
Journal of

Imaging

Article

Spectral Processing for Denoising and Compression
of 3D Meshes Using Dynamic Orthogonal Iterations

Gerasimos Arvanitis 1 , Aris S. Lalos 2,* and Konstantinos Moustakas 1

1 Department of Electrical and Computer Engineering, University of Patras, 26504 Patras, Greece;
arvanitis@ece.upatras.gr (G.A.); moustakas@ece.upatras.gr (K.M.)

2 Industrial Systems Institute, ATHENA Research and Innovation Center, 26504 Platani-Patras, Greece
* Correspondence: lalos@isi.gr

Received: 14 April 2020; Accepted: 23 June 2020; Published: 26 June 2020
����������
�������

Abstract: Recently, spectral methods have been extensively used in the processing of 3D meshes.
They usually take advantage of some unique properties that the eigenvalues and the eigenvectors of
the decomposed Laplacian matrix have. However, despite their superior behavior and performance,
they suffer from computational complexity, especially while the number of vertices of the model
increases. In this work, we suggest the use of a fast and efficient spectral processing approach
applied to dense static and dynamic 3D meshes, which can be ideally suited for real-time denoising
and compression applications. To increase the computational efficiency of the method, we exploit
potential spectral coherence between adjacent parts of a mesh and then we apply an orthogonal
iteration approach for the tracking of the graph Laplacian eigenspaces. Additionally, we present
a dynamic version that automatically identifies the optimal subspace size that satisfies a given
reconstruction quality threshold. In this way, we overcome the problem of the perceptual distortions,
due to the fixed number of subspace sizes that is used for all the separated parts individually.
Extensive simulations carried out using different 3D models in different use cases (i.e., compression
and denoising), showed that the proposed approach is very fast, especially in comparison with the
SVD based spectral processing approaches, while at the same time the quality of the reconstructed
models is of similar or even better reconstruction quality. The experimental analysis also showed
that the proposed approach could also be used by other denoising methods as a preprocessing step,
in order to optimize the reconstruction quality of their results and decrease their computational
complexity since they need fewer iterations to converge.

Keywords: spectral processing; dynamic orthogonal iterations; compression and denoising of
3D meshes

1. Introduction

Nowadays, due to the easiness of creating digital 3D content, a great amount of information can
be easily captured and stored instantly. However, the information acquired by 3D scanners is usually
huge and unorganized, creating noisy and dense 3D models that are very difficult to be efficiently
handled by other high-level applications and software (e.g., 3D object recognition [1,2], 3D matching
and retrieval [3], scalable coding of static and dynamic 3D objects [4], re-meshing [5], etc.) without
further processing (i.e., compression and denoising). This increasing interest for 3D meshes has affected
many different scientific areas and industries, such as mobile cloud gaming and entertainment [6],
heritage culture [7], medicine [8], 3D tele-immersion, communication [9,10] and more.

Spectral methods have been excessively used in the image, video, and signal processing
domains trying to solve low-level problems by manipulating the eigenvalues, eigenvectors,
eigenspace projections, derived from the graph Laplacian operator. In the same way, spectral

J. Imaging 2020, 6, 55; doi:10.3390/jimaging6060055 www.mdpi.com/journal/jimaging

http://www.mdpi.com/journal/jimaging
http://www.mdpi.com
https://orcid.org/0000-0001-8149-5188
https://orcid.org/0000-0003-0511-9302
https://orcid.org/0000-0001-7617-227X
http://dx.doi.org/10.3390/jimaging6060055
http://www.mdpi.com/journal/jimaging
https://www.mdpi.com/2313-433X/6/6/55?type=check_update&version=2

J. Imaging 2020, 6, 55 2 of 26

methods can be utilized for the processing of 3D meshes consisting of connected vertices. However,
the computational complexity and the memory requirements of these methods strongly depend on the
density of the 3D model, resulting in to become prohibitive when the number of vertices significantly
increases. As it has been suggested in [11,12], this issue can be addressed if the raw geometry data
were divided and processed separately in blocks representing different overlapping parts of a mesh,
namely submeshes.

More specifically, the direct implementation of the Singular Value Decomposition (SVD)
method on the graph Laplacian of each submesh, has an extremely high computational complexity,
requiring O

(
n3) operations, where n denotes the number of vertices in a 3D mesh. Motivated by this

drawback, we propose an approach that is based on a numerical analysis method known as orthogonal
iterations (OI) [13], that takes advantage of the geometric coherence between different submeshes of
the same mesh. The method starts by separating the 3D mesh into different submeshes and then it uses
the corresponding spectral values of a previous submesh to readjust only a small number of spectral
coefficients of a next submesh. In this way, we achieve a significant speed-up since it requires O

(
nc2)

where c is the number of the preserving spectral components c << n. Additionally, we developed a
dynamic OI approach that automatically estimates the ideal value of c so that to achieve a specifically
wanted reconstruction quality based on predefined thresholds.

The rest of this paper is organized as follows. Section 2 presents previous works related to spectral
processing methods in 3D meshes. Section 3 introduces some basic definitions and presents in detail
the proposed orthogonal iteration and approach. In Section 4, we discuss the dynamic approach that
automatically identifies the optimal subspace size of c, satisfying predefined reconstruction quality
constraints. In Section 5, we investigate the spatial coherence between submeshes of the same mesh.
We also study the impact of the submesh size on the reconstruction quality and the computational
complexity of the proposed approach. Section 6 presents the use cases in which the proposed method
utilized (i.e., compression and denoising in static and dynamic 3D meshes). In Section 7, we evaluate
the performance of the proposed method, using different 3D models, and finally, Section 8 draws
conclusions about the method.

2. Previous Works

Several surveys that cover basic definitions and applications of the graph spectral methods have
been introduced by Gotsman [14], Levy [15], Sorkine [16], Vallet and Levy [17] and more recently
by Zhang et al. [5]. All these surveys classify the spectral methods according to several criteria
related to the employed operators, the application domains and the dimensionality of the spectral
embeddings used.

Graph Spectral Processing (GSP) of 3D meshes is based on the singular/eigenvectors and/or
eigenspace projections derived from appropriately defined mesh operators. There is a big variety
of different tasks in which GSP has been used, such as implicit mesh fairing [18], geometry
compression [16,19] and mesh watermarking [20]. Taubin [21] was the first that treated the coordinate
vertices of a 3D mesh as a 3D signal, introducing the graph Laplacian operators for discrete geometry
processing. The similarities between the spectral analysis concerning the mesh Laplacian and the
classical Fourier analysis motivated him for this analysis. A summary of the mesh filtering approaches
that can be efficiently carried out in the spatial domain using convolution approaches is given [22].

Despite their applicability in a wide range of applications such as denoising, compression and
watermarking, they require the computation of explicit eigenvector making them prohibitive for
real-time scenarios. Additionally, there are a lot of applications in literature in which large-scale 3D
models are scanned in parts [23–25] providing in this way a consecutive sequence of coherent 3D
surfaces that need to be processed fast. Our method has been designed in order to be ideally suited
particularly in these cases, providing accurate results while the whole process takes part in real-time.

Computing the truncated singular value decomposition can be extremely memory-demanding
and time-consuming. To overcome these limitations, subspace tracking algorithms have been proposed

J. Imaging 2020, 6, 55 3 of 26

as fast alternatives relying on the execution of iterative schemes for evaluating the desired eigenvectors
per incoming block of floating-point data corresponding in our case, to different surface patches [26].
The most widely adopted subspace tracking method is the Orthogonal Iterations (OI) since it provides
very fast solutions when the initial subspace, which is given as input, is close enough to the subspace
of interest. Additionally, the size of the subspace remains at a small level [27]. The fact that both matrix
multiplications and QR factorizations have been highly optimized for maximum efficiency on modern
serial and parallel architectures, makes the OI approach more attractive for real-time applications.

This work is an extended version of the research presented in [28]. In this version, we provide
more details about the ideal mesh segmentation (e.g., number of submeshes, size of overlapped
submehses) and the submeshes properties (e.g., spatial coherence between submeshes of the same
mesh). Additionally, we extend the application scenarios presenting a block-based spectral denoising
approach for 3D dynamic meshes.

3. Spectral Processing Using Orthogonal Iterations

3.1. Preliminaries of Spectral Processing in 3D Meshes

In this work, we assume the use of a triangle mesh M with n vertices vi = (xi, yi, zi) ∀ i =
1, · · · , n and n f faces fi = {vi1, vi2, vi3} ∀ i = 1, · · · , n f , represented by its corresponding centroids
mi = (vi1 + vi2 + vi3)/3 ∀ i = 1, · · · , n f . In this way, the mesh can be represented by two different sets
M = (V, F) corresponding to the vertices V and the indexed faces F of the mesh. Spectral processing
approaches, applied in 3D meshes [16,19], usually decompose the Laplacian matrix L trying to
take advantage of the special characteristics that the eigenvalues and eigenvectors can provide.
The Laplacian matrix L can be calculated according to:

L = D−A (1)

where A ∈ Rn×n can represent a binary or a weighted adjacency matrix like the following:

Aij =

{ 1
‖vi−vj‖2

2
(i, j) ∈ E

0 otherwise
(2)

where E is a set of edges that can be directly derived from V and F and the matrix D is the diagonal
matrix where the non-zero elements are estimated as Dii = ∑n

j=1 Aij ∀ i = 1, · · · , n.
In contrast to the binary adjacency matrix, which provides only connectivity information,

the weighted adjacency matrices are ideal for emphasizing the geometrical and topological coherence
between the connected vertices. The decomposition of the matrix L can be estimated as:

L = UΛUT (3)

where Λ = {λ1, λ2, . . . , λn} is a diagonal matrix consisting of the eigenvalues of L that can
be considered as graph frequencies, and U = [u1, . . . , un] is the matrix with the eigenvectors
ui ∈ Rn×1 [16] that demonstrate increasing oscillatory behavior as the magnitude of λi increases [29].
The Graph Fourier Transform (GFT) of the vertices is defined as the projection of the corresponding
coordinates onto the matrix of the eigenvectors according to:

v̄ = UTv (4)

Correspondingly, and the inverse GFT (IGFT) can be estimated according to:

v = Uv̄ (5)

J. Imaging 2020, 6, 55 4 of 26

3.2. Block-Based Spectral Processing Using Orthogonal Iterations

The decomposition of the graph Laplacian, using a direct SVD implementation, is prohibitive
for very dense meshes. To overcome this drawback, several approaches have been presented in the
literature. Many of these approaches propose to separate the 3D meshes into smaller parts [12,30]
and then to handle each one of these parts separately. Following this line of thought, we suggest the
partitioning of the original large mesh into k parts using the MeTiS algorithm described in [31].
To be able to directly apply OI, we require to process sequentially a series of matrices of the
same size. To that end, we create overlapped equal-sized submeshes of nd vertices, as described
in Sections 5.1 and 5.4. In this case, the process for the decomposition of the L[i] ∀ i = 1, . . . , k
requires O(knd

3) floating-point operations, which is also computational high and not acceptable
for use in real-case scenarios. To overcome this problem, minimizing the computational complexity,
we suggest using the processing output of a submesh as input for the orthogonal iteration process of a
next submesh taking advantage of the coherence between the spectral components of the different
submeshes [32], since the initialization of OI to a starting subspace close to the subspace of interest leads
to a very fast solution. The assumption, concerning the coherence, is based on the observation that
submeshes of the same mesh maintain similar geometric characteristics and connectivity information,
which will be further discussed in Section 5.2.

The Orthogonal Iteration is an iterative procedure that computes the singular vectors
corresponding to the dominant singular values of a symmetric, non-negative definite matrix [33].
To make the process more computational light, we suggest to preserve the c eigenvectors corresponding
to the c lowest eigenvalue of Uc [i] = [u1, . . . , uc] ∈ Rnd×c for each i submesh, according to Algorithm 1:

Algorithm 1: Orthogonal Iteration updating process for the ith submesh

1 U(0)← Uc[i− 1];
2 for t← 1 to tmax do
3 U(t)← Onorm(Rz

i U(t− 1));
4 end
5 Uc[i]← U(t);

where Ri = (L[i] + δI)−1 and δ denotes a very small positive scalar value ensuring the positive
definiteness of the matrix Ri and matrix I Rnd×nd denotes the identity matrix. The equation:

Rz
i U(t− 1) (6)

is estimated very efficiently using sparse linear system solvers, as described in [16]. The value of the
power z plays an important role to the converge of the process that will be analyzed in following section.
The convergence rate of OI depends on |λc+1/ λc|z where λc+1 is the (c + 1)-st largest eigenvalue of
Ri [13]. The initial subspace Uc [0] has to be orthonormal in order to preserve orthonormality. For this
reason, Uc [0] is estimated by a direct SVD implementation, while all the following subspaces Uc [i],
i = 2, . . . , k are estimated by adjustation, as presented in the Algorithm 1.

Several widely adopted methods, such as the Householder Reflections (HR), Gram-Schmidt
(GS) and Modified Gram Schmidt (MGS) [34], perform orthonormalization of the estimated subspace.
In this work the Onorm(·) step is performed as follows:

Rz [i]Uc[i]⇒ Qqr [i]Rqr [i]

Uc [i] = Qqr [i] =
[
Qqr [i](:,1) , . . . , Qqr [i](:,c)

]
(7)

where matrix Qqr [i] is evaluated by applying c sequential HR reflections. Therefore, Qqr [i] is the
submatrix that corresponds to the first c columns of:

J. Imaging 2020, 6, 55 5 of 26

Qqr [i] = H1
T ·H2

T · . . . ·Hc
T (8)

4. Dynamic Orthogonal Iterations for Stable Reconstruction Accuracy

In use cases where the ground truth model is known beforehand (i.e., compression), we can
use this knowledge to provide a dynamic pipeline that automatically identifies the optimal subspace
size c (i.e., ideally number of remaining low-frequency components) that satisfies a specific quality
requirement. This dynamic process takes into account a predefined threshold that determines the
preferable perception quality of the reconstructed mesh. When we provide an initialization that
is closer to the real solution, then the final results have more perceptual quality and in this way,
the error between the reconstructed and the ground truth object is reduced. The method is based on
the observation that the feature vectors E[i] = UT

c [i]v[i] of each submesh v[i] has different subspace
Uc[i] size and it should be carefully selected so that to have the minimum loss of information.

We estimate the following mean residual vector e(t), in order to quantify the loss of information
in each t iteration:

e(t) = ∑
j∈{x,y,z}

(
vj [i]−Uc [i]UT

c [i] vj [i]
)

(9)

Then, we assume that when the l2-norm of the metric e(t) is lower than a given threshold
‖e(t)‖2 < εh then the perceptual loss is decreased and in this case the reconstructed result is assumed
as acceptable. To reduce the residual error e(t), we suggest adding one normalized column in the
estimated subspace Uc(t) = Uc(t− 1) e(t− 1)/‖e(t− 1)‖2 and then perform orthonormalization is
estimated according to:

Uc(t) = Onorm
{

Rz[i][Uc(t− 1)
e(t− 1)
‖e(t− 1)‖2

]

}
(10)

On the other hand, if the l2-norm of the metric e(t) is less than a pre-defined threshold εl then
subspace size is decreased by 1 by simply selecting the first ci − 1 columns of Uc(t). This is an iterative
procedure that automatically stops when the metric ‖e(t)‖2 lies between the range of the thresholds
(εl , εh), where the threshold εl represents the lowest and εh represents the highest allowed value.
This means that if the value of ‖e(t)‖2 is lower or higher of the aforementioned range then we need to
increase or decrease it, respectively, according to the rules that are clearly presented in the Algorithm 2.
To mention here that this process gives the flexibility to a user to easily trade his/her preference
between the reconstruction quality and the computational complexity, just changing the values of the
preferable thresholds. The following Algorithm 2 summarizes the steps of the proposed approach.

Algorithm 2: Dynamic Orthogonal Iterations applied in the ith submesh
1 U(0) = Ui−1;
2 ci ← (i ≥ 0) ? ci−1 : c;
3 for t = 1, 2, ... do
4 U(t) = [u1 . . . uci] = Onorm(Rz

i U(t− 1));
5 e(t) = ∑j∈{x,y,z}

(
vij −U(t)U(t)Tvij

)
;

6 if ‖e(t)‖2 < εl then
7 U(t) = [U(t− 1) e(t)

‖e(t)‖2
]; ci ← ci + 1;

8 else if ‖e(t)‖2 > εh then
9 U(t) = [u1 . . . uct]; ci ← ci − 1;

10 else
11 break;
12 end
13 end
14 Ui = U(t);

J. Imaging 2020, 6, 55 6 of 26

5. Ideal Mesh Segmentation and Submeshes Properties

In this section, we study the impact of the submesh size to the reconstruction quality and the
execution time. Additionally, we present the methodology that we follow for the final reconstruction
of the mesh meaning that the submeshes are overlapped and some points appear in more that one
submesh. The section is concluded with some experimental results confirming the validity of the
assumption about the spatial coherence between submeshes of the same meshes.

5.1. Weighted Average for Mesh Reconstruction and Guarantees of a Smooth Transition

As we have mentioned earlier, a mesh is separated into different submeshes and then they are
processed seperately, using spectral techniques. However, in this case, the final reconstructed model
has a loss of quality that is attributed to the dislocation of the vertices lying in the areas where two
submeshes have common edges. This phenomenon is known as edge effect (see Figure 1) and it
requires special treatment in order to be mitigated or eliminated. To overcome this problem, we create
overlapped submeshes [12,30,35] extending each submesh using also neighboring vertices of the
boundary nodes of adjacent submeshes until fulfilling a predefined number of nd vertices, in total,
for all submeshes of the mesh. This operation reduces the error introduced and additionally creates
equal-sized submeshes which are necessary for the proceeding of the OI. In Figure 1, we present
different segmentation scenarios using MeTis algorithm. Inspecting the second line of this figure,
which presents the reconstructed model highlighting the edges of the triangles, it is apparent that the
more the parts of the segmentation are, the more apparent the edge effect is.

The edge effect is attributed to missing neighbors inevitably caused by the mesh segmentation.
Missing neighbors means missing connectivity which resulting in missing entries in the graph
Laplacian matrix. However, an efficient way to deal effectively with this limitation is to combine
the reconstructed geometry of the overlapped parts. The weights that are assigned to each point are
proportional to the degree of the node (e.g., number of neighbors) in the corresponding submesh.
Overlapping ensures that each vertex will participate in more than one submesh, and thus the
probability of having the same degree (in at least one of them) significantly increases. In Figure 2,
we present an example showing the weights assigned to a point (highlighted in red) that participates
in three overlapped submeshes. The steps that are followed for the estimation of the weighted average
coordinates of the overlapped points, are presented in Algorithm 3.

Algorithm 3: Weighted average process for the reconstruction of a mesh

1 for i = 1, .., n do
2 Find the pi ≥ 1 overlapped submeshes in which the ith point appears;
3 Set the indices of these pi submeshes in a vector qi ∈ Rpi×1;
4 sumvi = [sumxi, sumyi, sumzi] = [0, 0, 0];
5 sumwi = 0;
6 for j ∈ qi do
7 Find the degree wij of ith point vi = [xi, yi, zi] in the jth submesh;
8 sumvi = sumvi + wijvij;
9 sumwi = sumwi + wij;

10 end
11 ṽij =

sumvi
sumwi

;

12 end

Additionally, we investigate whether the segmentation and the processing of the overlapped
patches guarantee the smooth transition in different cases where edge points belong to flat or sharp
areas. At this point it should be mentioned that, the edge points could be part of edges, corners or flat
areas. In the following, we present results showing that the way we treat the edge points guarantees,
in all the aforementioned cases, a smooth transition successfully mitigating the edge effects.

J. Imaging 2020, 6, 55 7 of 26

(a) (b) (c)

Figure 1. (First line) Segmentation of bunny model using MeTis algorithm in (a) 70, (b) 100 and (c) 200
parts. (Second line) The corresponding reconstructed models without applying overlapping process
(edge effect is apparent).

(a) (b) (c) (d)

Figure 2. The red point has different degree in each submesh of the (a) original model (Gargoyle
model), the corresponding weights are: (b) w = 4, (c) w = 5, (d) w = 6.

The process starts using the MeTis algorithm for the identification of the initial parts. Then each
part is extended, using the neighbors of the boundary nodes that belong to adjacent parts until
all of them has the same predefined size. Consequently, each boundary point participates in
more than one segments. The weights that are assigned to each point, which participates in more
than one parts, represents its degree (i.e, the number of connected neighbors) in the specific part
(see Figure 3). The final position of an edge point is evaluated using the weighted average approach
as mentioned above.

We show the distribution of error in the internal and the boundary points of each submesh.
For this specific study we consider three different cases that are described below:

• Non Overlapping case, where each node participates in only one part.
• Overlapping case, where each part is extended using the neighbors of the boundary nodes that

belong to adjacent parts. Thus, each boundary point participates in more than one parts, which are
reconstructed individually. The final position of a boundary point is evaluated using the simple
average of the reconstructed positions.

• Weighted Overlapping case, where each part is extended using the neighbors of the boundary
nodes that belong to adjacent parts and the final position of a boundary point is evaluated using a
weighted average. The weights assigned to each point that participates in more than one parts,
represent its degree (i.e, the number of its neighbors) in the specific part.

J. Imaging 2020, 6, 55 8 of 26

Figure 3. Overlapped parts means that each boundary point belongs to more than one part and its
degree may vary significantly between different parts.

The standard deviation of the reconstructed error in the internal and the boundary points of each
submesh for each one of the aforementioned cases is provided in Figure 4. For the creation of this
figure, we used eight models in total (fandisk, armadillo, block, tyra, twelve, bunny, gargoyle, Julio)
and we took into account the reconstructed error per each patch of all models. On each box, the central
mark is the median, the edges of the box are the 25th and 75th percentiles, and the whiskers extend to
the most extreme data points that are not considered outliers. By inspecting this figure, it can be clearly
shown that the weighting scheme guarantees a smooth transition, since the distribution of error in
the internal and boundary points has almost identical characteristics, significantly outperforming the
other two cases.

Figure 4. Standard deviation of the reconstructed error in the internal and the boundary points of each
submesh for each one of the aforementioned cases.

Similar conclusions can be also perceived by observing the Figure 5. In this figure, the results
of a coarse denoising step are presented after partitioning Fandisk model in a different number of
submeshes (10, 15 and 20, respectively). It is obvious that the error on the boundary nodes is minimized
in the weighted average case, while the segmentation effects are very noticeable in the other two cases.

5.2. Spatial Coherence between Submeshes of the Same Mesh

The previously presented approach, using OI for the estimation of matrices Uc[i] ∀ i = 1, . . . , k,
strongly depends on the assumption that there is a spatial coherence between submeshes of the same
mesh. Supposing the correctness of this assumption, the matrix Uc[i− 1], which is used for initializing
Algorithm 1, is the best-related approximation meaning that its form is very close to the real solution.
The best-provided initialization matrix has as a result a faster convergence, providing at the same
time the most reliable results. In this approach, the proposed initialization strategy suggests using as
initial estimation the solution of the previous adjacent submesh. At the following, we will study the
validity of this assumption via extensive simulations using different models. Our study is based on the
observation that the surface’s form of a mesh follows the same pattern, which means that neighboring
parts of the same mesh have:

J. Imaging 2020, 6, 55 9 of 26

(i) Similar connectivity properties (degree and distance).
(ii) Same geometrical characteristics which are shared between connected points (curvature,

small-scale features, texture pattern etc.).
(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 5. (a) The model separated in different number of parts (10, 15 and 20, respectively). Additionally,
indicative areas have been selected where two or more submeshes are connected; (b) Non Overlapping
case, the edge effect is apparent in areas where submeshes are connected; (c) Overlapping case, the edge
effect have been mitigated but have not been eliminated yet. The bigger the number of the partitioning
the more intense the problem of the effect; (d) Weighted Overlapping case, the results seem to be
independent and unaffected of the partitioning (Fandisk σ2 = 0.2).

Figure 6 presents colored images representing the Laplacian matrices R[i] ∀ i = {1, 2, 3} of
different submeshes for several 3D models. Providing an easier comparison between the images,
we have created matrices of submeshes with the same size 100× 100 so that R ∈ R100×100. Each pixel
(x, y) of an image represents the corresponding color coded value of R(x, y). Additionally, a color bar
is also provided showing the range of colors between the lowest and the highest value of each matrix
R, where, the deep blue represents the lowest value of each matrix while the bright yellow represents
the highest value. We can observe that different submeshes of the same model follow a similar form
while they are totally different in comparison with submeshes of different meshes.

Similar conclusions could be perceived by observing the Table 1. Each row of this table presents
the Mean Squared Error (MSE) estimated by the comparison between the random matrix R of a model,
represented as R[1], and the mean matrix R̃ of any other model which appear in Figure 6, including the
mean matrix of the same model. This comparison is repeated using different models (other rows of
this table). For the sake of simplicity, we used only one random matrix R[1]. However, similar results
are extracted using any other random matrix of a model.

J. Imaging 2020, 6, 55 10 of 26

0

Fa
n

d
is

k
Sp

h
er

e
Tw

el
ve

Tr
im

 s
ta

r

R[1] R[2] R[3]

A
rm

ad
ill

o

Figure 6. Laplacian matrices of different submeshes for different models in color based on the values
of their cells. It can be easily observed that different submeshes of the same model follow a similar
form while they are totally different in comparison with submeshes of different meshes.

Table 1. Mean squared error between the R[1] of different models and the mean R̃ of each model.
The lowest value per row is highlighted in bold.

Armadillo R̃ Fandisk R̃ Sphere R̃ Trim Star R̃ Twelve R̃

Armadillo R[1] 0.0606 13.9720 10.0905 1.2347 37.4199
Fandisk R[1] 15.6144 1.4120 11.1582 8.4506 29.8815
Sphere R[1] 10.4615 11.4700 0.8857 3.9065 26.4125

Trim star R[1] 1.3122 8.5019 3.919 0.6095 29.6996
Twelve R[1] 37.8481 30.2103 26.6648 30.0618 4.5641

5.3. Number of Submeshes

The ideal selected number of submeshes depends on the total number of points of the mesh.
Large submeshes create large matrices increasing significantly the processing time since the number
of edge points increases. On the other hand, using small submeshes the final results are negatively
affected by the edge effects. Table 2 shows how the number of segments affects the metric of Mean

J. Imaging 2020, 6, 55 11 of 26

Normal Difference (MND) for both averaging cases (simple and weighted average), where MND
represents the average distance from the resulting mesh normals to the ground truth mesh surface.

Table 2. Mean Normal Difference using different number of segments (Bunny Model with
34,817 vertices). We also compare the mean normal difference by using normal average and weighted
average based on the number of the connected vertices.

Number of Submeshes Number of Vertices per Segment MND Using Simple Average MND Using Weighted Average

25 1392 0.0921 0.0915
40 ~870 0.0931 0.0925
50 ~696 0.0941 0.0934
70 ~497 0.0960 0.0952

100 ~348 0.0988 0.0980
200 ~174 0.1039 0.1028
500 ~69 0.1163 0.1150

In Figure 7, the results of coarse smoothing, using a different number of segments, are also
presented. As we can observe, there is no remarkable visual difference between the reconstructed
models. Additionally, if we consider the fact that these results could be further improved by the use of
a fine denoising step then the number of segments is not a critical factor.

(a) (b) (c) (d)

Original Mesh Noisy Mesh

Figure 7. (First line) Original and Noisy mesh. (Second line) Coarse denoising meshes separated by
Metis in (a) 25 submeshes, (b) 50 submeshes, (c) 70 submeshes, (d) 100 submeshes.

5.4. Size of Overlapped Submeshes

The real motivation behind the processing in parts, is strongly supported by the existence of a
great amount of state-of-the-art applications in which large 3D models cannot be scanned at once
using portable 3D scanners. As a result, the output of the sequential scanning would be a sequence of
submeshes that arrive sequentially in time. An extensive evaluation study carried out using different
overlapped sizes (Tables 3–5) showed that the reconstruction quality is strongly affected by the size of
the submeshes themselves rather than the number of overlapped vertices.

J. Imaging 2020, 6, 55 12 of 26

Table 3. Mean normal difference using different size of equal-sized overlapped submeshes (Julio Model
with 36,201 vertices 70 segments).

Type of Overlapping Number of Vertices per Segment Coarse Denoising MND Fine Denoising MND

max 532 0.1248 0.1176
1.05 ·max 558 0.1228 0.1173
1.10 ·max 585 0.1203 0.1172
1.15 ·max 611 0.1188 0.1169
1.20 ·max 638 0.1174 0.1169
1.25 ·max 665 0.1164 0.1164

Table 4. Mean normal difference using different size of equal-sized overlapped submeshes (Julio Model
with 36,201 vertices 100 segments).

Type of Overlapping Number of Vertices per Segment Coarse Denoising MND Fine Denoising MND

max 372 0.1276 0.1189
1.05 ·max 390 0.1248 0.1187
1.10 ·max 409 0.1228 0.1185
1.15 ·max 427 0.1208 0.1183
1.20 ·max 446 0.1184 0.1174
1.25 ·max 465 0.1175 0.1168

Table 5. Mean normal difference using different size of equal-sized overlapped submeshes (Julio Model
with 36,201 vertices 50 segments).

Type of Overlapping Number of Vertices per Segment Coarse Denoising MND Fine Denoising MND

max 741 0.1229 0.1167
1.05 ·max 778 0.1207 0.1166
1.10 ·max 815 0.1188 0.1163
1.15 ·max 852 0.1172 0.1160
1.20 ·max 889 0.1160 0.1159
1.25 ·max 926 0.1159 0.1158

Regarding the ideal size of the overlapped patches, we investigated the effect of using different
sizes of overlapped submeshes in a range from 5 to 25% of the maximum submeshes length, in the
quality of the reconstructed model. More specifically, as shown in Tables 4 and 5 and in Figure 8,
the mean normal difference and the visual smoothed results have not significant differences between
the different case studies, especially for percentages up to 10% of the max segment. Additionally,
if we consider the fact that this process takes place in the coarse denoising step we can conceive the
negligible contribution of the overlapped submeshes size to the final denoising results.

By inspecting the results, we can definitely state that the number and size of segments are much
more important than the size of the overlapped patches. The overlapping process mainly contributes
in the case of on-the-edge points helping for a more accurate estimation of their position by creating
full-connected points. A sufficient overlapping size corresponds to the 15% of the total points in
the submesh.

Figure 8 illustrates the reconstruction results of the coarse denoising step using 70 overlapped
submeshes consisting of a different number of vertices in each case. As we can observe, in cases where
the number of overlapping vertices is higher than 15% of the total number of submesh points then the
reconstructed results are almost identical with the 15% case.

J. Imaging 2020, 6, 55 13 of 26

Original Mesh Noisy Mesh (a) (b)

(c) (d) (e) (f)

Figure 8. Coarse denoising meshes with 70 equal-sized overlapped submeshes consisting of
(a) 532 vertices (max), (b) 558 vertices (1.05 · max), (c) 585 vertices (1.10 · max), (d) 611 vertices
(1.15 ·max), (e) 638 vertices (1.20 ·max), (f) 665 vertices (1.25 ·max).

6. Case Studies

In this section, we will present how the proposed approach could be used in different applications,
such as compression [36] and denoising [37], speeding up the computational efficiency of their spectral
processing part (both for static and dynamic meshes).

6.1. Block-Based Spectral Compression

In the literature, a lot of works have been presented related to compression of 3D meshes and point
clouds [38–40]. The spectral compression methods utilize the subspace of the eigenvector matrix Uc[i]
for encoding the geometry of a 3D mesh. This matrix can be computed by a direct SVD implementation
or by executing a number of orthogonal iterations on Rz [i], and it is used as the encoding dictionary to
provide a compact representation of the vertices of each submesh.

• At the encoder: The coordinates vx [i] ∈ Rnd×1 are projected to the dictionary and we finally take
the feature vector E according to:

E [i] = UT
c [i]v [i] (11)

where E [i] ∈ Rc×1 and c << ndi
.

• At the decoder: The inverse process takes place, the vertices of the original 3D mesh are
reconstructed from the feature vector E [i] and the dictionary Uc[i] according to:

ṽ [i] = Uc[i]E [i] (12)

The sender transmits only the connectivity of the mesh and the c respective spectral coefficients
of each block. On the other hand, the receiver evaluates the dictionary Uc[i], based on the received
connectivity, and uses the spectral coefficients to retrieve the coordinates of the original mesh x̂, ŷ, ẑ [19].
To mention here that the subspace size c has a fixed value in the case of OI, providing fast execution
times but having a lack of reconstruction accuracy. On the other hand, the DOI approach provides
reconstructed results with high and stable reconstruction quality, since it searches for the “ideal”
subspace size, but as a result, it adds an extra computational cost.

J. Imaging 2020, 6, 55 14 of 26

6.2. Block-Based Spectral Denoising

The proposed spectral denoising approach is separated into two stages (i.e., coarse and fine).
Firstly, the coarse step filters out the high spectral frequencies, and then a bilateral approach [41–43]
performs fine denoising. The coarse step is used to accelerate the convergence of the fine step since it
mitigates the noise that appears in the high-frequency components. This provides a set of face normals
that are closer to the face normals of the original model, as shown in Figure 9.

The fine denoising step starts having as input the vertices v̂[i] = UcUT
c v[i] of the coarse denoised

i submesh, the centroid mi of each face, and the corresponding face normals that are estimated
according to:

n̂mi =
(v̂i2 − v̂i1)× (v̂i3 − v̂i1)∥∥∥(v̂i2 − v̂i1)× (v̂i3 − v̂i1)

∥∥∥ ∀ i = 1, n f (13)

where v̂i1 , v̂i2 , v̂i3 represents the connected vertices that constitute the face fi and n̂m =

[n̂T
m1

n̂T
m2
· · · n̂T

n f] ∈ R3n f×1. The main purpose of the bilateral filtering is to estimate the new noise-free
face normals n̂mi , according to:

n̂mi =
1

Wi
∑

f j∈N fi

AjKs
(
mi, mj

)
Kr

(
nmi , nmj

)
nmj (14)

where N fi
is the set of faces that have a common edge with the face fi, Aj is the area of face f j,

Wi is a weight for ensuring that the vector n̂mi is a unit vector and Ks, Kr are some Gaussian kernels,
as presented in the next equations:

Ks
(
mi, mj

)
= exp

(
−
∥∥mi −mj

∥∥2

2σ2
s

)
(15)

Kr

(
nmi , nmj

)
= exp

−
∥∥∥nmi − nmj

∥∥∥2

2σ2
r

 (16)

(a) (b) (c)

Figure 9. Face normals of: (a) The original noise-free mesh; (b) the noisy mesh; (c) Smoothed
reconstructed model.

J. Imaging 2020, 6, 55 15 of 26

Then, the fine-denoised face normal n̂mi is used to update the vertex positions in order to match
to the new normal directions nmi in an iterative manner, according to :

v̂(t+1)
ij

= v̂(t)
ij

+
1∣∣∣Fij

∣∣∣ ∑
z∈Fij

n̂mz

[
n̂T

mz

(
m(t)

i − v̂(t)
ij

)]
(17)

m(t)
i =

(
v̂(t)

i1
+ v̂(t)

i2
+ v̂(t)

i3

)
/3 (18)

where (t) represent the number of the iteration and Fij denotes the vertices of the first-ring area of the
vertex v̂ij .

Bilateral Filter as a Graph-Based Transform

In this subsection, we will show how the fine denoising step of the aforementioned approach
(i.e., bilateral filtering) can be also considered as a graph spectral processing approach. We start
assuming the existence of an undirected graph G = (V, E) where the nodes V = {1, 2, . . . , n} are
the normals nmi , associated with the centroids mi and the edges E capture the similarity between
two normals as given by the bilateral weights in Equations (15) and (16). The input normals can be
considered as a signal defined on this graph ni : V → R3×1 where the signal value at each node
correspond to the normal vector. Considering the weighted adjacency matrix C, consisting of the
bilateral weights, and the diagonal matrix D = diag

{
W1, . . . , Wn f

}
, then the Equation (14) can be

written as:

n̂ = D−1Cn

= D−1/2D−1/2CD−1/2D1/2n

D1/2n̂ = (I− L)D1/2n

D1/2n̂ = U︸︷︷︸
IGFT

(I−Λ)︸ ︷︷ ︸
Spectral
response

UT︸︷︷︸
GFT

D1/2n (19)

Equation (19) confirms our assumptions that the Bilateral filter can be considered as a frequency
selective graph transform with a spectral response that corresponds to a linear decaying function,
meaning that it tries to preserve the low-frequency components and attenuate the high-frequency ones.

6.3. Block-Based Spectral Denoising of 3D Dynamic Mesh

In previous sections, we mentioned that the Laplacian matrices of submeshes, representing parts
of the same 3D model, have similar form confirming the existence of spatial coherence. As we
presented, we can take advantage of this property implementing a more efficient OI process providing
both faster convergence and more accurate results.

However, the advantages of this approach could be better highlighted in the dynamic case.
A dynamic mesh consists of s frames/meshes which are shared the same connectivity with each other.
Apparently, the Laplacian matrices of corresponding submeshes R[i] ∀ i = 1, ..., k are preserved the
same, without changing, by frame to frame (e.g., R1[1] = R2[1] = · · · = Rs[1]), where Rj[i] represents
the Laplacian matrix of the ith submesh of the jth frame.

Figure 10 illustrates a schema representing the proposed coarse denoising of a dynamic mesh.
The process starts by iteratively applying OI for the estimation of each Uc[i] ∀ i = 1, ..., k, as detailed
described in Algorithm 1. Then, parallel programming could be used for a fast coarse denoising
process taking advantage of the already estimated matrices. In this case, the denoising process can run
for all frames concurrently because no information of the previous frames is required (except of the
matrices Uc[i] ∀ i = 1, ..., k which are estimated once during the OI process applied only to the first

J. Imaging 2020, 6, 55 16 of 26

frame). Additionally, adaptive compression of animated meshes could be used for real-time scenarios,
as described in [44].

Frame 1 Frame 2 Frame 65 Frame 150

Orthogonal Iteration is initially
used for the estimation of each
Uc[i] for any submesh i = 1 … k

Uc[1]

Uc[2]

Uc[3]

Parallel Programming could be used for a fast coarse denoising process
using the estimated Uc[i] ∀ i = 1 … k, of the first frame, to the

corresponding submeshes of the following frames.

Uc[1] Uc[1] Uc[1]

Uc[2] Uc[2] Uc[2]

Uc[3]
Uc[3] Uc[3]

Uc[k] Uc[k] Uc[k] Uc[k]

Figure 10. Parallel programming schema for high-performance coarse denoising of a 3D dynamic mesh.

6.4. Comparisons of the Execution Times with a Relative Method

In this subsection, we present the execution time effectiveness of our method in comparison with
the relevant method of Vallet and Levy [17].

The main contribution of Vallet and Levy’s method is the development of an efficient numerical
mechanism that computes the eigenfunctions of the Laplacian. The eigenfunctions are computed
band by band based on spectral transforms and an efficient eigensolver, and also using an out-of-core
implementation that can compute thousands of eigenvectors for meshes with up to a million vertices.
They also propose a limited-memory filtering algorithm, that does not need to store the eigenvectors.
Vallet and Levy’s method is very fast, especially in comparison with the traditional SVD decomposition
and it also shares a lot of common ideas with our method, trying to solve a similar problem. The main
similarity between Vallet and Levy’s method and our approach is that both of them can be used as
low-pass filtering.

Nevertheless, Vallet and Levy’s method has some limitations that our method can efficiently
handle and overcome. More specifically:

• Their method is not able to preserve the creases and as a future extension, they suggested the use of
eigenfunctions of an anisotropic version of the Laplace operator that could improve the frequency
localization of the creases and therefore to better preserve them when filtering. We overcome this
limitation by using an extra stage of processing (called as a fine step) that handles each area with
an anisotropic way taking into account the different geometrical characteristics of small surfaces
(e.g., creases, corners, edges, etc.)

• Another limitation is the fact that Vallet and Levy’s method cannot be directly applied to mesh
compression since they took particular care, making their Laplacian geometry dependent. On the
other hand, our method can be efficiently used for mesh compression as also many experimental
results can verify.

• Regarding the performance of the computational complexity, Vallet and Levy’s forecast that
partitioning also partially fixes the problem of spatial localization at the expense of losing
continuity (this is also why JPEG uses small blocks instead of applying the DCT to the whole
image). Their suggestion can be verified by our implementation since we achieve tremendously
faster execution times by participating in patches the whole 3D mesh and proceed them separately.

J. Imaging 2020, 6, 55 17 of 26

Figure 11 depicts plots that show the execution times of two OI approaches (i.e., OI (t = 1, z = 1)
and OI (t = 1, z = 4)) in comparison with the execution times of the Manifold Harmonics basis (MHB)
and Limited-memory MH Filtering (LM-filt), as presented in [17]. The main reason why our method is
much faster than other decomposition methods is due to the fact that it handles many but much smaller
matrices (of submeshes) than the large Laplacian matrix of the initial whole mesh. The execution time
to decompose a matrix exponentially increases as the dimension of the matrix also increases. On the
other hand, the cumulative time to decompose many but small matrices is significantly lower.

Number of vertices #105

0 2 4 6 8 10 12

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

#104

0

0.5

1

1.5

2

2.5
Execution times for different 3D models

MHB
LM-filt
OI (t = 1, z = 1)
OI (t = 1, z = 4)

Figure 11. Execution times for different 3D models.

7. Experimental Results and Evaluation

In this section, we evaluate the results and the performance of the proposed approach in two
different use cases, namely compression and denoising.

7.1. Experimental Setup and Metrics

The quality of the reconstructed models is evaluated using (i) the normalized mean square visual
error (NMSVE) [19] that captures the distortion between the original and the reconstructed model and
(ii) the metric θ that represents the mean angle difference between the face normals of the the original
and the reconstructed model. The assumption that the noisy 3D object has the same connectivity with
the original is only used for the evaluation of the reconstructed mesh with the ground truth. Anywise,
our method is not negatively affected by the form or the accuracy of the connectivity, but only cares
about how the noisy vertices are connected with their neighbor vertices.

7.2. Experimental Analysis of the Spectral Compression Approach

The spectral compression approach is performed as described in Section 6.1. Figure 12 shows how
the selected rate of bit per vertex (bpv) affects the metric NMSVE for different compared approaches.

J. Imaging 2020, 6, 55 18 of 26

We also provide the execution times, next to each line, that encapsulates the respective time needed to
run each method (e.g., to construct the matrix Rz, z ≥ 1 and execute the OI).

As we can also conclude by observing this figure, OI performs almost the same reconstructed
quality with the SVD method, in considerably less time, since it can be executed up to 20 times faster.
It is obvious that the more the number of the iterations of OI, the better the reconstructed accuracy of
the model, converging towards the (optimal) SVD result. Obviously, this strategy increases the total
execution time due to the more iterations, however, the total execution of OI still remains much faster
than this one of the direct SVD.

bpv
2 3 4 5 6 7 8 9 10 11 12

N
M

S
V

E
 (

dB
)

-54

-53

-52

-51

-50

-49

-48

-47

-46

-45

10.72 sec. !

1.14 sec. !
0.81 sec. !

0.5 sec. !

5.94 sec. !

0.47 sec. !

Dense Mesh Compression (Bunny)

Identity
OI (t=1, z=1)
OI (t=2, z=1)
OI (t=1, z=2)
SVD
DOI (9e-5,4e-5)

Figure 12. Normalized mean square visual error (NMSVE) of the reconstructed models per different
bpv for different compared approaches.

For the case of DOI, there is an increase in the execution time, in comparison to OI. However, it still
is significantly faster than the SVD (it needs almost half time). On the other hand, there is a significant
increase in the final compression rate (bpv), which is captured as a right shifting of the plot in Figure 12.
The shifting is more obvious when the initial value of c is small which means that more iterations are
necessary for achieving the satisfying accuracy. The theoretical complexity of the proposed schemes
is in tandem with the measured time. More specifically, the OI approach for the “Bunny” model can
be executed much faster than the direct SVD approach. While running more OI iterations yields a
better NMSVE, converging towards the (optimal) SVD result, it comes at the cost of a linear increase in
the decoding time. On the other hand, one iteration of R4 achieves the same visual error as executing
four OI, in considerably less time. Figure 13 plots the squared error per each submesh of the Bunny
model (70 submeshes in total). Each presented approach has a different reconstruction performance
in different submeshes except of the DOI that provides a stable reconstruction accuracy due to the
“ideal” value of subspace size that is required to satisfy a predefined reconstruction quality threshold.
Figure 14 presents the heatmap visualization of the normals’ difference between the ground truth and
the reconstructed models for different OI approaches and SVD.

The plot of bpv vs. NMSVE for the “Dragon” model is shown in Figure 15a. Note that the
execution times shown next to each line encapsulate the respective time needed to construct Rz, z ≥ 1,
and to run the respective number of OI, with the speed-up as compared to SVD shown in parenthesis.
By inspecting the figure, it can be easily concluded that the quality of the OI method performs almost
the same as with SVD, especially when the number of iterations increases. Additionally, in Figure 15b,
we provide the heatmap visualization of the normals difference between the ground truth and the
reconstructed models for different OI approaches and SVD.

J. Imaging 2020, 6, 55 19 of 26

Number of Submesh
0 10 20 30 40 50 60 70

S
qu

ar
ed

 E
rr

or

-50

-40

-30

-20

-10

0
Bunny (70 Submeshes of 512 vertices)

SVD
OI
OI (t=1, z=2)
DOI

Submesh 11 Submesh 27 Submesh 46

Figure 13. Squared error per each submesh for different approaches.

OI (t = 1, z = 1)

SVD

OI (t = 1, z = 2)

DOI

Figure 14. Heatmap visualazation of normal difference with bpv 5.64 for different reconstructed
approaches.

0 2 4 6 8 10 12

bpv

-60.7

-60.6

-60.5

-60.4

-60.3

-60.2

-60.1

-60

N
M

S
V

E
 (

dB
)

Dragon model

OI (t = 1, z = 1)
OI (t = 2, z = 1)
OI (t = 4, z = 1)
OI (t = 1, z =4)
SVD

41.5 sec. (55x)

2312 sec.

83.4 sec. (27x)

167.2 sec. (13x)
96.1 sec. (24x)

(a)

OI with 1 iteration OI with 2 iterations

OI with 4 iterations SVD

N
M

SV
E

(b)

Figure 15. (a) NMSVE vs bpv plot of the Dragon model (437,645 vertices); (b) normal difference with
bpv 7.06. The arrow represents the speed-up in execution time compared to SVD.

J. Imaging 2020, 6, 55 20 of 26

7.3. Experimental Analysis of Spectral Denoising Approach

For the spectral denoising approach, we followed the same steps as these that are described
in Section 6.2. OI was used as a pre-processing “smoothing” step before applying the fine spectral
bilateral filtering. In Figure 16, we present the smoothed results (“Armadillo” and “Hand” models)
between the OI approach and SVD. As we can see, the results of the two methods seem identical.
The direct correlation between the size of a block and the execution time speed-up as compared to
direct SVD is also highlighted here. For this scenario, zero-mean Gaussian noise N (0, 0.2) was added
to the models. The “Armadillo” model was partitioned into 20 submeshes each comprising around
990 vertices, while the “Hand” model was partitioned into 700 submeshes with 470 vertices per block.

Original mesh partitioned Original with noise

OI with 1 iteration SVD

9.12 sec 1386 sec

20
 submeshes

~ 990
 vertices

(a)

Original mesh partitioned Original with noise

OI with 1 iteration SVD35.1 sec 1990 sec

700 submeshes

~ 470 vertices

(b)

Figure 16. Filtering of 3D models (a) Armadillo (20,002 vertices) using c = 297 and (b) Hand
(327,323 vertices) using c = 47 with noise: N (0, 0.2). Each color represents a submesh, and the
arrow depicts the speed-up in execution time compared to SVD.

In Figure 17, we present reconstructed results of different models (i.e., twelve, blocks,
sharp sphere) using a variety of state-of-the-art methods. For an easier comparison among the methods,
we also provide enlarge details as well as the NMSVE and mean θ metrics. Heatmap visualizations
are also offered to show the distortion alleviation. The visualized results show that our approach
outperforms all the other compared methods.

Table 6 presents a variety of reconstruction quality metrics for several denoising methods.
By observing the quality metrics, we can verify that our method provides the best results in almost
every case study. The quality of the denoising results is evaluated using a variety of different metrics
that are shortly presented below:

• θ represents the angle between the normal of the ground truth face and the resulting face normals,
averaged over all faces.

• Dmean d is the average distance between the vertices of the reconstructed and the original
3D mesh.

• Dmax d is the maximum among the distances of the vertices of the reconstructed and the original
3D mesh.

• dist n is the average distance between the point normals of the reconstructed and the original
3D mesh.

• Dmean n is the average distance between the face normals of the reconstructed and the original
3D mesh.

• NMSVE (Normalized Mean Square Visual Error) has been shown to correlate well with perceived
distortion by measuring the average error in the Laplacian and Cartesian domains [48].

J. Imaging 2020, 6, 55 21 of 26

θ = 11.72 θ = 7.37 θ = 7.27 θ = 11.09 θ = 7.45 θ = 8.46 θ = 2.75 θ = 2.668

NMSVE =6.98 10−5 NMSVE =5.40 10−5 NMSVE =4.44 10−5 NMSVE =4.26 10−5 NMSVE =4.84 10−5 NMSVE =5.43 10−5 NMSVE =5.43 10−5 NMSVE =𝟑. 𝟓𝟓 𝟏𝟎−𝟓

(a) (b) (c) (d) (e) (f) (g) (h)

θ = 12.71 θ = 13.85 θ = 5.80 θ = 8.01 θ = 5.30 θ = 4.97 θ = 3.57 θ = 2.98

NMSVE =3.26 10−5 NMSVE =3.47 10−5 NMSVE =2.14 10−5 NMSVE =2.28 10−5 NMSVE =2.10 10−5 NMSVE =2.88 10−5 NMSVE =2.68 10−5 NMSVE =𝟏. 𝟓 𝟏𝟎−𝟓

(a) (b) (c) (d) (e) (f) (g) (h)

θ = 12.71 θ = 17.36 θ = 11.89 θ = 9.69 θ = 6.70 θ = 12.95 θ = 10.16 θ = 6.24

NMSVE =2.77 10−5 NMSVE =2.79 10−5 NMSVE =2.20 10−5 NMSVE =1.70 10−5 NMSVE =1.31 10−5 NMSVE =2.20 10−5 NMSVE =2.28 10−5 NMSVE =𝟏. 𝟑 𝟏𝟎−𝟓

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 17. Denoising results for different methods and heatmap visualization; (a) bilateral [41];
(b) non-iterative [45]; (c) Fast and Effective [46]; (d) Bilateral (l) [42]; (e) Bilateral (g) [42]; (f) l0
minimization [47]; (g) Guided normal filtering [43]; (h) Our Approach.

J. Imaging 2020, 6, 55 22 of 26

We also present the denoising results of two real-scanned noisy 3D models (i.e., cup and wallet
in Figure 18). Our method removes the abnormalities without over smoothing the surface of the
object, preserving at the same time the high-frequency features of the objects. However, the evaluation
of our method, in this case, is not feasible since the ground truth model is not known beforehand.
An extended experimental analysis and results can be found in the Supplementary Materials (File S1).

Figure 18. (Left) Three-dimensional scanned cup and wallet with abnormalities. (Right) Denoising
results in respect of features.

J. Imaging 2020, 6, 55 23 of 26

Table 6. Evaluation of the experimental results using different metrics. The lowest value per each row is highlighted in bold.

Metrics Bilateral [41] Non-[45] Iterative Fast & [46] Effective Bilateral (l) [42] Bilateral (g) [42] l0 min [47] Guided Normal [43]
Filtering Our Approach

Tw
el

ve
(0

.5
) θ 11.7204 11.093 7.4519 7.3683 7.271 8.4626 2.7542 2.668

Dmean d 0.017 0.0155 0.0115 0.0129 0.0123 0.0317 0.0128 0.006
Dmax d 0.1357 0.1074 0.0728 0.0947 0.0741 0.1357 0.1594 0.0995
dist n 0.1434 0.1301 0.1051 0.1055 0.1073 0.1518 0.0809 0.0645

NMSVE 6.98× 10−5 5.4× 10−5 4.44× 10−5 4.26× 10−5 4.84× 10−5 5.43× 10−5 5.32× 10−5 3.55× 10−5

Dmean n 0.2113 0.2002 0.1349 0.1322 0.1331 0.1627 0.0519 0.0465

B
lo

ck
(0

.4
) θ 12.7155 13.8501 5.8023 8.0165 5.3062 4.9734 3.572 2.9826

Dmean d 0.1873 0.1425 0.0857 0.096 0.0744 0.1922 0.1066 0.0544
Dmax d 0.8781 0.8684 0.8206 0.7009 0.8759 0.6836 0.9967 0.6479
dist n 0.236 0.2179 0.1536 0.17 0.1462 0.1911 0.1443 0.1064

NMSVE 3.26× 10−5 3.47× 10−5 2.14× 10−5 2.28× 10−5 2.1× 10−5 2.88× 10−5 2.68× 10−5 1.5× 10−5

Dmean n 0.3134 0.3106 0.1422 0.1866 0.128 0.1808 0.1131 0.0788

Fa
nd

is
k

(0
.7

) θ 22.4862 27.9264 13.1918 15.0545 14.2553 6.2186 6.3721 6.0669
Dmean d 0.0376 0.0366 0.0276 0.0321 0.0294 0.0293 0.0291 0.0155
Dmax d 0.2412 0.2093 0.2048 0.188 0.1987 0.1373 0.1865 0.1207
dist n 0.5803 0.6209 0.5447 0.5739 0.5739 0.4529 0.4495 0.4065

NMSVE 7.49× 10−5 9.68× 10−5 4.89× 10−5 4.79× 10−5 5.33× 10−5 3.5× 10−5 5.28× 10−5 3.01× 10−5

Dmean n 0.403 0.4937 0.2353 0.2713 0.2535 0.1221 0.119 0.1104

J. Imaging 2020, 6, 55 24 of 26

8. Conclusions

In this work, we introduced a fast spectral processing approach ideally suited for low-level
applications (i.e., denoising and compression) applied in highly dense static and dynamic 3D meshes
in real-time. To overcome the high computational complexity of the SVD implementation, we exploited
potential spectral coherence between different parts of a mesh and then we applied the problem of
tracking graph Laplacian eigenspaces via orthogonal iterations. In the experimental analysis, we used a
large variety of CAD and scanned 3D meshes. The results showed that the subspace tracking techniques
allow a robust estimation of dictionaries at significantly lower execution times in comparison to the
direct SVD implementations.

However, despite the better time execution performance that the orthogonal iteration approaches
have, compared to the direct SVD, the careful selection of an optimal subspace size is necessary in order
to simultaneously achieve both the best reconstruction quality and the fastest compression/denoising
execution times.

Supplementary Materials: The following are available online at http://www.mdpi.com/2313-433X/6/6/55/s1,
File S1: Supplementary material of Spectral Processing for Denoising and Compression of 3D Meshes Using
Dynamic Orthogonal Iterations.

Author Contributions: Methodology, G.A. and A.S.L.; investigation, G.A. and A.S.L.; writing–original draft
preparation, G.A. and A.S.L.; writing–review and editing, G.A., A.S.L. and K.M.; visualization, G.A. and A.S.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by European Union Horizon 2020 Research and innovation program
“WARMEST or loW Altitude Remote sensing for the Monitoring of the state of cultural hEritage Sites: building an
inTegrated model for maintenance” under Marie Sklodowska grant agreement No 777981.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Guo, Y.; Bennamoun, M.; Sohel, F.; Lu, M.; Wan, J. 3D Object Recognition in Cluttered Scenes with Local
Surface Features: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2270–2287. [CrossRef] [PubMed]

2. Maturana, D.; Scherer, S. VoxNet: A 3D Convolutional Neural Network for real-time object recognition.
In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Hamburg, Germany, 28 September–2 October 2015; pp. 922–928.

3. Guan, H.; Zhao, Q.; Ren, Y.; Nie, W. View-Based 3D Model Retrieval by Joint Subgraph Learning and
Matching. IEEE Access 2020, 8, 19830–19841. [CrossRef]

4. Akhtar, A.; Kathariya, B.; Li, Z. Low Latency Scalable Point Cloud Communication. In Proceedings of
the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019;
pp. 2369–2373.

5. Zhang, H.; Van Kaick, O.; Dyer, R. Spectral mesh processing. In Computer Graphics Forum; Wiley Online
Library: Hoboken, NJ, USA, 2010; Volume 29, pp. 1865–1894.

6. Cai, W.; Leung, V.C.M.; Chen, M. Next Generation Mobile Cloud Gaming. In Proceedings of the 2013
IEEE Seventh International Symposium on Service-Oriented System Engineering, Redwood City, CA, USA,
25–28 March 2013; pp. 551–560.

7. Bacco, M.; Barsocchi, P.; Cassará, P.; Germanese, D.; Gotta, A.; Leone, G.R.; Moroni, D.; Pascali, M.A.;
Tampucci, M. Monitoring Ancient Buildings: Real Deployment of an IoT System Enhanced by UAVs and
Virtual Reality. IEEE Access 2020, 8, 50131–50148. [CrossRef]

8. Wang, Y.; Zhong, Z.; Hua, J. DeepOrganNet: On-the-Fly Reconstruction and Visualization of 3D/4D Lung
Models from Single-View Projections by Deep Deformation Network. IEEE Trans. Vis. Comput. Graph. 2020,
26, 960–970. [CrossRef] [PubMed]

9. Alexiadis, D.S.; Zarpalas, D.; Daras, P. Real-time, full 3-D reconstruction of moving foreground objects from
multiple consumer depth cameras. IEEE Trans. Multimed. 2013, 15, 339–358. [CrossRef]

10. Mekuria, R.; Sanna, M.; Izquierdo, E.; Bulterman, D.C.A.; Cesar, P. Enabling geometry-based 3-D
tele-immersion with fast mesh compression and linear rateless coding. IEEE Trans. Multimed. 2014,
16, 1809–1820. [CrossRef]

http://www.mdpi.com/2313-433X/6/6/55/s1
http://dx.doi.org/10.1109/TPAMI.2014.2316828
http://www.ncbi.nlm.nih.gov/pubmed/26353066
http://dx.doi.org/10.1109/ACCESS.2020.2968460
http://dx.doi.org/10.1109/ACCESS.2020.2980359
http://dx.doi.org/10.1109/TVCG.2019.2934369
http://www.ncbi.nlm.nih.gov/pubmed/31442979
http://dx.doi.org/10.1109/TMM.2012.2229264
http://dx.doi.org/10.1109/TMM.2014.2331919

J. Imaging 2020, 6, 55 25 of 26

11. Lalos, A.S.; Nikolas, I.; Vlachos, E.; Moustakas, K. Compressed Sensing for Efficient Encoding of Dense 3D
Meshes Using Model-Based Bayesian Learning. IEEE Trans. Multimed. 2017, 19, 41–53. [CrossRef]

12. Lalos, A.S.; Nikolas, I.; Moustakas, K. Sparse coding of dense 3D meshes in mobile cloud applications.
In Proceedings of the 2015 IEEE International Symposium on Signal Processing and Information Technology
(ISSPIT), Abu Dhabi, UAE, 7–10 December 2015; pp. 403–408.

13. Zhang, P. Iterative Methods for Computing Eigenvalues and Exponentials of Large Matrices. Ph.D. Thesis,
University of Kentucky, Lexington, Kentucky, 2009; p. 789.

14. Gotsman, C. On graph partitioning, spectral analysis, and digital mesh processing. In Proceedings of the
2003 Shape Modeling International, Seoul, Korea, 12–15 May 2003; pp. 165–171.

15. Lévy, B. Laplace-beltrami eigenfunctions towards an algorithm that understands geometry. In Proceedings
of the IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06), Matsushima,
Japan, 14–16 June 2006; p. 13.

16. Sorkine, O. Laplacian Mesh Processing. In Eurographics 2005—State of the Art Reports; Chrysanthou, Y.,
Magnor, M., Eds.; The Eurographics Association: Airville, Switzerland, 2005.

17. Vallet, B.; Lévy, B. Spectral Geometry Processing with Manifold Harmonics. Comput. Graph. Forum 2008,
27, 251–260. [CrossRef]

18. Kim, B.; Rossignac, J. Geofilter: Geometric selection of mesh filter parameters. In Computer Graphics Forum;
Wiley Online Library: Hoboken, NJ, USA, 2005; Volume 24, pp. 295–302.

19. Karni, Z.; Gotsman, C. Spectral compression of mesh geometry. In Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 23–28 July 2000;
pp. 279–286.

20. Ohbuchi, R.; Takahashi, S.; Miyazawa, T.; Mukaiyama, A. Watermarking 3D polygonal meshes in the mesh
spectral domain. In Proceedings of the Graphics Interface, Ottawa, ON, Canada, 7–9 June 2001; Volume 2001,
pp. 9–17.

21. Taubin, G. A Signal Processing Approach to Fair Surface Design. In Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’95), Los Angeles, CA, USA,
6–11 August 1995; ACM: New York, NY, USA, 1995; pp. 351–358. [CrossRef]

22. Taubin, G. Geometric Signal Processing on Polygonal Meshes. In Eurographics 2000—STARs; Eurographics
Association: Airville, Switzerland, 2000. [CrossRef]

23. Liu, J. Research on laser stripe extraction in underwater 3D laser scanning. In Proceedings of the 2016
IEEE International Conference on Information and Automation (ICIA), Ningbo, China, 1–3 August 2016;
pp. 159–165. [CrossRef]

24. Giorgini, M.; Barbieri, F.; Aleotti, J. Ground Segmentation From Large-Scale Terrestrial Laser Scanner Data
of Industrial Environments. IEEE Robot. Autom. Lett. 2017, 2, 1948–1955. [CrossRef]

25. Atia, M.M.; Liu, S.; Nematallah, H.; Karamat, T.B.; Noureldin, A. Integrated Indoor Navigation System for
Ground Vehicles With Automatic 3-D Alignment and Position Initialization. IEEE Trans. Veh. Technol. 2015,
64, 1279–1292. [CrossRef]

26. Comon, P.; Golub, G.H. Tracking a few extreme singular values and vectors in signal processing. Proc. IEEE
1990, 78, 1327–1343. [CrossRef]

27. Saad, Y. Analysis of subspace iteration for eigenvalue problems with evolving matrices. SIAM J. Matrix
Anal. Appl. 2016, 37, 103–122. [CrossRef]

28. Lalos, A.S.; Arvanitis, G.; Dimas, A.; Moustakas, K. Block based Spectral Processing of Dense 3D Meshes
using Orthogonal Iterations. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications—Volume 1: GRAPP, INSTICC; SciTePress: Funchal, Portugal,
2018; pp. 122–132. [CrossRef]

29. BrianDavies, E.; Gladwell, G.L.; Leydold, J.; Stadler, P.F. Discrete nodal domain theorems. Linear Algebra
Its Appl. 2001, 336, 51–60. [CrossRef]

30. Cayre, F.; Rondao-Alface, P.; Schmitt, F.; Macq, B.; Maıtre, H. Application of spectral decomposition
to compression and watermarking of 3D triangle mesh geometry. Signal Process. Image Commun. 2003,
18, 309–319. [CrossRef]

31. Karypis, G.; Kumar, V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J.
Sci. Comput. 1998, 20, 359–392. [CrossRef]

32. Golub, G.H.; Van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2012; Volume 3.

http://dx.doi.org/10.1109/TMM.2016.2605927
http://dx.doi.org/10.1111/j.1467-8659.2008.01122.x
http://dx.doi.org/10.1145/218380.218473
http://dx.doi.org/10.2312/egst.20001029
http://dx.doi.org/10.1109/ICInfA.2016.7831815
http://dx.doi.org/10.1109/LRA.2017.2715378
http://dx.doi.org/10.1109/TVT.2015.2397004
http://dx.doi.org/10.1109/5.58320
http://dx.doi.org/10.1137/141002037
http://dx.doi.org/10.5220/0006611401220132
http://dx.doi.org/10.1016/S0024-3795(01)00313-5
http://dx.doi.org/10.1016/S0923-5965(02)00147-9
http://dx.doi.org/10.1137/S1064827595287997

J. Imaging 2020, 6, 55 26 of 26

33. Lalos, A.S.; Vlachos, E.; Arvanitis, G.; Moustakas, K.; Berberidis, K. Signal Processing on Static and Dynamic
3D Meshes: Sparse Representations and Applications. IEEE Access 2019, 7, 15779–15803. [CrossRef]

34. Hua, Y. Asymptotical orthonormalization of subspace matrices without square root. IEEE Signal Process. Mag.
2004, 21, 56–61.

35. Arvanitis, G.; Lalos, A.; Moustakas, K.; Fakotakis, N. Feature Preserving Mesh Denoising Based on Graph
Spectral Processing. IEEE Trans. Vis. Comput. Graph. 2018, 5, 1513–1527. [CrossRef]

36. Peng, J.; Kim, C.S.; Kuo, C.C.J. Technologies for 3D mesh compression: A survey. J. Vis. Commun.
Image Represent. 2005, 16, 688–733. [CrossRef]

37. Litany, O.; Remez, T.; Bronstein, A. Cloud Dictionary: Sparse Coding and Modeling for Point Clouds. arXiv
2016, arXiv:1612.04956.

38. Maglo, A.; Lavoué, G.; Dupont, F.; Hudelot, C. 3D Mesh Compression: Survey, Comparisons, and Emerging
Trends. ACM Comput. Surv. 2015, 47. [CrossRef]

39. Tang, D.; Dou, M.; Lincoln, P.; Davidson, P.; Guo, K.; Taylor, J.; Fanello, S.; Keskin, C.; Kowdle, A.; Bouaziz, S.;
et al. Real-Time Compression and Streaming of 4D Performances. ACM Trans. Graph. 2018, 37. [CrossRef]

40. Lalos, A.S.; Arvanitis, G.; Spathis-Papadiotis, A.; Moustakas, K. Feature Aware 3D Mesh Compression
Using Robust Principal Component Analysis. In Proceedings of the 2018 IEEE International Conference on
Multimedia and Expo (ICME), San Diego, CA, USA, 23–27 July 2018; pp. 1–6.

41. Fleishman, S.; Drori, I.; Cohen-Or, D. Bilateral Mesh Denoising. ACM Trans. Graph. 2003, 22, 950–953.
[CrossRef]

42. Zheng, Y.; Fu, H.; Au, O.K.C.; Tai, C.L. Bilateral Normal Filtering for Mesh Denoising. IEEE Trans. Vis.
Comput. Graph. 2011, 17, 1521–1530. [CrossRef]

43. Zhang, W.; Deng, B.; Zhang, J.; Bouaziz, S.; Liu, L. Guided Mesh Normal Filtering. Pac. Graph. 2015, 34,
23–34. [CrossRef]

44. Lalos, A.S.; Vasilakis, A.A.; Dimas, A.; Moustakas, K. Adaptive compression of animated meshes by
exploiting orthogonal iterations. Vis. Comput. 2017, 33, 811–821. [CrossRef]

45. Jones, T.R.; Durand, F.; Desbrum, M. Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph.
2003, 22, 943–949. [CrossRef]

46. Sun, X.; Rosin, P.L.; Martin, R.R.; Langbein, F.C. Fast and effective feature-preserving mesh denoising.
IEEE Trans. Vis. Comput. Graph. 2007, 13, 925–938. [CrossRef]

47. He, L.; Schaefer, S. Mesh denoising via l0 minimization. ACM Trans. Graph 2013, 32, 64:1–64:8. [CrossRef]
48. Karni, Z.; Gotsman, C. Compression of Soft-Body Animation Sequences. Comput. Graph. 2004, 28, 25–34.

[CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2894533
http://dx.doi.org/10.1109/TVCG.2018.2802926
http://dx.doi.org/10.1016/j.jvcir.2005.03.001
http://dx.doi.org/10.1145/2693443
http://dx.doi.org/10.1145/3272127.3275096
http://dx.doi.org/10.1145/882262.882368
http://dx.doi.org/10.1109/TVCG.2010.264
http://dx.doi.org/10.1111/cgf.12742
http://dx.doi.org/10.1007/s00371-017-1395-4
http://dx.doi.org/10.1145/882262.882367
http://dx.doi.org/10.1109/TVCG.2007.1065
http://dx.doi.org/10.1145/2461912.2461965
http://dx.doi.org/10.1016/j.cag.2003.10.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Previous Works
	Spectral Processing Using Orthogonal Iterations
	Preliminaries of Spectral Processing in 3D Meshes
	Block-Based Spectral Processing Using Orthogonal Iterations

	Dynamic Orthogonal Iterations for Stable Reconstruction Accuracy
	Ideal Mesh Segmentation and Submeshes Properties
	Weighted Average for Mesh Reconstruction and Guarantees of a Smooth Transition
	Spatial Coherence between Submeshes of the Same Mesh
	Number of Submeshes
	Size of Overlapped Submeshes

	Case Studies
	Block-Based Spectral Compression
	Block-Based Spectral Denoising
	Block-Based Spectral Denoising of 3D Dynamic Mesh
	Comparisons of the Execution Times with a Relative Method

	Experimental Results and Evaluation
	Experimental Setup and Metrics
	Experimental Analysis of the Spectral Compression Approach
	Experimental Analysis of Spectral Denoising Approach

	Conclusions
	References

