was selected,
so as to provide the optimal threshold value.

An identification experiment includes the set of all authenti-
cation experiments for all subjects of the database. In particular,
during an identification experiment, there is no specific claimed
ID and thus, the incoming subject is compared with all stored
IDs in the database separately. In this respect, Fig. 4 presents
the comparative identification results on both datasets for the
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GEI-RIT experiments. In particular, four curves are displayed
in each figure, which correspond to the Cumulative Matching
Scores (CM S), using (a) solely the dynamic gait features and
(b) the proposed clustering techniques prior to the application
of the attenuation algorithm.

As expected, the more precise the partitioning of the SB fea-
ture space, the higher the performance. The most appropriate
authentication threshold is defined by the value corresponding
to the cross-section of FAR and FRR curves in Fig. 3(b), while
in an identification test, the user is assigned the best matching
ID, if it exceeds the aforementioned threshold.

Equally significant improvements in the recognition per-
formance further noted in the experiments, shown in Table I.
Thereby, a quantitative comparison with the framework, pro-
posed in [9], is attached. The performance improvements
become even more notable in difficult scenarios, such as the
Time-Scenarios [11], where the users are authenticated 6
months after their enrollment. A clear separation between im-
postors and clients scores before (Fig. 5(a)) and after (Fig. 5(b))
applying the proposed methodology are presented.

V. CONCLUSION

A novel probabilistic framework for augmenting biometric
recognition algorithms via soft biometrics (SB) was proposed.
Hereby, the SB-related partitioning of the feature space and
the probabilistic modelling of the independent systematic
error during soft biometric measurements are seamlessly
combined with gait biometrics, so that fusion at score level
is avoided. Experimental validation in biometric recognition
proved significant improvements in efficiency, authentication
and identification potential. An extension to a SB feature
space of higher dimensionality is expected to further improve
performance. The current framework can be directly applied to
any biometric system detecting at least one SB trait.
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