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Abstract—With the growing demand for easy and reliable
generation of 3D models representing real-world or synthetic
objects, new schemes for acquisition, storage, and transmission
of 3D meshes are required. In principle, 3D meshes consist
of vertex positions and vertex connectivity. Vertex position
encoders are much more resource demanding than connectivity
encoders, stressing the need for novel geometry compression
schemes. The design of an accurate and efficient geometry
compression system can be achieved by increasing the compression
ratio without affecting the visual quality of the object and
minimizing the computational complexity. In this paper, we
present novel compression/reconstruction schemes that enable
aggressive compression ratios, without significantly reducing the
visual quality. The encoding is performed by simply executing
additions/subtractions. The benefits of the proposed method
become more apparent as the density of the meshes increases,
while it provides a flexible framework to trade efficiency for
reconstruction quality. We derive a novel Bayesian learning
algorithm that models the most significant graph Fourier
transform coefficients of each submesh, as a multivariate
Gaussian distribution. Then we evaluate iteratively the distribution
parameters using the expectation-maximization approach. To
improve the performance of the proposed approach in highly
under determined problems, we exploit the local smoothness of
the partitioned surfaces. Extensive evaluation studies, carried out
using a large collection of different 3D models, show that the
proposed schemes, as compared to the state-of-the-art approaches,
achieve competitive compression ratios, offering at the same time
significantly lower encoding complexity.

I. INTRODUCTION

R ECENTLY, there has been increasing interest from re-
searchers, system designers, and application developers

on acquiring, processing, transmitting and storing 3D models
[1]–[3] facilitating several applications, e.g., mobile cloud gam-
ing [4] and 3D Tele-immersion [5], [6]. In many of these applica-
tions, the reconstruction does not necessarily have to be exactly
equal to the input data allowing some loss of precision that
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is not easily distinguishable. The exploitation of this property
results in perception oriented compression schemes that degrade
gracefully with aggressive Compression Ratios (CRs), opening
up new possibilities for live acquisition, transmission and stor-
age of dense 3D models.

The most common way of representing 3D models in appli-
cations is the polygon modeling that approximates surfaces us-
ing 3D meshes. In general, 3D meshes consist of vertices which
provide the geometry information and polygons that connect the
vertices and determine elementary surfaces. It is worth mention-
ing that the encoded geometry is on average more than five times
larger than the encoded connectivity [7], since the raw geom-
etry data, whether originating from scanned real-world objects
or synthetic modeling applications [4], are represented using
floating point precision. As a result, although state-of-the-art
connectivity encoders are extremely effective [8], [9], the com-
pression of geometry information not only seems to remain a
challenge, [7] but also becomes more essential in mobile cloud
computing settings [10] where the encoder (e.g., mobile device)
transmission and processing resources are much more limited
as compared to the decoder (e.g, cloud) processing resources.

A. Related Work and Contributions

Maglo et al. [11] have presented a survey paper, focusing on
the latest developments on different mesh compression methods.
The pioneering works of Deering [12], Taubin and Rossignac
[13] as well as several following mesh-compression techniques,
focus mainly on connectivity encoding (e.g., [14], [15]) ignoring
the geometry information, that requires much more data for
representation. Moreover, the authors in [9], showed that the
efficiency of the connectivity encoding has reached near-optimal
level and as a result motivated us to focus on the geometry
compression and assume the vertex connectivity available at the
decoder.

Traditional compression schemes [16], [17], suggest perform-
ing direct quantization to the three space coordinates. This form
of quantization introduces high-frequency errors into the model
that modify significantly the appearance of the surface, resulting
in a 3D model with a blocky structure, where the reconstruc-
tion errors are highly noticeable. Hence, these algorithms are
not suitable for “lossy” compression, due to their non-graceful
degradation. To overcome this limitation, several works sug-
gest to work in a different domain than the spatial one, where
direct quantization will result in low frequency errors that are
not easily distinguishable [18]–[20]. One of the first attempts
in perception oriented mesh compression is high-pass encoding
[18], which builds on the idea of quantizing the differential co-
ordinates. This approach succeeds at capturing the local relation
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of vertices and usually outperforms the direct quantization ap-
proaches. Similarly, the authors in [19], [20] suggest performing
compression by transmitting a small number of “low frequency”
components estimated by projecting the Cartesian coordinates
to the graph Fourier domain. The main drawback of the afore-
mentioned schemes, is the increased processing demands at the
transmitter, since they require the eigenvalue decomposition of
the Laplacian matrix (e.g., evaluation of the graph Fourier ba-
sis vectors) and the projection of the vertex coordinates to a
subspace, defined by these vectors.

To overcome this limitation, Compressed Sensing (CS) has re-
cently been proposed as a viable low complexity signal process-
ing solution for different media compression/reconstruction,
providing a systematic approach for reconstructing sparse sig-
nals from a small number of random linear observations
[21]–[24]. The CS based schemes provide: i) low encoding
complexity, since the basis in which the signal is sparse does
not need to be computed at the encoder, ii) universality, since
the sensing is blind to the source distribution, and iii) privacy
preservation [25], since it inherently involves a randomization
process comparable to the randomization techniques commonly
used in data mining for privacy preservation [26]. More impor-
tantly, these schemes allow the progressive compression of 3D
objects, where an early coarse approximation can subsequently
be improved by simply transmitting additional random linear
combinations. The authors in [27], exploited the sparse Lapla-
cian eigen-domain structure of the mesh, by employing conven-
tional CS schemes. However, as the number of vertices of the
3D model grows, Laplacian based compression/reconstruction
methods become infeasible, since they require the inversion and
the eigenvalue decomposition of matrices, with sizes that are
equal to the number of mesh vertices.

To address this issue the 3D object should be divided and
processed in submeshes, as suggested in [28]. Although, the
proposed method requires the knowledge of the Laplacian eigen-
vectors (graph Fourier basis vectors) on the decoder side only,
the previous approaches (e.g., [19], [20]) require this knowl-
edge both at the encoder and the decoder. This actually means
that either they require to calculate the eigenvectors at the en-
coder side and transmit them to the decoder (which requires
both processing and transmission power) or they require to
evaluate them in both sides. In this paper, motivated by the
aforementioned open issues, we introduce a novel geometry
compression/reconstruction algorithm that enhances the bene-
fits of Laplacian, by processing dense 3D models in parts and
exploiting during reconstruction, specific local characteristics
(e.g., potential correlations of the principal spectral values) of
the geometric information of the different parts in the graph
Fourier domain. The contribution of this paper can be summa-
rized as follows:

1) We propose a fast and efficient CS based 3D model com-
pression approach, that enables aggressive compression
ratios, without introducing significant loss on the visual
quality. The proposed approach is superior in terms of
computational complexity as compared to spectral com-
pression schemes, since it requires two orders of magni-
tude less operations for providing compact representations

of the 3D meshes, while at the same time achieves similar
reconstruction quality.

2) For the first time, we propose the application of model
based Bayesian learning to the problem of 3D mesh com-
pression. We derive a novel reconstruction scheme that
instead of simply exploiting sample sparsity in the eigen-
domain (e.g., [27]), we exploit the power law decaying
structure of the graph Fourier transform (GFT) coefficient
by fitting an exponentially decaying model to the projected
values of the Euclidean coordinates in the GFT domain.
This approach allows us to reduce the degrees of freedom
of the compressible graph Fourier coefficients, by permit-
ting only certain configurations of the large and small/zero
graph Fourier coefficients providing two immediate ben-
efits as compared to classical CS:

a) The proposed scheme enables us to reduce signifi-
cantly the number of measurements required to re-
construct a 3D object, without introducing realiz-
able visual errors.

b) During spectral coefficient recovery, the scheme al-
lows us to better differentiate useful information
from recovery artifacts, leading to a more robust
recovery.

3) Finally, to improve the performance of the proposed
approach in highly under-determined problems, we
exploit the local smoothness of the individual submeshes
by minimizing the inward normal values. We analytically
demonstrate that this approach, reduces even more the ran-
dom linear combinations required for accurate recovery.

An extensive performance assessment using a large collec-
tion of different 3D models, including both dense (with more
than 104 vertices) and very dense (with more than 3 × 105 ver-
tices), clearly shows the benefits of our method as compared to
spectral based approaches (e.g., [18]–[20], [27]) in terms of re-
construction accuracy, compression efficiency and complexity.
By visualizing the visual error on the reconstructed models, we
conclude that the benefits of the proposed schemes become more
apparent in very dense meshes, where the local characteristics
are better preserved.

B. Organization

The remainder of this paper is organized as follows. In
Section II, we briefly review concepts and terminology related
to the GFT-based compression. In Section III, we present the
proposed encoding architecture together with the developed re-
construction algorithm. In Section IV, the performance of the
proposed system is evaluated and compared to state-of-the-art
approaches, by taking into account different 3D models. Finally,
Section V concludes this paper.

C. Notation

The entry in the i-th row and j-th column of a matrix A is
denoted by A(i,j ) , while the i-th row and j-th column is denoted
by A(i,:) , A(:,j ) respectively. (·)T denotes transposition; E[·]
denotes the expectation operator; the trace of a matrix A is
denoted by Tr(A).
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Fig. 1. Encoder and decoder architecture.

II. 3D MESH COMPRESSION USING GRAPH

FOURIER TRANSFORM

In this work we focus on triangle meshes, which are the most
common polygon models. Let us assume that each triangle mesh
M with n vertices can be represented by two different sets
M = (V, F ) corresponding to the vertices (V ) and the indexed
faces (F ) of the mesh. A set of edges (E) can be directly derived
from V and F . Most mesh geometry compression works, e.g.,
[18], [19], [29] are based on the fact that smooth geometries
should yield spectra, dominated by low frequency components
and suggest projecting the Cartesian coordinates x,y, z ∈ �n×1

in the graph Fourier basis spanned by the eigenvectors ui of the
Laplacian operator L. This matrix is calculated as follows:

L = In − D−1C (1)

where In is the n × n identity matrix, and C ∈ �n×n is the
connectivity matrix of the mesh with elements

C(i,j ) =

{
1, (i, j) ∈ (E)

0, otherwise.
(2)

D is the diagonal matrix with D(i,i) = |N(i)| and N(i) =
{j|(i, j) ∈ (E)} is a set with the immediate neighbors for node
i. Let as assume that the eigenvalue decomposition of L is writ-
ten as

L = UΛUT (3)

where Λ is a diagonal matrix consisting of the eigenvalues
of L and U = [u1 , . . . ,un ] is the matrix with the eigenvectors

ui ∈ �n×1 that span the graph Fourier basis. Then the aforemen-
tioned compression schemes take advantage of the fact that the
projection of Euclidean coordinates (e.g., v) to the eigenvectors
U of the Laplacian operator L results in sparse representations
sv = UT v that allows the following compact representation:

v̂ ≈
k∑

i=1

(
uT

i v
)
ui , k ≤ n. (4)

III. PROPOSED ARCHITECTURE

In this section, we initially present the proposed schemes for
compressing/reconstructing dense 3D models. A block diagram
of the proposed architecture is presented in Fig. 1. According
to the presented architecture, the geometry and the connectivity
of the mesh are treated individually. Regarding the connectivity,
we have used a state-of-the-art connectivity encoder (e.g., TFAN
encoder [17]), which is the one that was also used by many state-
of-the-art 3D mesh compression algorithms (e.g., Open3DGC
[17]) and we thus focus on providing a novel approach for com-
pressing/reconstructing the geometry of the mesh. The proposed
geometry compression algorithm exhibits similar performance
to the spectral compression approach (GFT), while minimizing
the processing at the encoder side, since it doesn’t require the
computation of the basis in which the signal is sparse. In addi-
tion, it is “universal”, which means that it is completely blind to
the source distribution. The exploitation of key characteristics
of specific 3D models (e.g., structure of the GFT coefficients)
is performed at the decoder side. A detailed description of the
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Fig. 2. Graph partitioning using MeTiS. Submeshes are colored with randomly selected colors. Triangles with vertices that belong to different submeshes are
colored white. (a) Stanford tyrannosaurus model, 20 002 vertices, 60 000 edges, 30 submeshes. (b) Stanford armadillo model, 20 002 vertices, 60 000 edges, 30
submeshes. (c) A chair 15 340 vertices, 45 990 edges, 30 submeshes.

compression/reconstruction approaches is presented in the sec-
tion that follows.

A. Partitioning and Processing of Submeshes at the Encoder

At the encoder side, the original 3D mesh is divided into
L submeshes by using the MeTiS method described in [30].
MeTis algorithm provides a viable option for solving graph
partitioning problems of large-scale graphs (e.g. graphs con-
taining over 100,000 vertices), offering a linear time optimized
implementation. MeTiS efficiently addresses the general parti-
tioning objective by computing an L-way partitioning such that
the number of edges that straddle different partitions (i.e., the
edge-cut), is minimized. Each submesh l consist of nl nodes,
where

∑L
l=1 nl = n. The geometry of the nl nodes included

in the l-th submesh is represented as a matrix of size nl × 3,
vl = [xl ,yl , zl ], where xl ,yl , zl ∈ �nl ×1 . Fig. 2 illustrates par-
titions generated by MeTiS for the Stanford Armadillo, Stanford
Tyrannosaurus and a Chair model scanned with a Kinect sensor.1

Submeshes are colored with randomly selected colors, while the
triangles with vertices that belong to different submeshes are
colored white.

The trade-off included in not processing the geometry of the
3D object as a single mesh, is the degradation in the reconstruc-
tion quality along the submesh endpoints, so called as boundary
nodes. This degradation is attributed to the fact that we ignore
the neighbors of the boundary nodes that are not included in the
submesh that we process. To overcome this problem, we suggest
to process the geometry of overlapped submeshes, by extend-
ing each submesh with the neighbors of the boundary nodes of
adjacent submeshes. To be more specific, if Il = {i1 , . . . , inl

}
denotes the set of indices of the 3D mesh nodes belonging in
submesh l

v(Il ,:) =
[
vT

I1
, . . . ,vT

In l

]T

, vi = [xi ,yi , zi ] (5)

1The Chair Model was retrieved from the kscan3d gallery. [Online]. Available:
http://www.kscan3d.com/gallery/

and Ilb = {il1 , . . . , ilb } ⊂ Il is the set of indices of the boundary
nodes of submesh l, then we suggest extending matrix vl with
the Cartesian coordinates of the neighbors of the boundary nodes
that belong to the set Inb = ∪b

j=1N(ilj ) \ Il

vle =
[
vT

(Il ,:) ,v
T
(Inb ,:)

]T

(6)

where |Il ∪ Inb | = nle > nl vertices.
For each submesh, the source generates M × 3 random linear

combinations2 (see Fig. 1) by using a random matrix A of
dimension M × nle , that consist of ±1 values selected with
probability 0.5 (i.e, Rademacher distribution)3 (Random Linear
Coding - RLC) as follows:

y = Avle . (7)

The geometry of each submesh is therefore encoded using
an M × nle (with M ≤ nle ) random linear matrix A that is
constructed both at the encoder and decoder using a pseudo-
random number generator (PRNG) that generates a sequence of
numbers that approximate the properties of random numbers.
The generated sequence is completely determined by a random
seed, represented by a single real number that is the only infor-
mation that has to be transmitted to the receiver side. To reduce
even more the communication requirements, the same seed is
used for encoding all the submeshes composing the original
mesh. Therefore, even if we take into account the overhead for
transmitting this seed, the calculated compression ratio at the
decoder is not affected at all, since the same seed is used for en-
coding a total of n =

∑L
l=1 nl > 105 vertices, each represented

by three 32-bit numbers corresponding to the x, y, z Euclidean
coordinates.

The final encoding stage further removes any remaining re-
dundancy between consecutive vertex coordinates within a sub-
mesh through a redundancy removal module, which processes
the difference between the encoded coordinates. The output of

2The value of M determines the achieved compression ratio as it is shown in
Section IV.

3Note that each column of vl e is treated individually.
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this module, is subsequently uniformly quantized yielding the
nle -dimensional vector zq . The latter is encoded using lossless
Huffman coding to produce the encoded vector c.

At the decoder side, after the restoration of the random linear
combinations by decoding the differences between coordinates,
the vector with the RLC yq may be written as

yq = Q (Avle ) = Avle + wq (8)

= Aul
sle + wq (9)

where Aul
= AUle , Ule are the eigenvectors of the Lapla-

cian operator Lle of the extended submesh l, sle = [sxl e
, syl e

,
szl e

] ∈ �nl e ×3 are the projected Cartesian coordinates in the
corresponding graph Fourier basis and wq = [wqx

,wqy
,wqz

]
represents the quantization error. Before proceeding to the re-
construction of points vle from yq , we construct the Laplacian
matrix Lle directly from the decoded connectivity and we evalu-
ate matrix Ule for each submesh, by performing a singular value
decomposition. Then, the decoder generates the binary matrix
A used for encoding the vertices of each submesh, by using the
predefined random seed. Both the generated encoding matrix A,
the matrix with the Laplacian eigenvectors Ule and the vectors
with the RLC yq are used to decode the original geometry infor-
mation of each submesh l, by applying the algorithm presented
in the section that follows.

B. Reconstruction via Model-Based Bayesian Learning

Motivated by the fact that: i) the behavior of the GFT is very
similar to the DCT since it redistributes the energy contained in
the data, so that most of energy is contained in a small number of
components [19] and ii) the DCT coefficient values of natural
images and audio signal are usually modeled as multivariate
Gaussian distributions [31], we assume that the projection of
the Cartesian coordinates of each extended submesh l in the
GFT domain (e.g., sle = UT

le
vle ) can be well approximated by

a sparse vector with k non-zero components and nle − k zeros

sil e
=

[
sil k

,0nl e −k

]T

, sil k
=

[
sil 1

, . . . , sil k

]
, k < nle

(10)
where i corresponds to the x, y, or z coordinates and sil k

de-
notes the non-zero block of size k that can be modeled as a
parametrized multivariate Gaussian distribution

p
(
sil k

)
∼ N (0,Ci0 ) , Ci0 = γiΣi , i = {x, y, z} (11)

where γi is a scalar parameter and Σi ∈ �k×k is a positive
definite matrix.

By using the Bayes rule and assuming that the noise vector
wqi

in (9) can be considered as an M × 1 vector with Gaussian
i.i.d. random variables wqi

∼ N (0, σwi
IM ) we obtain the fol-

lowing proposition for evaluating the posterior probability given
the encoding coefficients:

Proposition 1: The posterior density of sil k
, is also Gaussian

p(sil k
|yqi

;σwi
, γiΣi) ∼ N (μsi l

,Ci) with the following mean

and covariance matrix:

μsi l
= Ci0 A

T
ul k

(
Aul k

Ci0 A
T
ul k

+ σwi
IM

)−1
yqi

(12)

Ci = Ci0 − Ci0 A
T
ul k

(
Aul k

Ci0 A
T
ul k

+ σwi
IM

)−1
Aul k

Ci0

(13)

where Aul k
= Aul ( : , 1 :k ) is an M × k matrix that consists of the

first k columns of Aul
.

Proof: The proof is given at the Appendix A. �
Thus, given the parameters σwi

, γi ,Σi , i = {x, y, z} the max-
imum a posteriori (MAP) estimate of the Cartesian coordinates
of the extended submesh l is given by

v̂le = Ule

[
μsx l

μsy l
μsz l

0nl e −k 0nl e −k 0nl e −k

]
. (14)

To find the parameters σwi
, γi ,Σi , we employ the

expectation-maximization (EM) algorithm to maximize p(yqi
;

σwi
, γi ,Σi) per coordinate, meaning that i can be x, y or z.

This is equivalent to minimizing − log(p(yqi
; θ)), yielding the

following marginal likelihood of the observed data:

L (θ;yqi
) = (yqi

)T Σ−1
yi

yqi
+ log |Σyi

| (15)

where Σyi
= σw IM + Aul k

Ci0 A
T
ul k

. The following propo-
sition provides an iterative scheme for estimating the model
parameters σwi

, γi ,Σi that maximize the aforementioned
likelihood

Proposition 2: The application of the EM algorithm per co-
ordinate i = {x, y, z} leads to the following learning rules for
the model parameters σwi

, γi ,Σi :

σwi
=

∥∥∥yqi
− Aul k

sil k

∥∥∥2

2
+ σwi

[
k − Tr

(
CiC−1

i0

)]
M

(16)

γi =
Tr

(
Σ−1

i

(
Ci + μsi l

(
μsi l

)T
))

k
(17)

Σi =
Ci + μsi l

(
μsi l

)T

γi
. (18)

Proof: The proof is given in Appendix B. �
The performance of the proposed algorithm can be further

improved by constraining the matrix Σi to have a Toeplitz
symmetric structure with elements (Σi)(m,l) = r

|m−l|
i , ∀m, l ∈

[1, . . . , k]. This form is equivalent to modeling the elements in
the non-zero block as a first order auto-regressive process. The
value of ri can be estimated by

ri = sign (m1/m0) min {|m1/m0 | , 0.99} (19)

where m0 is the average of the elements along the main diagonal
and m1 is the average of elements along the main sub-diagonal
of Σi , 0.99 is a bound selected by the user. The proposed geom-
etry reconstruction algorithm is summarized in Table I.
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TABLE I
MESH RECONSTRUCTION VIA MODEL BAYESIAN LEARNING (MBL)

MBL Recovery:

Inputs: Encoding Matrices and GFT vectors : A , U l e

Encoded Samples: yq , Non zero Block length k ,
Output: Estimated Cartesian Coordinates x, y , z ∈ �n l e

×1

For each Submesh l = 1, . . . , L ,
For each iteration m = 1, . . . , K

a. Evaluate non zero values μs x l
, μs y l

, μs z l
from (12)

b. Evaluate the corresponding variances Cx , Cy ,C z via (13)
c. Update σw i

, γi , Σ i for every coordinate i=x,y,z from (16)-(18)
d. Update the value of ri from (19) and re-evaluate

Σ i = T oeplitz{[1 r . . . rk −1 ]}.
end For
Evaluate Cartesian Coordinates v̂ l e of the l submesh from (14)
and drop the points that belong to the set ∪b

j = 1 N (il j
) \ Il

where il j
denotes the indices of the boundary nodes in submesh l.

end For

C. Exploiting the Local Smoothness

The compression efficiency of the aforementioned ap-
proaches can be improved by allowing reconstruction of the
k principal GFT coefficients from a smaller number of linear
combinations M . However, as M decreases, the likelihood func-
tion in (15) has singularities, which are attributed to the rank
reduction of the Gram of the encoding matrix Aul k

. This effect
can be avoided by adding one more constraint at the vertices of
each submesh to distribute them fairly in each submesh. This
can be achieved by moving its vertex to its center of gravity [18].
This constraint can be expressed by the following equation for
vertex i:

vi −
1

|N (i)|
∑

j :(i,j )∈(E )

vj = 0. (20)

Provided that the connectivity information is assumed to be
known at the receiver, the aforementioned constraint can be sat-
isfied by solving the following linear systems for each submesh l

Lle Ule sil e
= 0nl e ×1 , i = x, y, z. (21)

Therefore, we suggest executing the algorithm of Table I by
using the following extended versions of the encoded vector and
its corresponding encoding matrix:

y′
qi

=

(
yqi

0nl e ×1

)
, A′

ul k
=

(
Aul k

Lul k

)
(22)

where Lul k
is an nle × k matrix that is formed by the first k

columns of matrix Lle Ule . This extension allows an accurate
reconstruction from a reduced number of random linear com-
bination, since it improves the condition number of the matrix
Aul k

Ci0 A
T
ul k

that determines the MAP estimation accuracy.
The benefits of adding this constraint are evaluated in the sec-
tion that follows, while the following proposition provide a
theoretical proof that matrix A′

ul k
will satisfy the requirements

for ensuring an accurate reconstruction at the decoder.
Proposition 3: The column-normalized matrix Ã = 1√

M

A′
ul k

∈ �(M +nl e )×k satisfies the restricted isometry property

TABLE II
CONSIDERED ALGORITHMS/ACRONYMS

Algorithms Acronyms Encoded Samples (M)

Spectral Compression [19], [28] GFT Number of Spectral Components
Least Square Meshes [18] LSM Number of Anchor Points
GFT based Compressed Sensing
based on [27]∗

CS GFT Number of Random Linear
Combinations

Model based Bayesian Learning MBL Number of Random Linear
Combinations

∗ A modified version of [27] have been implemented, that in contrast to [27] pro-
cess the submeshes in parts and that exploits the local smoothness as described in
Section III-C.

(RIP) with a constant ρs = ρk + λ2
max/M ∈ (0, 1), where ρk

is the constant of the RIP for the matrix Aul k
and λmax is the

maximum eigenvalue of the Laplacian matrix Lul k
.

Proof: The proof is provided in Appendix C. �

IV. SIMULATION RESULTS

The focus of this study is: 1) to evaluate the benefits of
processing overlapped submeshes as compared to the non-
overlapping case 2) to identify the benefits of the proposed com-
pression/reconstruction schemes as compared to the traditional
compression approaches. The proposed schemes are studied by
using a large variety of different 3D objects such as the Stanford
models and models reconstructed from range scans.

A. Experimental Setup and Metrics

We assume that each object is divided into L submeshes,
where L is a parameter selected by the user. Then, each sub-
mesh is compressed either by using the conventional or the
CS schemes. As conventional schemes we consider: 1) the ap-
proaches that provide compact representation of 3D meshes in
the GFT basis (e.g., [19]), presented in Section II, 2) the ap-
proach of Sorkine and Cohen-Or [18] known as least square
meshes (LSM), that make use of specific points in the mesh so
called as anchor points. The CS schemes include: 1) the method
that was proposed in [27] that reconstructs each submesh from
RLCs, by exploiting the sample sparsity of each submesh in the
GFT domain (CS GFT) 2) the proposed method presented in
Table I. At this point it should be mentioned that the number
of the selected anchor points in the LSM case, was equal to the
number of selected random linear combinations in the CS ap-
proaches. To allow a more accurate reconstruction the anchors
were selected randomly from the set of the boundary nodes of
each submesh.

The aforementioned methods are evaluated in terms of both
compression efficiency and reconstruction accuracy. The com-
pression efficiency of the proposed schemes is evaluated by
using the Compression Ratio (CR)

CR = 1 −
∑L

l=1 Ml × q

n × 32
(23)

where Ml are the low frequency components (GFT Case), the
generated encoded samples for submesh l (CS GFT and MBL
cases), or the number of anchor points (LSM case) and q is the
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Fig. 3. Visualization of the visual error in the reconstructed 3D objects. The compression efficiency is equal to 2.3bpv.

number of bits used for the representation of the encoded sam-
ples. The quantization is performed by applying the Lloyd max
algorithm [32]. The reconstruction effectiveness is evaluated by
the normalized mean square visual error (NMSVE) defined in
[19], as the average error in the Cartesian and Laplacian domains

NMSV E =
1
2n

n∑
i=1

(‖vi − ṽi‖2 + ‖GL (vi) − GL (ṽi)‖2)

(24)

where dij denotes the Euclidean distance between i and j and
GL(vi) = vi −

∑
j∈N (i) d−1

ij vj /
∑

j∈N (i) d−1
ij .

B. Performance Evaluation

Evaluation of MBL versus state-of-the-art approaches pre-
sented in Table II: In Fig. 3 we visualize the visual er-
ror on dense (>2 × 104 vertices) and very dense meshes
(>3 × 105 vertices) that have been reconstructed using the
approaches presented in the original versions as well as the
Open3DGC method of [17]. By inspecting this figure, it is ob-
vious that the MBL method can achieve CRs that correspond
to even 2.3 bit per vertex (bpv) with extremely low encoding
complexity (by performing only additions) and without affect-
ing significantly the visual error of the reconstructed model. By
inspecting also the error scale, it can be easily concluded that
the benefits become more apparent in very dense meshes since
the maximum error values, as compared to those using dense
meshes, is lower by one order of magnitude. Finally, the OD3GC
method that performs direct quantization to the 3-space coor-
dinates, introduces high-frequency errors into the model that
modify significantly the appearance of the surface, resulting in
a model with a blocky structure, where the reconstruction er-
rors are highly noticeable. Therefore, in the rest part of this
sections, we focus only on comparing our results with relevant
approaches (e.g., the approaches of Table II) that introduce low
frequency errors to the model, enabling aggressive compres-
sion ratios without introducing significant loss on the visual
quality.

Segmentation effects: To evaluate the benefits of processing
overlapping submeshes, as compared to the non-overlapping
case presented in [19], we executed the GFT method for the
same number of low frequency components per submesh. In

Fig. 4. Reconstruction of the mesh geometry using (a) nonoverlapped
(NMSVE: −27 dB) and (b) overlapped submeshes (NMVSE: −34 dB). The
achieved CR in both cases is 0.92.

Fig. 4 we provide the reconstructed Tyrannosaurus models,
where it is clearly shown that the overlapping method described
in Section II results in a more accurate reconstruction. This
is due to the fact that the boundary points (vertices of red
triangles) are recovered almost perfectly.

Evaluation of reconstructed visual quality for different CRs:
In Fig. 5(a), the obtained NMSVE for a chair model scanned by
using a Kinect sensor, is plotted against the achieved CR after
transmitting the M = [65, 130, 195, 250, 280] lower frequency
components per submesh, in the GFT case, M random linear
combinations in the CS cases, or M anchor points in the LSM
case. The number of bits for representing transmitted samples
were selected equal to q = 12. By inspecting the figure, it is
clear that the application of the proposed MBL algorithm at
the decoder reduces the number of the transmitted samples M
required for the efficient reconstruction of the 3D mesh, with
respect to the CS GFT and LSM approaches, while achieving
performance almost similar to the conventional one (GFT). The
main difference between the two approaches (GFT and MBL) is
that the GFT allows the reconstruction of the largest k spectral
components which in some cases are not the initial k (low fre-
quency components). In the MBL approach on the other hand,
we reconstruct accurately the k-lower components and the rest
are set to zero. Therefore, in cases we process very dense meshes
in parts that correspond to quite smooth surfaces the k- largest
spectral components coincide with the k - lower spectral com-
ponents, and thus the performance of GFT and MBL almost
coincide. This is also shown in Fig. 6, where we have parti-
tioned the Dragon Model (437.645 vertices) into 1000 parts, is
obvious that the performance of MBL is almost similar with that
of GFT.
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Fig. 5. (a) VNMSE versus CR using the chair model. (b) VNMSE versus CR for different number of iterations. (c) VNMSE versus CR with and without
exploiting local smoothness. (d)VNMSE versus CR for different number of submeshes (L).

Fig. 6. VNMSE versus CR using the Dragon model (437645 vertices) parti-
tioned in 1000 parts.

At this point, it should be noted that the application of RLC
at the CS encoder requires only additions, instead of computing
the projection of the coordinates to the Laplacian eigenvectors
and selecting the M largest spectral coefficients. In other
words, the CS approach requires only nle M − M additions
and 0 multiplications for compressing the 3D object, while the
GFT requires O(n3

le
) multiplications and O(n3

le
) additions.

More importantly, the proposed method inherently involves a
randomization process offering privacy preservation without
any additional cost [26].

Required iterations for the MBL approach: Fig. 5(b), shows
the NMSVE against the number of executed iterations for the
Tyrannosaurus Model, where it is clearly shown that the MBL
algorithm converges after two iterations.

Benefits of exploiting local smoothness: To evaluate the ef-
fects of exploiting the local smoothness of the different sub-
meshes, we executed the MBL algorithm of Table I either by
using the encoding vector yq and the corresponding encoding



LALOS et al.: CS FOR EFFICIENT ENCODING OF DENSE 3D MESHES 49

Fig. 7. Benefits of adopting a redundancy removal unit and an entropy encoding unit on the top of our scheme: (a) dense mesh (Bunny Model, 34.817 vertices),
and (b) very dense mesh (Dragon Model 437.645 vertices.)

matrix Aul
per submesh l or by employing their extended ver-

sions defined in (22) for different compression ratios (MBL).
The evaluated VNMSE’s are presented in Fig. 5(c), where it
is clearly shown that by distributing the vertices fairly in each
submesh we are able to increase significantly the reconstruction
accuracy, especially for very high CR values (e.g, CR > 0.94).

Fig. 5(d) shows the obtained VNMSE for the Armadillo
model against the CR, after partitioning the 3D mesh to a differ-
ent number of submeshes (e.g., L = 30, 50, 70, 90). It is clearly
shown that as the number of submeshes increases the VNMSE
also slightly increases. This small performance degradation is
attributed to the fact that the errors on the boundary nodes are
slightly larger as compared to the errors in the internal nodes
of each submesh. However, it should be noted that processing
small parts reduces significantly the computational complexity
of the reconstruction schemes, that is of the order of O(Ln3

le
),

where L corresponds to the number of submeshes and nle to the
size of the extended submeshes. Therefore, the adopted mesh
segmentation method provide a low-cost flexible way to trade
off efficiency for performance.

Benefits of using a redundancy removal and an entropy en-
coding unit: To evaluate the benefits of the redundancy removal
and the entropy encoding unit, we provide results with and with-
out the use of the aforementioned blocks. In Fig. 7(a)–7(d) we
provide the NMSVE at the output of the quantizer and at the
output of the entropy encoder. Note that the proposed schemes
with two additional encoding units at the transmitter achieved
to improve the compression efficiency by almost 25% without
affecting at all the reconstruction quality. The results that we get
are similar in both cases, i.e., dense and very dense meshes.

Quantization effects: To study the quantization noise effects
on the performance of the presented algorithms, we conducted
experiments, assuming different quantization rates. In Fig. 8, we
present the obtained NMSVE for the person model (partitioned
in 30 submeshes), against the transmitted M lower frequency
components per submesh, in the GFT case, M random linear

Fig. 8. Quantization noise effects: NMSVE for the person model (partitioned
in 30 submeshes), against the transmitted M samples using q = 8, 12, and 16
bits/sample, using a person 3D model reconstructed from range scans.

combinations in the CS cases, or M anchor points in the LSM
case, assuming that the quantization bits are equal to q = 8, 12
and 16 bits respectively. These figures clearly show that the
GFT and the MBL algorithms are more robust to the quanti-
zation noise as compared to the LSM and CS GFT algorithm.
The LSM algorithm approximates each submesh with smoothed
surfaces that minimize the least square error between the noisy
anchor points and the original points. As a result, the increased
noise strongly affects the error on the boundary points result-
ing in very low reconstruction quality. In the MBL case, we
reduce the degrees of freedom of the sparse/compressible repre-
sentation of the partitioned surfaces in the corresponding GFT
domain, by permitting only certain configurations of the large
and zero/small spectral coefficients, providing two immediate
benefits as compared to CS GFT. First, we reduce significantly
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Fig. 9. Execution times (sec) of MBL, CSGFT, and GFT techniques for (a) the Bunny model (v34.817) and (b) the Hand model (v327.323). Blue is the MeTiS
partitioning time for 272 and 2557 partitions, respectively. Orange is the compression execution time, which is extremely small in MBL and CSGFT techniques
compared to the decompression time, shown with gray color.

TABLE III
PROPERTIES OF THE CONSIDERED ALGORITHMS

Algorithms

Properties GFT LSM CS GFT MBL

Low Encoding Complexity ✗
√ √ √

Compression Universality ✗
√ √ √

Privacy Preservation ✗ ✗
√ √

Compression Efficiency High Low Low High

TABLE IV
COMPLEXITY COMPARISON FOR MESH COMPRESSION TECHNIQUES (IN FLOPS)

Method Encoder Decoder

MBL (Proposed
algorithm)

nl e M − M 6k 3 + k 2 (4M + 3) + k(2M 2 +
3M + 2nl e − 1) + M 3 + 2M 2 +

2M − nl e − 1 + O(n3
l e

)

Least-square Meshes
(LSM) [18]

-
7 n 3

l e
3 + 5n2

l e
− 1 3 n l e

3 + 1

CS GFT [27] 2nl e M − M O(n3
l e

)
GFT [19] & [28] O(n3

l e
) O(n3

l e
)

the number of measurements M required to stably recover a
submesh and second, we better differentiate true spectral infor-
mation from recovery artifacts, which leads to a more robust
recovery. The key ingredient is that we provide a more realistic
signal model that goes beyond simple sparsity by codifying the
inter-dependency structure among the spectral coefficients.

C. Computational Complexity Analysis

To better demonstrate the encoding efficiency of our method,
as compared to the spectral compression approach, we initially
study the theoretical complexities of the proposed schemes and
then focus on providing timing measurements. In Table IV
we provide the computational complexities of the presented
schemes in terms of floating-point operations (FLOPs). We con-
sider the encoder and the decoder complexities separately, while
in the cases of [19], [28] and the decoder of [27] we provide the
computational complexity order, since no specific algorithm is
provided in these works.

In order to be fair with our comparisons, we have created a
modified version of [27], since the original technique cannot
be practically employed for dense meshes. In [19] and [28],
the computation of the eigenvectors of the Laplacian matrix is
required at the encoder as well as at the decoder, which re-
quires O(n3

le
) complexity order, at both sides. Note that the

computation of the eigenvectors can be avoided at the decoder,
at the expense of communication overhead (i.e. the encoder
must transmit at the decoder the already computed eigenvec-
tors), which is not a preferable solution in the case of mobile
applications.

Considering the proposed technique, the encoder does only
one matrix-vector multiplication (the pseudo-random matrix
with the unknown vector). Given that the pseudo-random ma-
trix is composed by ±1 values, the matrix-vector multiplication
requires only additions, i.e. nle M − M FLOPs. It is important
to mention that the enhanced performance of the proposed tech-
nique comes without any significant additional complexity cost
at the decoder. More importantly, the complexity of the encoder
has been kept linear over the number of unknowns nle , favor-
ing the employment of the proposed technique in applications
where the encoder is a mobile device with limited computational
power and energy constraints.

In addition to the complexity analysis we present a timing
analysis of the proposed MBL, CSGFT and the GFT approaches,
using two representative meshes: 1) the bunny model consisting
of 34.817 vertices (dense case) and 2) the hand model consist-
ing of 327.323 verticed (very dense case). The measurements
were conducted on an Intel Core i7-4770 (3.40 GHz) processor
with 8GB RAM. The aforementioned techniques were imple-
mented in C++ using the Math Kernel Library (MKL),4 a well
optimized library that speeds up all the operations used by those
techniques. Moreover, it should be noted that we executed a
parallel processing of the different submeshes, both at the en-
coder and decoder side using four threads. The histograms with
the execution times for partitioning, encoding and decoding,
the dense and the very dense meshes, are shown in Fig. 9. The
MBLs’ total execution time as compared to the GFT is about

4Intel, “Math Kernel Library (MKL),” 2016. [Online]. Available:
http://software.intel.com/en-us/intel-mkl/
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25% faster, while both techniques achieve similar VNMSE er-
rors. The encoding time of the MBL and CSGFT is three orders
of magnitude less than GFTs’ encoding time and thus it can be
hardly distinguished in the MBL and CSGFT bars. In addition,
the total execution time of the MBL is lower than CSGFT, while
at the same time MBL results in significantly lower VNMSE.

V. CONCLUSION

In this paper, we presented a novel Bayesian learning based
3D mesh geometry reconstruction algorithm that minimizes the
random linear coded samples that are required for transmis-
sion so that an accurate 3D reconstruction can be obtained at
the receiver, by exploiting key characteristics of the Euclidean
coordinates in the GFT domain. The advantages of the pro-
posed schemes as compared to the conventional approaches, is
that they achieve competitive CRs, while minimizing the com-
pression complexity using a universal and privacy preserving
approach. This property is considered critical for emerging 3D
model acquisition schemes on off-the-shelf mobile devices.

APPENDIX

A. Proof of Proposition 1

Proof: Assuming the linear model of (9) the probability den-
sity of the observations given Aul k

, sil k
can be factored due to

the noise independence assumption to give

p
(
yqi

| Aul k
, sil k

)
=

M∏
n=1

p
(
yqi n

| (Aul k
)(:,n) , sil k

)

=
exp

(
− 1

2σw i

∥∥∥yqi
− Aul k

sil k

∥∥∥2

2

)
(2πσwi

)m/2 ∼N
(
Aul k

sil k
, σwi

IM

)
.

(25)

The posterior distribution can be computed based on Bayes’
rule as

p
(
sil k

| yqi
,Aul k

)
=

p
(
yqi

| Aul k
, sil k

)
p

(
sil k

)
p

(
yqi

| Aul k

) (26)

where the normalizing constant, also known as the marginal
likelihood, is independent of the graph Fourier coefficients and
is given by p(yqi

|Aul k
) =

∫
p(yqi

|Aul k
, sil k

)p(sil k
)dsil k

.
By writing only the terms of the posterior in (26) that depends

on sil k
and “completing the square” we obtain

p
(
sil k

| yqi
,Aul k

)
∝ exp

×

⎛
⎜⎝−

(
sil k

− μsi l

)T (
σ−1

wi
AT

ul k
Aul k

+ C−1
i0

)(
sil k

− μsi l

)
2

⎞
⎟⎠

(27)

where

μsi l
= σ−1

wi

(
σ−1

wi
AT

ul k
Aul k

+ C−1
i0

)−1
Aul k

yqi
. (28)

Thus, we recognize the form of the posterior distribution
as Gaussian, i.e. p(sil k

|yqi
,Aul k

) ∼ N ( 1
σw i

CiAul k
yqi

,Ci),
where

Ci =
(
σ−1

wi
AT

ul k
Aul k

+ C−1
i0

)−1
(29)

= Ci0 − Ci0 A
T
ul k

(
σwi

IM + Aul k
Ci0 A

T
ul k

)−1
Aul k

Ci0 .

(30)

So given the parameters σwi
, Ci0 the MAP estimate is the

mean of the posterior distribution p(sil k
|yqi

,Aul k
) (28) may

be written as

ŝil k
=

(
σwi

C−1
i0

+ AT
ul k

Aul k

)−1
AT

ul k
yqi

= Ci0 A
T
ul k

(
σwi

IM + Aul k
Ci0 A

T
ul k

)−1
yqi

(31)

where the last equation follows the matrix identity (I +
AB)−1A ≡ A(I + BA)−1 . �

B. Proof of Proposition 2

Proof: The EM algorithm seeks to find the maximum likeli-
hood estimate of the marginal likelihood by iteratively applying
the following two steps (E & M step):

E: Calculate the expected value of the likelihood function

Q
(
θ | θ(t)

)
= Esi l k

|yq i
;θ ( t )

[
log p

(
yqi

, sil k
; θ(t)

)]
+Esi l k

|yq i
;θ ( t )

[
log p

(
sil k

; γi,Σi

)]
. (32)

M: Find the parameters θ = {σwi
, γi ,Σi} that maximize

θ(t+1) := arg max
θ

Q
(
θ | θ(t)

)
. (33)

To estimate σwi
we simplify the function in (32) by dropping

the terms that do not include σwi

Q
(
σwi

| θ(t)
)
∝ Esi l k

|yq i
;θ ( t )

[
log p

(
yqi

| sil k
;σwi

)]

= −M

2
log σwi

− 1
2σwi

∥∥∥yqi
− Aul k

μsi l

∥∥∥2

2

− 1
2σwi

Esi l k
|yq i

;θ ( t )

[∥∥∥Aul k

(
sil k

− μsi l

)∥∥∥2

2

]
(34)

with

Esi l k
|yq i

;θ ( t )

[∥∥∥Aul k

(
sil k

− μsi l

)∥∥∥2

2

]

= Tr
(
CiAT

ul k
Aul k

)
(35)

= σ(t)
wi

T r
(
Ci

(
C−1

i − C−1
i0

))
(36)

= σ(t)
wi

(
k − Tr

(
CiC−1

i0

))
(37)

where (36) can be directly derived by substituting (29) in (35).
The learning rule for σwi

is obtained by setting the derivative of
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Q(σwi
|θ(t)) to zero leading to

σ(t+1)
wi

=

∥∥∥yqi
− Aul k

μsi l

∥∥∥2

2
+ σ

(t)
wi

(
k − Tr

(
CiC−1

i0

))
M

.

To estimate γi and Σi we notice that the first term in (32) is
unrelated to the aforementioned parameters and thus it can be
simplified to

Q
(
γi,Σi | θ(t)

)
∝ Esi l k

|yq i
;θ ( t )

[
log p

(
sil k

; γi,Σi

)]
(38)

where it can be easily shown that log p(sil k
; γi,Σi) ∝

− k
2 log |γiΣi | −

sT
i l k

(γi Σ i )−1 si l k

2 . Therefore (38) may be writ-
ten as

Q
(
γi,Σi | θ(t)

)
∝ −k

2
log |γi | −

k

2
log |Σi |

−
Tr

(
(γiΣi)

−1
(
Ci + μsi l

μT
si l

))
2

(39)

where μsi l
, Ci are evaluated according to (12) and (13) re-

spectively. The derivative of (39) with respect to γi is given by
∂Q(γi ,Σ i |θ ( t ) )

∂γi
= − k

2γi
− 1

2γ 2
i
T r(Σ−1

i (Ci + μsi l
μT

si l
)), and the

learning rule for γi will be γi =
T r(Σ−1

i (C i +μs i l
μT

s i l
))

k .
While the gradient of (39) with respect to Σi will be

∂Q(γi ,Σ i |θ ( t ) )
∂Σ i

= − kΣ−1
i

2 +
Σ−1

i (C i +μs i l
μT

s i l
)Σ−1

i

2γi
. By setting the

derivative to zero we obtain the learning rule for Σi . �

C. Proof of Proposition 3

Proof: The definition of RIP states that, for a matrix Ã ∈
�M ×nl e (M < nle ) with �2-normalized columns and for an in-
teger scalar s ≤ M , given that there is a constant ρs ∈ (0, 1),
which represents the smallest quantity such that ∀x ∈ �s×1 ,
then the expression

(1 − ρs)‖x‖2 ≤ ‖Ã(:,1:s)x‖2 ≤ (1 + ρs)‖x‖2 (40)

holds true for any choice of s columns. Then Ã is said to have
an s-RIP property with a constant ρs . In the following we will
prove that there is such constant with ρs ∈ (0, 1). First, note that
for any vector x we have that

‖Ãx‖2 =
1√
M

‖A′
ul k

x‖2 =
1√
M

‖Aul k
x‖2 +

1√
M

‖Lul k
x‖2 .

(41)
Based on (40) and (41), the problem of finding the constant ρs

for the matrix Ã can be decomposed into finding the respective
constants for the matrices, Aul k

and Lul k
. Considering the ma-

trix 1√
M

Aul k
, we know that due to its construction satisfies the

k-RIP property with ρk ∈ (0, 1). The matrix Lul k
∈ �M ×k ma-

trix that is formed by the first k columns of matrix Lle Ule , and
thus we have that 0 ≤ ‖Lul k

x‖2 ≤ ‖Lle Ule x‖2 . The eigen-
value decomposition of the Laplacian matrix is expressed as
Lle = Ule Σle U

T
le

, where Σle is the diagonal matrix containing

the eigenvalues λi . Based on this, we have that

‖Lle Ule x‖2 = xT UT
le
LT

le
Lle Ule x = xT Σ2x = ‖Σx‖2 .

(42)
Hence, an upper bound can be obtained 0 ≤ δ‖Lle Ule x‖2 ≤
κ‖x‖2 , where κ = λ2

max/M . Now, based on the Gershgorin
circle theorem, the Laplacian matrix Lle = I − D−1C has λi ∈
[0, 2]. It follows that for M > 4 we have that λ2

i ≤ M < 4.
Hence, the matrix Ã has the s-RIP with a constant ρs = ρk +
λ2

max/M ∈ (0, 1). �
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