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Abstract—This paper presents work conducted toward the biosignals-based automatic recognition of boredom, induced during video-

game playing. For this purpose, common biosignal feature extraction methods were exploited and their capability to identify boredom

was assessed. Moreover, for the first time, Legendre and Krawtchouk moments, as well as novel moment variations, were extracted as

biosignal features and their potential toward automatic affect recognition was examined using the specific application scenario. The

present analysis was conducted with ECG and GSR data collected from 19 different subjects, while boredom was naturally induced

during the repetitive playing of a 3D video game. Conventional biosignal features as well as moment-based ones were found to be

effective for the automatic recognition of boredom by achieving classification accuracies around 85 percent. Then, the joint use of

moments and moment variations with conventional features was found to significantly improve classification accuracy by producing a

maximum correct classification ratio of 94.17 percent.

Index Terms—Biosignals, boredom, ECG, emotion recognition, GSR, moments, video games.
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1 INTRODUCTION

THE development of machines able to interact with
humans in a natural way, close to human-human

communication is a key challenge for the years to come. A
basic prerequisite toward this goal is the development of
advanced computer systems able to understand human
affective states [1]. In this line, a large number of research
efforts have already been made, trying to recognize
emotions from monitored audio-visual [2] and biosignal
modalities. Although effective in certain contexts, affect
recognition based on audio and visual channels is con-
sidered to suffer from several disadvantages when applied
in realistic applications [3]. For instance, the visual modality
requires that the user’s expressions, gestures, etc., are
continuously monitored by appropriate camera(s), whereas
the audio modality can only work when the user speaks in
order to extract features indicative of her/his emotional

state. Furthermore, social masking in this context is an issue
of great importance since the audio and visual modalities
cannot always reflect the true human emotional state.
Automatic emotion recognition (ER) based on biosignals
has attracted much attention recently. The Jamesian theory
[4] emphasizes the importance of peripheral signals in affect
recognition, as it suggests there are specific patterns of
physiology that relate to different emotions.

1.1 Related Work

During the last years, several important attempts have been
made toward biosignals-based ER [3], [5], [6], [7], under-
lining the usefulness of peripheral activity for emotion
assessment in diverse conditions. Research efforts based on
biosignals have so far produced notable results, dealing
either with subject-dependent [3], [5], [6], [8] or the more
difficult case of subject-independent [6], [7] ER. Within
the majority of important previous works, emotions were
induced in subjects either by watching video clips [9] or
pictures [8], [10], listening to music [6], [11], or recalling
good or bad memories [3], [5], [12].

Focusing more on the future applicability of ER systems,
virtual reality applications and video games can be
considered as extremely fertile fields. Affect recognition
applied in VR applications can be used in order to study
human behavior during diverse realistic scenarios. An
example of this is [13], where biosignals were obtained
from car-racing drivers toward the identification of the
subject’s high stress, low stress, euphoria, and disappoint-
ment. The potential development of future game-playing
systems which, based on an affective loop [14], will be able
to adapt on the basis of the player’s emotions also seems
very interesting. Such systems will have the capability of
identifying whether the player’s enjoyment [15], [16] is
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reduced and subsequently adapting the playing context
accordingly in order to maximize player’s involvement and
satisfaction. The first step toward this direction is the
development of appropriate systems, able to automatically
assess the quality of the gaming experience.

The automatic recognition of boredom can be considered
of great importance in this context as an emotion that can be
investigated complementary to “fun” by game designers
[17]. Previous work [18] has already shown that playing
simple games like Tetris at different levels of difficulty gives
rise to different emotional states that can be defined as
boredom, engagement, and anxiety. A 72.5 percent accuracy
regarding the identification of boredom with biosignals data
derived from 20 subjects was reported. Furthermore, in [19],
the affective states of engagement, anxiety, boredom,
frustration, and anger were induced in subjects from solving
anagrams and playing a variant of the early, classic “Pong”
video game. The authors reported an average subject-
dependent classification accuracy of 84.23 percent regarding
three intensity levels of boredom (low, medium, and high),
over data derived from 15 subjects. Following this line and
using a 3D video game as the emotion induction stimuli, the
present work focuses on the automatic, biosignals-based
recognition of boredom during video-game playing.

Biosignals-based ER is based on features extracted from
different monitored biosignals, like the Electrocardiogram
(ECG) and the Galvanic Skin Response (GSR). These features
encode specific characteristics of the monitored signals,
known to be connected with emotion-driven changes in the
Autonomic Nervous System (ANS) activation. These char-
acteristics, expressed by the extracted features, are then used
for the classification of different affective states. Starting
from Picard’s work about 10 years ago [5], in most
biosignals-based ER studies similar sets of features are
commonly used for classification purposes. In the rest of this
paper, these commonly used features will be referred to as
conventional ones. These are common time or frequency-
domain statistical features calculated from the monitored
biosignals, like the mean, variance, and power of specific
frequency bands. Furthermore, since each monitored mod-
ality has its own specific emotion-driven responses, several
other features are commonly used for each modality, e.g., the
Skin Conductance Response (SCR) occurrences [7] of the
GSR or the pNN50 [6] of the ECG. Such conventional
features are described in Section 2. Although biosignal-based
ER has produced good classification accuracies among
different emotions, correct classification rates that signifi-
cantly exceed 90 percent in more-than-two (usually three,
four, or more) or even in the more trivial case of two-class
classification problems are relatively rare in the literature.
Given the complex nature of biosignals, this comes to no
surprise; however, it is clear that there is still much room for
improvement in the specific domain. In this line, the
utilization of novel—in the biosignals domain features,
possibly in conjunction with conventional ones, can be
expected to further enhance the accuracy of such ER systems.

Different frequency components of ECG (Heart Rate-
related) and GSR biosignals have already proven to convey
information helpful for automatic ER [6]. The extraction of
features with increased frequency discretization capabilities

can thus be thought of as potentially effective in the specific
domain. Such features would be able to assess different
characteristics of monitored biosignals, related either to
their low or higher frequency oscillations. Following this
rationale, moments can be expected to prove useful toward
biosignals-based ER, as highly discriminative transforma-
tions of the input signals, capable of assessing information
conveyed through different frequency components. Since
Hu introduced the moment invariants [20], orthogonal
moments are widely used in pattern recognition, image
processing, computer vision, and multiresolution analysis
[21]. According to the theory of moments, one or more-
dimensional signals can be projected on different poly-
nomials of different orders. These projections then lead to
the calculation of the different order moments. When the
polynomials used are orthogonal to each other, the different
signal projections produce moments with minimum in-
formation redundancy. As a result, the different moment
orders produced by a signal’s moment-based transforma-
tion can express different characteristics of the initial signal.
Moments are compact representations of the input; most of
the information is concentrated in the lower orders. As a
result, moments of relatively low orders are usually capable
of driving pattern recognition.

Based on the theory of continuous orthogonal polyno-
mials, Legendre and Zernike moments were first intro-
duced by Teague [22]. Orthogonal Legendre and Zernike
moments have been successfully applied in image analysis
and pattern recognition [23], [24], [25]. Krawtchouk mo-
ments were introduced by Yap et al. [26] in an effort to
overcome discretization errors caused in numerical approx-
imations of the continuous integrals that are involved in the
conventional orthogonal moments kernel functions [27].
Krawtchouk moment-based compact representations have
proven to be effective in pattern recognition due to their
high discriminative power [28]. They have been success-
fully applied in image processing [26] and pattern matching
for classification purposes over 2D images [29] and 3D
objects [28]. Although Legendre and Krawtchouk moments
have been proven to be effective in pattern recognition, they
have never until now been considered as an option in the
field of biosignals-based ER. Therefore, this paper focuses
on the potentials of Legendre, Krawtchouk moments and
moment variations, toward biosignals-based automatic ER.

1.2 Contribution

Using multisubject data derived from an experiment
naturally inducing boredom during video-game playing,
this paper initially shows that the automatic recognition of
boredom through conventional features extracted from
ECG and GSR biosignals is feasible. Then, exploiting the
frequency resolution capabilities of moments, the potential
of Legendre and Krawtchouk moments applied on bio-
signals toward ER is for the first time examined. In this
context, novel biosignal features based on variations of
Legendre and Krawtchouk moments are also proposed.
Research in the field of automatic biosignals-based ER is in
need of novel and more effective features than the
conventional ones commonly used. In this line, the present
work proposes for the first time the use of moment-based
features in the specific field. It is shown through experi-
mental evaluation that the use of moments (Legendre or
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Krawtchouk) and the proposed moment variations as
biosignal features can improve the classification accuracy
of conventional biosignals-based ER systems.

1.3 Paper Outline

In the following, a brief description of the biosignals-based
ER framework utilized is provided in Section 2. Section 3
presents the conventional features extracted from the
monitored biosignals. Section 4 describes the Legendre
and Krawtchouk moments used for feature extraction,
along with the proposed moment variations. The LDA-
based classifier used is presented in Section 5. Section 6
describes the experimental setup deployed for data collec-
tion. Sections 7 and 8 present and discuss the results of this
work. Conclusions are drawn in Section 9.

2 BIOSIGNALS-BASED MONITORING FRAMEWORK

BACKGROUND

The electrocardiogram is a modality commonly used in
order to assess the Heart Rate Variability (HRV). HRV
describes the variations between consecutive heartbeats.
The regulation mechanisms of HRV originate from the
sympathetic and parasympathetic nervous systems and
thus HRV can be used as a quantitative marker of the
autonomic nervous system’s operation [30]. Features
extracted from the ECG signal (Fig. 1), reflecting the
subject’s HRV, have already been used together with
features derived from other modalities in a number of
studies targeting automatic ER, e.g., [6], [7], [10], [11], [12].
Furthermore, the results of previous studies [18], [19] can
be considered as indications that HRV parameters could be
useful toward the automatic recognition of boredom.

Most commonly used HRV analysis methods are based on
the time and frequency domains [31]. Time-domain HRV
parameters are the simplest ones, calculated directly from the
RR interval (or InterBeat Intervals—IBI) time series. These
are the time series produced from the time intervals between
the consecutive “R-peaks” of the raw ECG signal, shown in
Fig. 1. The simplest time-domain measures are the mean and
standard deviation of the IBIs. Commonly used HRV features
are also the RMS of the IBI Sequential Differences (RMSSD)
and the percentage within a time period of sequential
differences that are over 50 milliseconds (pNN50) [31].
Frequency-domain analysis is commonly based on the
calculation of the IBI signal’s Power Spectral Density (PSD).
The most common frequency-domain HRV features include
the powers of VLF (0.003-0.04 Hz), LF (0.04-0.15 Hz), and HF
(0.15-0.4 Hz) bands, and the LF to HF ratio [31].

Galvanic Skin Response, also referred to as Electrodermal
Activity (EDA), is a measure of skin conductance, which can
be seen as an indirect measure of sympathetic nervous
system activity [32]. Skin conductance is positively corre-
lated with eccrine gland activity, which is in turn correlated

with sympathetic nerve activity. There are two main types of
EDA fluctuations that occur with stimulation: the momen-
tary phasic responses and the more stable tonic level.

GSR features commonly extracted and used in the
literature are the mean level of the GSR signal and the skin
conductivity responses (Skin Conductance Response—SCR).
SCRs are distinctive short waveforms like the ones indicated
by asterisks in Fig. 2. Their occurrence inside a GSR signal
signifies ANS activation responses to internal or external
stimuli. Both phasic and tonic GSR features are commonly
used toward automatic affect recognition [5], [6], [7], [8], [10],
[11]. GSR features are considered as a very reliable
physiological measure of human arousal [6]. Thus, they can
be expected to be useful toward the automatic recognition of
boredom, an affective state that can be connected to low
levels of arousal. Indeed, in [18] and [19], features extracted
from the GSR modality were found to correlate with the
subjects self-assessment of boredom.

3 CONVENTIONAL FEATURE EXTRACTION

Various conventional features were extracted from ECG
and GSR signals, recorded during trials of the experiment
described in Section 6. The calculation of each feature
produced a single value per trial, expressing a specific
biosignal characteristic. The features used were checked for
robustness to potential noise that could appear in the
recorded signals given the specific application scenario.

Regarding the ECG modality, HRV-related features were
extracted from subject’s InterBeat Intervals (IBI) time series.
ECG data were collected at a sampling rate of 256 Hz. IBIs
were calculated from the subject’s recorded Electrocardio-
gram, directly by the monitoring device’s (Procomp5)
software. The average (IBI Mean) and standard deviation
(IBI SD) of the IBI signal per trial were extracted as
features, along with other typical time-domain and fre-
quency-domain ones, described in Table 1. In order to treat
between-subject variations in the recorded ECG signals, all
features extracted from the IBI series were normalized by
division to their subject-specific baseline values [9], calcu-
lated from each subject’s baseline measurements, recorded
during the Rest session of the experimental process
(described in Section 6.3). An exception regarding this
normalization was made for pNN50, due to the fact that for
some subjects its value during the rest period was zero. This
feature was normalized in the span ½0; 1� regarding the min
and max per trial feature value, calculated for each subject
during all of her/his trials.

Regarding the GSR modality, both the tonic and phasic
Electrodermal Activity were examined. The features de-
scribed in Table 2 were extracted from the recorded GSR
signals, sampled at the rate of 256 Hz.

Furthermore, following [5], four more features were
extracted from both the GSR and IBI signals (Table 3).
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Fig. 1. Typical recorded ECG signal. Fig. 2. Typical GSR signal (SCR occurrences marked with asterisks).



All of the above-described features were calculated with
data derived from the whole of each trial, apart from those
concerning the GSR signal’s SCR occurences, which were
calculated over each trial’s first 25 seconds. This was due to
the fact that the vast majority of recorded trials were about
30 seconds long and uniformity was desired in the period

over which the specific features were extracted, so as to
avoid bias in trials of longer duration. All of the extracted
features alterations during a trial were also considered as
potential indexes of the subject’s boredom. The rationale
behind this was that the induction of boredom could
possibly have an impact on the way some feature values
changed between the first and last seconds of each game-
playing trial. Therefore, all features described in this section
were also extracted from only the first and last 10 seconds of
each trial; then, the ratio between each feature’s value
calculated from the trial’s first 10 seconds to the corre-
sponding value of the last 10 seconds was extracted as an
extra feature. These ratios were calculated for all features
that were applicable, namely, for all described in this
section except the four SCR-related ones and the IBI pNN50.
All calculated feature ratios are marked in the remainder of
this paper with the extension “FL Ratio.”

Concluding, 37 conventional features were extracted in
total, 9 from the ECG modality, 12 from the GSR, and
further 16 features were calculated as the ratio of each
feature between the first and last 10 seconds of each trial.

4 NOVEL MOMENT-BASED BIOSIGNAL FEATURES

Different frequency components of IBI and GSR biosignals
have been found to convey information capable of driving
automatic ER [6]. This information is commonly assessed
through features extracted from the low or band-pass
filtered signals. Moments are highly discriminative, com-
pact representations of the input. Lower order moments
represent the input’s global characteristics and higher
orders represent the detail. Different order moments are
thus capable of assessing different characteristics of the
monitored signals, related to either their low or higher
frequency oscillations. Moments can thus be expected to
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TABLE 1
Conventional Features Extracted from the IBI Signal

TABLE 2
Conventional Features Extracted from the GSR Signal

TABLE 3
Conventional Features Extracted Following [5]

In (3.1)-(3.3), x is the IBI or GSR signal and N is the number of signal
samples recorded during the trial. As in [5], the normalized signal �xi
used in (3.2) and (3.3) was calculated by ðxi � xmeanÞ=xsd , where xi is a
signal value recorded during a trial, xmean and xsd are the signal’s
average and standard deviation during the trial, respectively.



prove useful toward effective biosignals-based ER. In the

following, the Legendre and Krawtchouk moments ex-

tracted in this work as biosignal features are described.

Furthermore, two novel moment variations are proposed as

features potentially useful for automatic ER.

4.1 Legendre Moments

Legendre moments are based on the projection of a signal

onto Legendre polynomials, which form a complete

orthogonal basis set defined over the interval ½�1; 1�. For a

1D discrete signal fðxiÞ, 1 � i � N , the 1D Legendre

moment of order p [34] is given by

Lp ¼
2pþ 1

N � 1

XN
i¼1

PpðxiÞfðxiÞ; ð1Þ

where xi ¼ ð2i�N� 1Þ=ðN� 1Þ and PPðxÞ is the pth order

Legendre polynomial given by

PpðxÞ ¼
1

2p

Xp=2

k¼0

ð�1Þk ð2p� 2kÞ!
k!ðp� kÞ!ðp� 2kÞ!x

p�2k; ð2Þ

where x belongs in the span ½�1; 1�.
In the present work, the following recursive relation [35]

was utilized for calculating Legendre polynomials:

Ppþ1ðxÞ ¼
2pþ 1

pþ 1
xPpðxÞ �

p

pþ 1
Pp�1ðxÞ p � 1; ð3Þ

with P0ðxÞ ¼ 1 and P1ðxÞ ¼ x.
Legendre moments of orders 0-39 were calculated for the

GSR and IBI signals (features gsr_LgXX and ibi_LgXX,

respectively, where XX is the moment order), taken from

the first 25 seconds of each trial, so as to ensure uniformity

in the extraction process. Given the nature of Legendre

polynomials, there could be cases where differences in trial

duration could slightly affect the signal characteristics

captured from the different moment-based feature orders.

Prior to feature extraction, signals were subsampled at 4 Hz

and normalized to their subject-specific global min and max

values by (2.2). Only the first 40 orders were extracted as

features, due to the fact that the use of higher ones would

increase complexity and was not expected to provide added

value. In fact, after calculating the first 40 Legendre

moments of Dirac’s delta function and then reconstructing

the initial signal [36] with (4) and the first 40 orders, the

reconstructed signal’s PSD showed that these orders were

capable of capturing information conveyed through fre-

quencies approximately up to 0.5 Hz:

f̂ðxÞ ¼
XM
p¼0

LpPpðxÞ; ð4Þ

where M is the highest order used.

4.2 Krawtchouk Moments

Krawtchouk moments are based on a set of orthonormal

polynomials, introduced by Mikhail Krawtchouk in 1929.

The n-order Krawtchouk classical polynomials [37] are

defined in terms of hypergeometric function as

Knðx; p;NÞ ¼
XN
k¼0

ak;n;px
k ¼ 2F1 �n;�x;�N ;

1

p

� �
; ð5Þ

where x; n ¼ 0; 1 . . .N , N > 0, p belongs in the span ð0; 1Þ,
2F1 is the hypergeometric function [26]. In order to ensure

the numerical stability of the polynomials and achieve

orthonormal basis function with unitary weight function,

weighted Krawtchouk polynomials were introduced [26]:

�Knðx; p;NÞ ¼ Knðx; p;NÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðx; p;NÞ
rðn; p;NÞ

s
; ð6Þ

where wðx; p;NÞ and rðn; p;NÞ are defined as

wðx; p;NÞ ¼ N
x

� �
pxð1� pÞN�x; ð7Þ

rðn; p;NÞ ¼ ð�1Þn 1� p
p

� �n n!

ð�NÞn
: ð8Þ

In this work, the following recurrent relations [37] were

used so as to reduce the high computational complexity of

weighted Krawtchouk polynomials calculation:

Knþ1ðx; p;NÞ ¼ 1þ n� np� x
pN � pn

� �
Knðx; p;NÞ

� n� np
pN � pnKn�1ðx; p;NÞ;

ð9Þ

wðxþ 1; p;NÞ ¼ wðx; p;NÞpðN � xÞ
xþ 1� p� xp : ð10Þ

The initial conditions for (9) and (10) are: K0ðx; p;NÞ ¼ 1,

K1ðx; p;NÞ ¼ 1� ð1=ðNpÞÞx, and wð0; p;NÞ ¼ ð1� pÞN .
For a 1D signal fðxiÞ of length N , the weighted

Krawtchouk moments �Qn [38] are defined as

�Qn ¼
XN
i¼1

�Knði� 1; p;N � 1ÞfðxiÞ; ð11Þ

where xi ¼ i� 1.
In this study, the 40 first Krawtchouk moments (0-39)

were calculated with (11) for the GSR and IBI time series

(features gsr_KrXX and ibi_Kr_XX, respectively, where XX

is the moment order), by taking into account the whole

N samples corresponding to the first 25 seconds of each

trial’s signal. Prior to Krawtchouk-based feature extraction,

GSR and IBI signals were subsampled at 4 Hz and

normalized to their subject-specific global min and max

values by (2.2). In all cases the parameter p was taken equal

to 0.5 in order for the region-of-interest of the feature

extraction process to be centered at the half of each trial’s

first N samples. The analysis was restricted to the first

40 moment orders, following the same rationale as in the

Legendre case; (12) was used [38] for the reconstruction of

the delta function using Krawtchouk moments, and the

reconstructed signal’s PSD showed that the first 40 orders

were capable of capturing information conveyed through

frequencies approximately up to 0.8 Hz:
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f̂ðxÞ ¼
XM
n¼0

�QnKnðx; l; N � 1Þ; ð12Þ

where M is the highest order used.

4.3 Variations of Legendre and Krawtchouk
Moments

The analysis presented in Section 7.1 indicates that moment-
based features could possibly enhance classification accuracy
of biosignals-based ER systems. Following this rationale,
novel biosignal features based on the theory of moments
could also prove helpful in this field. Motivated by this,
variations of the original Legendre and Krawtchouk mo-
ments were also extracted as features and their effectiveness
was experimentally examined (as described in Section 7) in
the specific application scenario.

As shown from (1) and (11), the calculation of Legendre
and Krawtchouk moments takes into account the area
contained between the initial signal projected on the
Legendre or Krawtchouk polynomials, respectively, and
the x-axis (marked in the Legendre-based example of Fig. 3a
with dark gray). Instead of utilizing this whole area, the
proposed variations are based on the area between the
signal projection and the specific order polynomial, marked
with dark gray in Fig. 3b.

Thus, using (13) and (14) instead of (1) and (11),
respectively, Legendre and Krawtchouk-based variations
were extracted as further potentially useful features from
each of the ECG and GSR modalities:

Lmod
p ¼ ð2pþ 1Þ

XN
i¼1

PpðxiÞðfðxiÞ � 1Þ; ð13Þ

�Qmod
n ¼

XN
i¼1

�Knði� 1; p;N � 1ÞðfðxiÞ � 1Þ: ð14Þ

The idea behind these novel features was to suppress the
static parameter of the original moments calculation,
namely the area between the projection polynomial and
the x-axis, which is always identical. Thus, although the
signal is again transformed on the basis of Legendre and
Krawtchouk polynomials, the transformation product now
contains less information that is identical among all cases of
different input signals.

The main feature of (13) and (14) is the subtraction of the

original (Legendre or Krawtchouk, respectively) polynomial

from the projected signal. Taking as an example the

modified Legendre moments, it can be shown that (13)

results to the original moment order, after the subtraction of

the same order calculated for the unit function ðfðxiÞ ¼ 1,

8xi > 0) and suppression of the N � 1 normalization factor:

Lmod
p ¼ ðN � 1Þ

�
2pþ 1

N � 1

� �XN
i¼1

PpðxiÞfðxiÞ

� 2pþ 1

N � 1

� �XN
i¼1

PpðxiÞ
�
:

ð15Þ

The term ð2pþ1
N�1Þ

PN
i¼1 PpðxiÞfðxiÞ of (15) is identical to (1),

which stands for the original moment, calculated for the

signal fðxiÞ. The term ð2pþ1
N�1Þ

PN
i¼1 PpðxiÞ, subtracted in (15)

from the original moment, stands for the moment calcula-

tion of the unit function ðfðxiÞ ¼ 1; 8xi > 0Þ. Furthermore,

in the proposed Legendre moment variation, the result is

multiplied by N � 1 so as to suppress the N � 1 normal-

ization factor employed in the original moment calculation.
As a result, the new transformations are still capable of

assessing signal information conveyed through different

frequency components (related to the different polynomial

orders), but at the same time, can be considered as even

more indicative of the input signal’s characteristics.
Summarizing, based on the first 40 Legendre polyno-

mials, 40 features were extracted from each of the GSR and

IBI signals (features gsr LgmodXX and ibi LgmodXX,

respectively, where XX is the order of the polynomial

used), by following the same procedure described in

Section 4.1 and using (13) instead of (1). Similarly, on the

basis of the first 40 Krawtchouk polynomials, 40 further

features were extracted from each signal (features

gsr KrmodXX, ibi KrmodXX), by using (14) instead of (11).

5 LDA-BASED CLASSIFIER

Linear Discriminant Analysis (LDA) is a method for finding
the linear combination of features that best separates
available data into two or more classes. The resulting
combination is commonly used for dimensionality reduc-
tion, but can be used as a linear classifier as well. In this
study, a linear classifier was preferred instead of a
nonlinear one, due to the fact that the former are less
computationally expensive to train and, moreover, they are
based on simpler, linear models and thus can be expected to
generalize better in new databases. Using a more sophis-
ticated nonlinear classifier could possibly provide better
results for some feature sets, but these results could have
been biased by the fact that a superior classifier was used,
capable of better adjusting its model to the specific given
data set. LDA-based classifiers have proven effective in the
field of biosignals-based ER [3], [6]; in [3], LDA was even
found to work better than the nonlinear QDA.

In Fisher’s LDA, the optimum projection for a given data

set is realized through the transformation matrix W, which

is calculated so as to maximize the formula:
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Fig. 3. Legendre third order polynomial and the projected (NB1) GSR
signal, using ð2pþ 1Þ�PpðxiÞ�fðxiÞ. (a) Area utilized from (1), marked
with dark gray. (b) Area utilized from (17), marked with dark gray.



JðWÞ ¼ WT � Sb �W
WT � Sw �W

; ð16Þ

where Sb is the “between class scatter matrix” and Sw is the
“within class scatter matrix” of the train data set [6].

The classifier used in this work was based on a two-class
Fisher LDA classification schema. In two-class LDA, data
from the initial feature space is projected on a single
projection axis which best discriminates training data
among the available classes. Thus, once the optimum
transformation vector WW is calculated from the train data
set, it can be used to calculate the projection of each class
Centroid and each new (test) case to the transformation
axis. Classification can then be performed in the trans-
formed space by assigning the new case to its less distant
class found over the projection axis using:

minððFðcaseÞWT �m0W
TÞ; ðFðcaseÞWT �m1W

TÞÞ; ð17Þ

where FðcaseÞ is the feature vector of the test case, m0 and
m1 are the centroids of the two classes under consideration
calculated using the training data, and W is the transfor-
mation matrix calculated from (16).

Leave-one-out cross validation (LOOCV) was employed
[5], [6], [19]; the final Correct Classification Ratio (CCR) of
the classifier was calculated by CCR ¼ Nc=N, where Nc is
the number of cases correctly classified and N is the total
number of cases constituting the full data set.

6 EXPERIMENTAL SETUP

In order to collect data appropriate for the purposes of this
study, an experiment was conducted with the aim to
monitor the subject’s biosignals while the state of boredom
would be naturally induced from the repetitive playing of
the same 3D Labyrinth game. Each repetition was regarded
as a single trial during which the subject tried to find the
Labyrinth’s exit. The subject’s actual affective state during
the experimental session was assessed with the use of
questionnaires, filled in after each trial.

6.1 Stimuli

A basic 3D Labyrinth game (Fig. 4) was developed for the
purpose of the experiment. In order to complete the game,
players had to simply find the exit. The player could walk
through the mazy corridors of the labyrinth using a 3D first
person camera which was controlled by the WASD/Arrow
keys and the mouse, a standard method used in commercial
games. The game was developed in C++ using “OGRE” for
graphics and the “Bullet” physics library for physics
simulation.

In order to effectively induce boredom due to loss of
interest, the Labyrinth was designed to be a very simple
one. Furthermore, in all repetitions the player started from
the same point and the Labyrinth exit was always at the

same place. As a result, usually after the third or fourth trial
the subject had learned the shortest path to the exit. Thus,
even though, in the beginning (first 2 or 3 trials), the game
was kind of exciting, as soon as the subject had learned the
shortest path to the exit, the stimuli became an absolutely
repetitive HCI task, ideal to induce negative emotions like
boredom due to loss of interest.

A widely accepted component process model of emotion
is Scherer’s [39], [40] sequence of five “stimulus evaluation
checks” (SECs), which describe the eliciting and differen-
tiating mechanisms in emotion arousal. In particular,
according to the appraisal theory an individual is assumed
to evaluate situations and events in terms of

1. their novelty,
2. their intrinsic pleasantness,
3. their conduciveness to satisfying major needs and

goals,
4. the individual’s coping potential (control, power,

adjustment capacity), and
5. the self and norm compatibility of the event

encountered.

From the appraisal theory point of view, novelty was the
main factor manipulated during the experimental session.
According to the appraisal theory, very low novelty is a key
factor for boredom induction. Furthermore, low novelty
may result in the induction of further emotions, such as
irritation/cold anger. Frustration was a factor also mon-
itored by self-reports throughout the experiment; however,
the specific study focuses on the automatic recognition of
boredom induced during the specific repetitive video-game
playing task.

The emotion induction stimuli of this study was decided
to be a game that relates to current commercial games
played by vast amounts of gamers and at the same time was
capable of inducing boredom. For this purpose, the
Labyrinth game was based on state-of-art 3D graphics,
with a gameplay basis closely related to modern, massively
played 3D first person RPGs. Considering Malone’s [41]
widely adopted principles of intrinsic qualitative factors for
engaging game play, namely, challenge, curiosity, and
fantasy, the stimuli used in this study (especially after the
first or second trial) was designed in an effort to be lacking
in all three of them. In addition to the fact that novelty was
at a very low level, this made the stimuli an ideal process to
effectively induce boredom. In fact, during the experiments
there were two subjects who, according to their self-
assessment, did not feel “not bored” at any stage of the
whole session.

Further generalizing the protocol to current commercial
games, we could consider the case of such a game which
does not automatically increase its difficulty level as time
goes by and a situation where the player is forced to play
the same, very easy level of the game repeatedly. Whatever
the game, it is almost sure that in this case there will be a
point where the player will get bored and lose interest in it.
The point at which game difficulty increases and new
challenges are posed to the player could, in the future, be
manipulated by appropriate machines which will be able to
assess a player’s enjoyment and understand whether the
player is starting to get bored so as to adjust the gaming

GIAKOUMIS ET AL.: AUTOMATIC RECOGNITION OF BOREDOM IN VIDEO GAMES USING NOVEL BIOSIGNAL MOMENT-BASED FEATURES 125

Fig. 4. Screenshot of the 3D Labyrinth game.



context accordingly. A basic prerequisite for this can be
considered the development of appropriate systems, cap-
able of effectively detecting boredom, a goal toward which
the present study works.

6.2 Hardware Setup

Both ECG and GSR signals were recorded using a
Procomp5 Infiniti device (Fig. 5b). One three-electrode
ECG sensor was placed on the subject’s forearms (Fig. 5a)
or, in cases of very low cardiac pressure, on her/his chest.
Although differences in the ECG signal may exist between
chest or limb wrist-based ECG recordings, effective R-peak
detection and subsequent extraction of the IBI time series
was equally efficient from both of these ECG recording
types in the specific work’s context. Autoadhesive Ag/
AgCl bipolar surface electrodes (bandwidth 10-500 Hz,
pickup surface 0.8 cm2, interelectrode distance 2 cm) were
used for the ECG signal acquisition. Furthermore, one two-
electrode GSR sensor was placed on the subject’s left-hand
ring and small fingers (Fig. 5c). This GSR sensor setup was
chosen so as to be less obtrusive for subjects during
handling the keyboard input game device. The synchroni-
zation of measurements and the game was based on the
Network Time Protocol (NTP).

6.3 Participants and Procedure

The experiment was performed with 19 subjects, 14 males
and 5 females, who frequently used computers in their
work. Participants were between 23 and 44 years old with
48 percent of them being 25 and 26. Initially, subjects were
asked to sign a consent form. After that, the sensors were
installed while the subject answered questions regarding
personal details (age, etc.) in the prequestionnaire. At this
point, the proper sensor placement was ensured by
carefully checking the robustness of signal delivered from
each monitoring modality. The recorded signals were
checked online for artifacts due to external noise or
mechanical causes (e.g., subject’s motion). The preparation
was renewed when severe artifacts were observed. Due to
the nature of the experiment, no severe artifacts were
expected to appear during sessions. However, in order to
further ensure that recorded signals did not contain artifacts
severe enough to the extent that the extracted features
calculation could have been spoiled, some of the monitoring
device software’s capabilities for noise removal were
utilized during the data processing phase, such as notch
filtering at 50 Hz (to cater to possible noise induced from
the electrical power supply) or compensation in the IBI
signal for badly detected R-peaks.

Once the sensors were properly placed, the subject was
asked to relax for one minute in order for the signals to

stabilize and calibration data to be recorded, during the
experiment’s Rest session. After the end of the Rest period,
the 3D Labyrinth game was presented to the subject and,
from this point, s/he would play the game repeatedly. Each
experimental session was constituted of at least 10 trials. Each
trial started when the subject started playing the Labyrinth
game and stopped as soon as s/he had found the exit or a
10 minute time-limit had expired. Trials usually lasted from
one-half to 8 minutes, with the majority of them lasting
around half a minute. A mid-trial relaxation period of one
minute was assigned between each trial. During this period,
subjects filled in the mid-trials questionnaire, where they had
to answer a few Likert-scaled questions, including one for the
self-assessment of boredom. The latter asked subjects directly
whether they were feeling bored during the last trial.
Participants had to answer this question using a scale in the
range ½1; 5�, labeled as “Not at all”-“Very much.” It has to be
noted that although the between-trial recovery period of one
minute utilized could be considered as relatively short, its
duration was selected as such in order to provide the best
trade-off possible between further boring participants with
reoccurring long recovery periods versus allowing the
participants bodies enough time to adequately recover from
the previous trial. Given the fact that trials usually lasted for
about 30 seconds, longer reoccurring recovery periods could
have had the effect of inducing even more boredom on
participants than the game itself. Preliminary tests showed
that the 1 min recovery period allowed for participants’
bodies to adequately recover given the specific application
scenario, and also allowed for the repetitive game playing to
be kept as the main factor of boredom induction.

Although the aim of each session was to induce
boredom, participants were not informed prior to or during
the experiment about this fact. They were only told that
they would play the 3D Labyrinth game repeatedly while
their biosignals would be monitored, with no further
explanations regarding the overall experiment’s target.
Furthermore, questionnaires were written in such a way
that they would not hint at the fact that participants should
get bored during the experiment. For this purpose, the
question of self-assessment of boredom was placed within a
set of questions assessing other parameters, like the
subject’s frustration, flow, and immersion. By keeping the
experiment’s target hidden from participants, it was
ensured that, during the session, boredom would be
induced as naturally as possible through video-game
playing, and the induction process would not be influenced
by the subject’s prior knowledge of the fact that s/he
“should” get bored. The experiment continued until
subjects had played a minimum of 10 trials and had
signaled boredom in the mid-trial questionnaire at least two
times in a row, by answering “5” at the respective question.

6.4 Data Annotation

The initial data set consisted of 221 trials from 19 subjects
playing the 3D Labyrinth game. During data annotation,
trials were labeled as “bored” and “not bored” ones.
Labeling was based on the subject’s answers to the boredom
self-assessment question. Thus, trials after which subjects
answered “1” or “2” were labeled as “not bored” and trials
after which subjects answered “4” or “5” were labeled
as “bored” ones. Thirty-two trials after which the answer
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Fig. 5. Experimental setup: (a) ECG sensors, (b) the Biosignals
Monitoring Device, and (c) GSR sensors.



was “3” were excluded from further analysis. The final data
set obtained after this procedure consisted of 189 trials, 60
“not bored” and 129 “bored” ones.

7 RESULTS

7.1 Analysis on the Comparative Performance of
Moment-Based Biosignal Features

The Legendre-based transformation of the GSR signal
which leads to the calculation of Legendre moments is
demonstrated in the following. For this purpose, character-
istic trials annotated as “bored” and “not bored” ones are
taken as examples which were recorded during the
experiment described in Section 6. Figs. 6, 7, and 8 present
the GSR signal recorded during three “bored” trials (B1, B2,
and B3, respectively), taken from three different subjects.
Fig. 9 presents the GSR signal recorded during a “not
bored” trial (NB1). Signals B1 and NB1 were recorded from
the same subject.

Fig. 10 compares the Legendre-based transformation of
signals B1 and B2, whereas Fig. 11 compares the corre-
sponding transformations of B1 and NB1. The signals are
projected on Legendre polynomials of the first three orders
selected after Sequential Backward Search was applied at
the F_Set_CLL initial feature set as described in Section 7.5.
These projections are based on the projection formula used
in (1). It is clear that the projection of B1 and B2 over these
three low order Legendre polynomials tends to produce a
similar result. Moreover, the transformed B1 and NB1
signals appear significantly different to each other than B1
and B2 do. The absolute differences jdj, shown in Figs. 10
and 11, between the specific order moments calculated for
these characteristic trial signals indicate that in these given

cases, Legendre moments produce larger differences be-

tween “bored” and “not bored” trials than between

different “bored” ones. On the contrary, for the same

signals, conventional GSR features (selected after SBS

applied at the initial conventional data set F_Set_C, as

described in Section 7.3), such as fdðgsrÞ and �normðgsrÞ FL

Ratio, were found to produce higher jdj values for the case

of B1 and B2 comparison (0,00065 and 0,246934332,

respectively) than for the comparison of B1 and NB1

(0,00017 and 0,224628032, respectively). Signal B1 was thus

found from these features to be more similar to NB1 than to

B2. Although the specific conventional features were

selected among the best “conventional features only” set,
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Fig. 6. GSR signal recorded during a “bored” trial (B1).

Fig. 7. GSR signal recorded during a “bored” trial (B2).

Fig. 8. GSR signal recorded during a “bored” trial (B3).

Fig. 9. GSR signal recorded during a “not bored” trial (NB1).

Fig. 10. B1 and B2 GSR signals projected on Legendre polynomials of
different orders with the term ð2pþ 1Þ�PpðxiÞ�fðxiÞ of (1). jdj ¼
jLpðB1Þ � LpðB2Þj is the absolute difference of the specific order
moments of the two signals, B1 and B2. (a) Order 1. (b) Order 3.
(c) Order 4.

Fig. 11. B1 and NB1 GSR signals projected on Legendre polynomials of
different orders with the term ð2pþ 1Þ�PpðxiÞ�fðxiÞ of (1). jdj ¼
jLpðB1Þ � LpðNB1Þj is the absolute difference of the specific order
moments of the two signals, B1 and NB1. (a) Order 1. (b) Order 3.
(c) Order 4.



as explained in the following they can be considered as
ineffective toward classifying boredom among these three
given trials. However, the Legendre-based transformations
appear to work well in the specific cases.

A further comparison between the GSR signal of another
bored trial (B3, shown in Fig. 8) against B1 and NB1
indicates one more case where Legendre moments prove
helpful for the effective recognition of boredom (Table 4). In
this case, the majority of conventional features selected
from SBS over the F_Set_C initial feature set find B3 more
similar to NB1 than to B1. However, for the specific cases,
all of the first four Legendre moments selected again
correctly indicate that B3 is more similar to B1 than to NB1.

Taking as an example of the GSR modality, Legendre
moments were found in this brief analysis capable of
providing biosignal transformations of substantial discri-
mination potential between the “bored” and “not bored”
states. It can be similarly shown that Krawtchouk moments
are also capable of providing such useful transformations as
well. Moments can thus be expected to have a promising
potential toward solving the classification problem ad-
dressed in this work, namely, the automatic, biosignals-
based recognition of boredom, either by replacing conven-
tional features or by being jointly used with them.

The above analysis was based on a few trials in order to
demonstrate the mechanism on the basis of which moment-
based features can enhance classification accuracy in this
work. In an effort to generalize to further trials and subjects,
one-way ANOVA tests were conducted over all extracted
features (conventional and moment-based ones) and the full
database, trying to further identify whether the features
were capable to differentiate well between all bored and not
bored trials recorded from all the participants. The analysis
was conducted over all conventional features, the Legendre
(40 GSR and 40 IBI) and Krawtchouk (40 GSR and 40 IBI)
ones, as well as over the Legendre (40 GSR and 40 IBI) and
Krawtchouk (40 GSR and 40 IBI) moment variations
presented in Section 4.3. The ANOVA results illustrated
that only 10 (8 GSR and 2 IBI) out of the 37 (27.02 percent)
conventional features showed significant differences
(p < 0:05) between bored and not bored trial classes. On
the other hand, a large percentage of the moment-based
features showed significant difference between the two trial
classes; 118 out of the total 160 (73.75 percent) moment-
based GSR features extracted and 71 out of the total 160
(44.38 percent) IBI moment-based ones showed significant
(p < 0:05) difference. Furthermore, 8 (21.62 percent) con-
ventional (6 GSR and 2 IBI), 87 (54.38 percent) GSR and 44

(27.5 percent) IBI moment-based features showed signifi-
cant differences at the p < 0:01 level. From the above, it can
be concluded that a large number of moment-based features
were found to have good potential to prove effective toward
automatic boredom recognition on the basis of the
classification schema used in this work.

7.2 Feature Selection

Since a large number of features were calculated for the
purposes of this study, it was necessary to employ a feature
selection technique in order to remove features with low
discriminative power in the differentiation between the
“bored” and “not bored” player state, resulting in the best
classification accuracy. Thus, for selecting the most appro-
priate features, Sequential Backward Search (SBS) was
employed, in combination with the LDA-based classifier
described in Section 5. Several other feature selection
approaches have been proposed in the literature [42], like
Sequential Forward Search, Genetic Algorithm, etc.; how-
ever, SBS was selected in this work, similarly to [6]. By
starting with a full, initial feature set, SBS initially calculates
a criterion value. In our case, the criterion value was the
CCR of the LDA-based classifier after LOOCV. An iterative
feature removal process is then employed; on each iteration,
the feature whose removal increases more the criterion
value is definitely removed from the feature set. As a result,
the features that produce the best CCR are finally selected
from the initial feature set.

It has to be noted that in general, training of automatic
classification systems requires special attention so as to
avoid overfitting effects. In our case, feature selection was
done on the basis of LOOCV, following the rationale behind
the procedure applied in [6] and other relevant studies.
Feature selection was thus done only on the training set so
as to avoid the selection of overfitting features.

SBS was applied in several initial sets, consisting either
of conventional GSR and ECG features only, Legendre or
Krawtchouk moments, and moment variations extracted as
features from the GSR and IBI signals, as well as
combinations of them, all described in the following.

7.3 Classification with Conventional Features

SBS was initially applied to feature set F_Set_C, consisting
of the 37 conventional features only. A final feature set of
14 features (GSR Mean, GSR 1st Deriv RMS, Number of

SCRs, fdðgsrÞ, Average Amplitude of SCRs, GSR SD,
�normðgsrÞ FL Ratio, IBI SD, IBI RMSSD, �normðibiÞ, IBI

LF/HF FL Ratio, IBI RMSSD FL Ratio, �ðibiÞ FL Ratio,
�normðibiÞ FL Ratio) was selected, producing an average
CCR of 85.19 percent, by classifying 161 out of the total
189 cases correctly. Table 5 shows the confusion matrix; its
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TABLE 5
Confusion Matrix for the Best Conventional Feature Set

CCCRðF Set CÞ ¼ 85:19%

TABLE 4
Feature Differences between B3, B1, and NB1



last column provides the CCR obtained for each class (Not
Bored-Bored) separately.

7.4 Classification Using Only Moments and Their
Variations

Bearing in mind that different moment-based transforma-
tions could prove more effective for one signal type in
biosignals-based ER, SBS was initially applied to 10 different
initial feature sets, consisting of the conventional, Lg, Kr,
Lgmod, and Krmod features, extracted from the GSR and IBI
signals separately. This was done in order to compare
moment-based transformations with conventional features
with respect to each monitored modality and to identify the
most useful moment-based transformation per signal type
for the specific classification problem.

As shown in Table 6, the most effective transformation
regarding the GSR modality was found to be Krmod since,
after applying SBS on only the GSR Krmod features, a CCR of
82.11 percent was achieved. Furthermore, the most effective
transformation of the IBI time series was found to be Lgmod;
SBS produced in this case a CCR of 79.37 percent.

The joint use of moment-based features extracted from
both the GSR and IBI signals was then examined (Table 7).
Following the results of Table 6, initially the combination
of the 40 Krmod GSR features, together with the 40 Lgmod
IBI ones was used as initial feature set (F Set KmodLmod)
for SBS, which produced a max average CCR of
86.77 percent (class CCR: NB: 75 percent, B: 92.3 percent),
after selecting 22 gsr KrmodXX (XX ¼ 2; 3; 9; 10; 12-17;
19-21; 24; 27-29; 31-34; 37) and 15 ibi LgmodXX (XX ¼ 0;
2; 5; 9; 13; 21; 23; 26-28; 31; 32; 35; 36; 38) features. As shown

in Table 7, this was the initial feature set among the
“moment-based only” ones that produced the best result.
Furthermore, it has to be noted that, using this set, three
more cases were correctly classified, in total, than when
conventional features were only used, resulting in an
increase of 1.58 percent in the best CCR.

As also shown in Table 7, by further applying SBS to the
F Set LmodLmod set consisting of all of the Lgmod GSR and IBI
features, a maximum CCR of 83.07 percent was achieved.
Also, SBS applied on the F Set KmodKmod set, consisting of
the 80 Krmod GSR and IBI features, produced an 84.66 per-
cent CCR.

Furthermore, using the original moments, SBS was
applied on a set that consisted of the 40 GSR and the
40 IBI Legendre moments (F_Set_LL), resulting in a max
79.37 percent CCR. Similarly, using only the Krawtchouk
GSR and IBI moments (F_Set_KK set), SBS achieved a CCR
of 74.60 percent. Finally, as shown in Table 6, the difference
between the max CCRs obtained from the Legendre and
Krawtchouk GSR moments was relatively low; one more
case was misclassified with Krawtchouk GSR features.
Thus, further to F_Set_LL, the Krawtchouk GSR moments
together with the Legendre IBI ones were also fed to the
SBS (F_Set_KL); a CCR of 84.66 percent was then produced.

7.5 Classification with Conventional Features and
Moments

SBS was then applied to initial feature sets consisting of the
combinations of GSR and IBI conventional features and
moment-based GSR and IBI ones. As shown in Table 8, all
feature combinations used as initial “moment-based only”
feature sets (Table 7) were fed to the SBS together with the
conventional GSR and IBI features. Apart from the total
CCRs obtained for the whole data set, Table 8 provides also
the CCRs obtained per class; not bored—CCR(NB) and
bored—CCR(B) separately.

Following the good classification results obtained when
GSR Krmod and IBI Lgmod features were used alone as initial
feature sets, SBS was applied to their combination with the
conventional features (F Set CKmodLmod). As a result, SBS
selected 50 features (GSR 1st Deriv RMS, ��normðgsrÞ,
Average Amplitude of SCRs, ��normðgsrÞ FL Ratio, fd (gsr)
FL Ratio, gsr KrmodXX:XX ¼ 4; 7; 8; 12-17; 19; 21; 23; 24;
26; 28; 30; 31; 33; 34; 36-39, IBI Mean, IBI RMSSD, IBI Mean
FL Ratio, IBI SD FL Ratio, IBI LF/HF FL Ratio, IBI RMSSD
FL Ratio, and ibi LgmodXX:XX ¼ 0-2; 5; 6; 9; 13; 15; 19; 20;
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TABLE 7
CCRs from SBS Applied

on Different “Moment-Based Only” Sets

TABLE 8
CCRs from SBS on Different Initial Sets of

Moment-Based Features Combined with the Conventional
Ones Class Prior Probabilities: NB ¼ 31:75%, B ¼ 68:25%

TABLE 6
CCRs Obtained from SBS Applied on Each of the

Moment-Based Transformations of the GSR
and IBI Signals Separately



22; 23; 29-31; 36; 38), achieving a max average CCR of
94.71 percent (Table 9).

Furthermore, using F_Set_CLL as the initial feature set,
consisting of the conventional GSR and IBI features together
with the GSR and IBI Legendre moments, SBS achieved a
max average CCR of 92.59 percent (Table 8). When all
conventional features and all Krawtchouk moments were
used (F_Set_CKK), SBS achieved a CCR of 92.06 percent,
similarly to F_Set_CKL. SBS was also applied to other
combinations (F Set CLmodLmod, F Set CKmodKmod), how-
ever none of them produced better results than the
F Set CKmodLmod and F_Set_CLL sets (Table 8).

7.6 Leave-One-Subject Out Cross Validation

In order to examine how the results obtained generalize to
cases of unseen participants, the best feature sets selected
from LOOCV were evaluated over their discriminative ability
using leave-one-subject-out cross validation (LOSOCV) as
well. During this process, the classifier was trained with all
cases but the ones which belonged to the subject from which
test cases were taken.

Table 10 summarizes the CCRs obtained with the best
features selected from the conventional feature set
(F_Set_C), and the ones achieved with the conventional
and moment-based feature combinations. From Table 10, it
is clear that also in LOSOCV, the combination of conven-
tional features with moment-based ones again enhanced
classification accuracy. The best CCR was once more
obtained from the F Set CKmodLmod feature set.

8 DISCUSSION

The classification results presented in Table 5 provide first
of all a strong indication that boredom can be assessed up to
a satisfying extent with the use of conventional features
extracted from ECG and GSR biosignals, like the ones
selected from SBS over this study’s F_Set_C feature set.
Then, a comparison between Tables 5 and 7 shows that
when Krawtchouk, Legendre moments, or their proposed
variations were used as features instead of conventional
ones, CCRs close to the “conventional features” case were
achieved. In fact, using the proposed Krmod GSR and Lgmod
IBI features instead of conventional ones even slightly
increased classification accuracy in the given data set.

This comes in accordance to the results presented in
Table 6, where it is shown that the suppression of the “static
parameter” from the calculation of Legendre and Krawtch-
ouk moments (as explained in Section 4.3) produced highly
effective biosignal features in the given ER application
scenario. The proposed Krmod features and Lgmod ones were
found as the most effective for the GSR and IBI modalities,
respectively, in the given data set.

Focusing on the joint use of conventional features with
moment-based ones, by comparing Table 5 with 10, it is

clear that when the proposed moment variations or the
original Legendre moments were used together with
conventional features, the classification accuracy among
bored and not bored trials increased significantly. In
particular, the 85.19 percent CCR, produced by conventional
features only, was increased up to 92.59 and 94.71 percent,
when Legendre moments or the proposed moment varia-
tions (the Krmod GSR and Lgmod IBI features) were,
respectively, used together with the conventional features.
These were expected results, following the analysis pre-
sented in Section 7.1, in which moments were found highly
discriminative in respect of the specific classification
problem. Furthermore, in the same section, it was shown
that there were cases among the given data set (e.g., the “B3”
GSR signal) where moments could discriminate well among
bored and not bored trials, despite the fact that conventional
features failed. As a result, the joint use of moments or the
proposed moment variations with conventional features
resulted in the correct classification of previously (using
conventional features only) misclassified cases.

In the cases of F Set CKmodLmod and F_Set_CLL, several
conventional features initially selected from F_Set_C were
replaced from different moment orders in the respective
best selected feature sets. Also, in these cases, some new
conventional features were chosen, not previously selected
from F_Set_C. This indicates that moments and the
proposed moment variations of different orders could
possibly provide a better description of emotion-related
biosignal characteristics than some conventional features.
The combination of these moments with other conventional
features could then boost ER accuracy.

At this point, it has to be noted that, for some of the
extracted features, it was not possible to apply normal-
ization based on each subject’s baseline measurements; thus,
in some cases, features and recorded signals were normal-
ized on the basis of each subject’s min and max values
calculated or recorded. Although min-max normalization
has the basic disadvantage that it cannot be trivially used
toward on-the-fly emotion detection, it was used in this
study since on-the-fly ER was not the immediate target.
Another issue that comes up with min-max per-subject
normalization is the fact that, when using LOOCV, informa-
tion (the global min and max values calculated/recorded for
the specific subject, common at the train and test sets) is
transferred from the training set to each test case. This
information transfer can be considered as capable of
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TABLE 10
CCRs from SBS on Different Initial Sets of Moment-Based
Features Combined with the Conventional Ones (LOSOCV)

TABLE 9
Confusion Matrix after SBS

over F Set CKmodLmod, CCCR ¼ 94:71%



artificially inflating the accuracy achieved. In our case, this
fact could be thought to have further enhanced the accuracy
of moment-based features in LOOCV. However, moment-
based features also enhanced classification accuracy in
LOSOCV by a max 10.05 percent where absolutely no
information (global subject’s min-max values) was shared
between the train and test sets. This shows that information
transferred in the present study’s LOOCV analysis was not
capable of standing for the gain in performance between the
conventional and the moment-based features.

Regarding the 256 Hz sampling rate used for recording
ECG and GSR signals during the experiment of this study, it
has to be noted that although frequencies higher than
256 Hz have been used in the past (e.g., [3]), ECG and GSR
sampling rates significantly lower than 256 Hz have also
been successfully used in notable previous studies [5], [6]
that derived HRV measures from ECG and extracted robust
features from the GSR modality as well. In the present
study, tests made prior to deploying the experiment
showed that the 256 Hz sampling frequency allowed for
the proper identification of R-peaks from the ECG and the
extraction of robust features from the GSR signal in the
specific application scenario. Furthermore, given the facts
that 1) moment orders extracted in this work from GSR and
IBI time series can be considered to assess information
conveyed through frequencies below 1/4 of sampling rate
and 2) prior to moment-based feature extraction signals had
been subsampled at 4 Hz, the sampling rate of 256 Hz used
can be considered as not to be influencing the moment-
based feature calculation process at all.

Although a direct comparison of this study to previous
ones is not possible due to the differences in the data sets and
methodologies used, the results of two previous works can
provide an indirect guide to point out the impact of the
proposed approach. Chanel et al. reported in [18] a
classification accuracy of 72.5 percent regarding the identi-
fication of boredom; an RBF SVM classifier was used, trained
with conventional features extracted from GSR, blood
pressure, and heart rate, respiration, and body temperature.
Data were collected from 20 subjects and LOSOCV was
employed. Rani et al. [19] achieved an 84.23 percent
classification accuracy trying to identify three different
intensity levels of boredom (low, medium, and high) by
averaging classification results obtained from 15 subjects
using LOOCV. Conventional features from ECG, GSR, bio-
impedance, electromyogram, peripheral temperature, blood
volume pulse, and heart sound were used.

Due to the facts that [18] and [19] used further monitoring
modalities than ECG and GSR only, [18] following a LOSOCV
methodology and [19] dealing with a three-class classification
problem by following a subject-dependent perspective, a
comparison between these two works and the present one
could not be considered as valid. However, one could notice
that even if [19] followed the more trivial subject-dependent
methodology, the results obtained did not exceed 84.23 per-
cent. Given the fact that [19] is the work with the highest
accuracy reported in the literature regarding the automatic
recognition of boredom from biosignal features, it is clear that
there is a lot of space for improvements in the specific domain.
One possible solution for improving the accuracy of such
biosignals-based ER systems could be the utilization of
further features in conjunction to the conventional ones.
Moments as features with increased frequency resolution

capabilities can prove very helpful in this context. Following
this line, in this work Krawtchouk and Legendre moments, as
well as variations of them, used together with conventional
features increased the initial classification accuracy obtained
with conventional features only in the specific multisubject
data set by a maximum 9.52 percent in LOOCV.

9 CONCLUSIONS

This paper presents work conducted toward the effective
biosignals-based recognition of boredom, induced during
video-game playing. In this context, the potentials of
moments (Legendre and Krawtchouk) and novel variations
of them as biosignal features toward automatic ER were for
the first time examined. Initially, commonly used features
were extracted from GSR and ECG data recorded from
19 subjects who participated in an experiment designed to
induce boredom during playing a 3D Labyrinth video game.
Using SBS on the initial conventional feature set and an
LDA-based classifier (LOOCV), the player’s self-reported
boredom was predicted with a maximum accuracy of 85.19
percent. Then, by completely replacing the conventional
GSR and IBI features with moments and the proposed
moment variations and following the same classification
procedure on the same data set, CCRs close to the initial one
were achieved.

The best classification accuracies, however, were pro-
duced when the conventional features were fed together
with moments or the proposed moment variations to the
same LDA-based SBS feature selection process. Using
conventional GSR and IBI features together with Legendre
GSR and IBI moments boosted the accuracy of boredom
recognition to 92.59 percent. Furthermore, when the con-
ventional GSR and IBI features were used together with the
proposed GSRKrmod and IBI Lgmod ones as the initial feature
set of SBS, a maximum CCR of 94.17 percent was obtained.

These findings indicate that moments like Legendre and
Krawtchouk and, furthermore, the proposed moment varia-
tions are capable of coping with the complex nature of
biosignals so as to capture characteristics of them related to
human affective states. Indeed, a brief analysis conducted
over some typical GSR signal cases addressed in this work
showed that relatively low order moments can provide
biosignal transformations of high discriminative power
regarding the given problem, even in cases where conven-
tional features totally fail. This was then further affirmed
from the larger scale analysis followed, toward the auto-
matic recognition of boredom, where the use of relatively
low (up to the first 40) orders of moment-based features in
conjunction with conventional ones was found to signifi-
cantly increase classification accuracy. In the specific study,
the utilized first 40 moment orders addressed signal
frequencies up to approximately 0.8 Hz. Higher order
moments would have addressed higher signal frequencies.
However, these lower 40 orders addressing the specific low
frequency range of GSR and IBI signals were found capable
of significantly enhancing classification accuracy in the
given application scenario.

Although the present work dealt with the specific, binary
classification problem of boredom recognition over a
specific data set derived from the experimental setup of
this study, the results obtained can be considered as a
strong indication that moments and moment variations can
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be used in the future as helpful biosignal features toward
the more accurate recognition of affective states. As was
also shown in [6], more-than-two class affect recognition
problems can be effectively split down to multiple two-class
ones in order for better recognition accuracies to be
achieved. Thus, enhancing the accuracy over a two-class
classification problem could also lead in the future to better
results in more-than-two class affect recognition works.
Based on this work’s findings, the joint use of moments and
the proposed moment variations together with conven-
tional features could enhance the accuracy of future
biosignals-based emotion recognition systems.
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