
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 8, AUGUST 2005 1065

Stereoscopic Video Generation Based on Efficient Layered Structure and Motion
Estimation From a Monoscopic Image Sequence

Konstantinos Moustakas, Dimitrios Tzovaras, and Michael G. Strintzis, Fellow, IEEE

Abstract—This paper presents a novel object-based method for
the generation of a stereoscopic image sequence from a monoscopic
video, using bidirectional two–dimensional motion estimation for
the recovery of rigid motion and structure and a Bayesian frame-
work to handle occlusions. The latter is based on extended Kalman
filters and an efficient method for reliably tracking object masks.
Experimental results show that the layered object scene represen-
tation, combined with the proposed algorithm for reliably tracking
object masks throughout the sequence, yields very accurate results.

Index Terms—Bayesian classification, object tracking, recursive
filtering, stereoscopic video generation, structure reconstruction.

I. INTRODUCTION

THE GENERATION of a stereoscopic image sequence
using only monoscopic video is a problem of consider-

able practical interest due to the large number of monoscopic
videos existing in many databases, which when converted to
stereoscopic can offer a more realistic sense of the scene to the
viewer. The bottleneck in this conversion is in the estimation of
the scene structure from the monoscopic sequence, a problem
admitting an infinite number of solutions since true lengths in
the scene are unknown. The resulting mathematically ill-posed
problem, commonly called structure from motion (SfM) in
the literature [1], has been under extensive research [2] and
analysis [3] for the last decades. Besides the intermediate view
generation using a stereoscopic or multiview sequence [4] and
the use of SfM for specific problems like the modeling of a
face from video data [5], only recently [6], have researchers
tried to explicitly extend the SfM problem to stereoscopic
video generation from a monoscopic image sequence. In the
industry, most software providing companies simply exploit
the “Pulfrich” [7] effect to generate a pseudo sense of depth, by
using the same video as a second sequence with the difference
of a small temporal delay. Others provide “two-dimensional
(2-D) to three-dimensional (3-D) conversion,” for still images,
as a manually performed service.

Different approaches have been exploited in the past to esti-
mate 2-D motion in monoscopic sequences, which may then be
used for 3-D motion estimation and scene structure recovery.
Very efficient approaches include those based on optical flow
estimation, mathematical transformations and feature-point
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tracking. Although all these methods yield good results each for
different types of sequences, the feature-point tracking based
method appears to yield generally more robust results, because
the motion between consecutive frames is, in the majority of
sequences in practice, small enough to allow efficient feature
tracking. Extended Kalman filters (EKF) have been success-
fully used [1], [8], [6] for the estimation of scene structure
parameters, utilizing the 2-D motion estimation data. Improving
on past results [9] Azarbayejani and Pentland proposed in [1] a
very robust method for SfM, which in addition to the standard
scene structure parameters was also able to estimate focal
length. The recovered depths of the feature points may be used
to create dense depth maps via an interpolation method using
e.g., 2-D triangulation. Finally, the stereoscopic video sequence
is produced, based on the generated depth information.

The present work extends the EKF method for application to
objects; in fact EKF yields satisfactory results if the variations
of the feature points’ motion and depths are relatively small,
which is a constraint that is usually met for objects. A novel
algorithm for object tracking is also introduced, which utilizes
the 2-D bidirectional motion estimation and an efficient predic-
tion-correction procedure to track the objects’ masks throughout
the sequence. Finally, to handle occlusions, a Bayesian frame-
work is presented, which registers occluded areas to the objects
composing the scene.

II. PROPOSED METHOD

Initially, rigid objects are identified in the scene using
the segmentation method described in [10], which utilizes a
k-means approach with connectivity constraints for defrag-
mentation. Reliable features are extracted for each object in
the first frame, using texture sharpness criteria as described
in [11], and tracked to the final one using an optimized
Kanade–Lucas–Tomasi (KLT) feature tracker. Reliable object
masks are extracted using the algorithm analyzed in the fol-
lowing Section II-A and motion and structure are subsequently
estimated using the layered EKF-based algorithm. Then the
probabilistic method to classify the occluded points to objects,
described in Section II-B, is applied. Finally, the stereoscopic
video is generated reassembling the processed frames. A
schematic description of the proposed algorithm is shown in
Fig. 1.

A. Reliable Object Tracking

This part of the proposed algorithm is focused upon reli-
able object tracking across the whole sequence and is based
on bidirectional motion estimation in order to better handle oc-
cluded and emerging areas. Initially, rigid objects

are identified in the first and the last frame of each
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Fig. 1. System flowchart.

group of frames (GOF) of the sequence. The KLT feature tracker
is then applied to each object and tracking feature (TF) points
are extracted and tracked throughout the image sequence, thus
producing the trajectory array , where and

are the number of the TFs and frames, respectively. The TFs
are used for the 2-D motion estimation procedure and are dis-
tributed on the visible 2-D surface of each object. It should be
noted that if the tracking procedure for a specific TF fails in a
specific frame, a new feature is selected, corresponding to the
highest texture sharpness over the surface of the object and is
tracked throughout the rest of the sequence. The TFs with trun-
cated trajectories are used in the object tracking process, but not
during structure estimation, which requires complete trajecto-
ries.

To generate an estimate of the motion of object con-
tour feature (CF) points are extracted, selected (usually on the
contour of each object) so as to most accurately describe the
shape of each object [12]. It should be noted that the TFs and
the CFs are by definition different feature point sets. However,
the set of CFs could contain TFs, especially those that lie on or
close to the object’s contour. The motion of each CF is com-
puted as a weighted average of the motion of the TFs nearest
to it (typical value for is 3). The contribution of each TF to the

motion of the CF diminishes as the distance between them in-
creases. Let and , represent
the tracking and contour features in frame , respectively. Then

(1)

where the weights are computed using

The final result of this procedure is the generation of the con-
tour features’, , trajectory array , which contains
the information of the positions of the CFs of object in each
frame and thus also information about its mask for each
frame . The above procedure is carried out in both time direc-
tions, thus resulting in extra object masks for each frame.
These are merged into a final mask, which is simply their math-
ematical union

(2)

This final mask is refined using the novel prediction-correction
algorithm described in the sequel.

A sequence consisting of frames is illustrated in Fig. 2.
The black dots represent the TFs, the small circles the CFs and
the “ ” marks the predictions of the CFs. Let be a vector
composed of all, unknown, real positions of all CF points in
frame . It should be noted that is known only in the first and
last frame of the GOF. Predictions of its value for the remaining
frames are found from . Then the vector of the
interframe displacement of the CFs between frames and
is calculated from

(3)

Thus

(4)

The prediction for the last frame can be assumed to be
linked to the known original contour feature vector as fol-
lows:

(5)

where a simple, additive error model is assumed

(6)

and is the matrix ( is the size of the CF
space) with elements



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 8, AUGUST 2005 1067

Fig. 2. Contour features’ prediction and correction.

and is a weight vector with dimension
.

Equation (5) is applicable only if there exists an accurate
mapping between the original contour features and the pre-
dicted features , i.e., vectors and have to be of the
same size and their corresponding elements should index to the
same CF. In order to achieve such a mapping, back-tracking of
the predicted CFs of the last frame is executed, using the TFs of
the backward motion estimation. When reaching the first frame,
the position of the original CFs is known since this is the frame
where they were defined. The inverse procedure is executed for
the masks defined in the last frame of the GOF.

In (6) it is assumed that the accumulative error of the CF
motion is a weighted summation of the measurements . This
assumption stipulates that the estimation error is proportional to
the projection of the TF space to the CF space. On combining
(4), (5), and (6)

(7)

The partial derivatives of with respect to are now com-
puted, so as to employ Newton–Raphson techniques for the iter-
ative minimization of the resulting error. Let and de-
note the weight and error vectors, respectively, at iteration step
. Then

(8)

where

(9)

The updated vectors are then given from the following
equation:

(10)

Equation (9) implies that each element
, of vector is independent of all ele-

ments of vector apart from . Thus, the above
Jacobian matrix can be simplified as follows:

(11)

Thus

(12)

Summarizing, the recursive reliable object tracking algorithm
is applied as follows.

• The vectors are computed using (3).
• The error is computed (5) and its partial derivatives with

respect to are calculated (8).
• The weight vectors are updated (12).
• This procedure is repeated iteratively until , where

is an error threshold.
As seen by the experimental results, this method produces

negligible error after a number of iteration steps if the motion
variance between consecutive frames is not very high and if the
additive error model between consecutive frames remains valid.
In practice, the interframe translation can be assumed to be small
and, assuming that the feature points TF are tracked correctly,
the above error is small and additive, so that the above con-
straints are met.

Obviously, not all of the TFs contain the same information
about the translation and deformation of the object’s contour.
Thus, the TFs which are the closest to at least one point of the
CF, are used for the retrieval of the CFs motion throughout the
GOF.

B. Noncausal Bayesian Classification of Occluded Points

When trying to generate a stereoscopic video from a mono-
scopic one, even if the scene structure is estimated correctly
and reliable object masks are extracted, problems still exist con-
cerning the handling of occluded areas [13]. Information about
occluded objects is not directly available and therefore as the
3-D scene is projected to a new virtual plane, the existence of
areas, which are not assigned an intensity value and are not clas-
sified to any object, is inevitable. Fig. 3(b) illustrates a scene
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Fig. 3. Occlusion analysis. (a) Left frame of a stereo pair. (b) Right frame of a stereo pair. (c) Categorization of pixels, which were occluded in the right frame.
Notice that 
 = 
 [
 . (d) Possible noncircular object occluded by the square (right frame). [
 ]:\ Set of points belonging to the circle. [
 ]: Set of visible
points of the circle in the original frame 4b. [
 ]: Set of occluded points of the circle in the original frame 4b. [
 ]: Set of occluded points of the circle, which
will become or became visible in future or past frames of the original sequence. [
 ]: Set of occluded points of the circle, which remain occluded for the entire
sequence, but are visible for at least one frame of the generated (left) sequence. [
 ]: Set of occluded points of the circle, which remain occluded for the entire
sequence and do not become visible in any frame of the generated sequence.

containing two objects, a square and a circle surface-shaped ob-
jects. Half of the circle surface is occluded by the square. In
Fig. 3(a) the left reconstructed image can be seen, assuming that
the original image [Fig. 3(b)] represents the right image. The
part of the circle, which was occluded in the right frame should
become in the reconstructed image visible, but there is still no
information about its texture. No information exists even about
the object to which the newly visible points belong. Also, there
is no a priori knowledge that the left object in Fig. 3(b) is a full
circle, partly occluded by the right object. The object could be a
half circle or even something very different as seen in Fig. 3(d).
A procedure is proposed in the sequel to estimate occluded areas
and assign intensities to them using a Bayesian framework.

In the following, all procedures are executed for every object
in the scene, , where is the number of

objects. To simplify the notation, the dependence on the index
will not be explicitly denoted in the sequel. Let denote

the support range of points belonging to object (e.g., the left
object). Let also and denote the support ranges of vis-
ible and occluded points in the specific frame. Obviously,

.
Assuming that the already existing frame of Fig. 3(b) is the

right part of a stereoscopic pair and that the square is closer to
the camera than the circle, in the left part, the square will be
displaced more than the circle, as illustrated in Fig. 3(a). As a
result, some of the points that become visible in the left image
[Fig. 3(a)], are not visible in the right image [Fig. 3(b)]. These
points cannot be classified to an object and it is difficult to assign
an intensity value to them.

In [14] a Bayesian approach has been developed to classify
the points of a stereo pair to three subsets, visible foreground,

visible background and areas visible only in one image of the
stereo pair. In the following we shall describe a Bayesian occlu-
sion handling framework applicable to monoscopic image se-
quences. We start with the division of the set of occluded points
of the left object in the right image into the following two
subsets as illustrated in Fig. 3(c).

1) : The set of occluded points of the left object,
which will become visible in the future or became visible
in the past frames of the original sequence.

2) : The set of occluded points of the left object,
which remain occluded for the entire sequence.

Now, for every point in frame

or

so that, if

(13)

if

(14)

where is the intensity of point , in frame , and
are the subsets of future and past frames, respectively, is the
total number of frames and the index of the current frame.
is a function, which utilizes the existing motion estimation data
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Fig. 4. (a)–(b) Two-frame sequence. (c) Generated image for the 1st frame
prior noncausal post processing. Combined with image (a) results in a stereo
pair for the first frame. (d) Generated image for the 1st frame after noncausal
post processing. Combined with image (a) results in the final stereo pair for the
first frame.

to retrieve the estimated motion of point between frames
and if belongs to object using a weighted summation of the
nearest to point , TF points. It computes the 2-D displacement
vector of point

(15)

The weights are computed using

where the points are the closest TF points to
, and the vectors , contain the displacement

of features between frames and .
Equations (13) and (14) show that if a point belongs to ob-

ject and becomes visible in a future or past frame, it can be
assigned an intensity value, using the motion estimation data
already available. For example, Fig. 4(a) and (b) illustrate a
two-frame sequence. The black dots are the motion estimation
features (TF) and the white dot is a point of the left object. The
white dot is not visible in the first frame [Fig. 4(a)] but becomes
visible in the second [Fig. 4(b)]. Moreover, Fig. 4(d) illustrates
the stereo pair of the first frame [Fig. 4(a)], where the white
dot becomes visible. At this moment there is no information
about the texture of the white dot, unless the second frame is
used, where it becomes visible. Therefore, the function “ ” es-
timates the motion of the “hidden” white dot using the motion
estimation already available (black dots, ). If the motion of
the white dot is known, (13) or (14) can be applied to retrieve
its texture.

Concerning the technique described above, the following
issue may arise: How do we know that the occluded point,
which becomes visible in the generated image belongs to object
k, so as to apply (13) and (14)? The algorithm described in
Section II-A provides the answer to this question. Assuming

rigid motion of the occluded parts of each object, if a point is
visible in a frame and belongs to an object, it will still belong to
the same object in the next frame even if it becomes occluded.
Moreover, the subsets of object masks in each frame are not
disjoint, hence, a point in the image plane can belong to more
than one object. The point closer to the camera is the last
displayed (Z-Buffering principle).

Every point , which becomes visible in the recon-
structed frame, must be assigned to an object. For this task a
novel Bayesian method is proposed, based on the selection of
the following hypotheses

belongs to object Extrapolate

where is the number of scene objects and
Extrapolate a bilinear extrapolation function. According to
the Bayes decision test, hypothesis will be selected if

(16)

where is the average cost of accepting hypothesis
and can be defined as follows:

(17)

where is the cost of accepting when is true,
is the mutual probability of and , and the number of
scene objects. It is very reasonable to assume that
(zero cost for proper classification) and ,
since erroneous classifications are equally noxious. Then, on as-
suming that , (17) is trivially seen to be minimized
if the hypothesis is selected when

(18)

When adopting the ML criterion, the a priori probability
is defined to be . It could be also defined

to be proportional to the size of the object. However, in this
case the assigning of occluded points to small objects would be
strongly discouraged. Therefore, all the information regarding
the hypothesis selection is inserted in the formula of the proba-
bility , which is modeled as follows:

(19)

where is the time derivative of the support
range of object’s visible pixels, the distance of point
from contour point of object is the set of con-
tour points closest to point of object is the total number of
contour points and represents a conditional mean value
operator. The right-hand side of (19) is normalized so as to rep-
resent a probability value. The time derivative part of (19) rep-
resents the dynamic alteration in the size of the visible parts
[Fig. 3(c)] of object in the area close to . If this size is
changing, object is likely to be involved in occlusion (Fig. 3),
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Fig. 5. (a) “3DSVS” snapshot. (b)–(c) Percentage of remaining undefined occlusion gaps or incorrectly assigned to an object in the “tower” and “pianist” sequence,
respectively. (d) PSNR for the “pianist’s head” along the sequence.

hence, the probability that the emerging points belong to this
object increases. If however the size remains constant the ob-
ject is probably in the foreground and it is less possible that the
emerging points belong to it. Thus, the probability is
modeled as proportional to it. The conditional mean value part
represents the mean value of the distance of point from the

contour points of object , which are closest to it. The
probability is modeled to be inversely proportional to
this mean distance.

The above test is performed times for different values of
and the decision is made on the basis of a strong majority rule.
Specifically, a point is classified to object if results at least

times. If this threshold is not reached then
the point is assigned to the background object. Typical values
are .

C. Stereo View Generation

As described in the previous Section, the EKF algorithm,
which makes use of the TFs’ trajectories only, is applied sep-
arately to each object for depth estimation. The EKF estimator
is seen to produce less accurate estimates in the first few frames

of the sequence. Considering also the fact that the initial depth
value is chosen arbitrarily for the first GOF and using interpola-
tion for the next GOFs, the low accuracy of the EKF in the first
frames could be a problem for the generation of the stereoscopic
video if the EKF estimator were applied only unidirectionally.
However, in the present framework, the EKF procedure is ex-
ecuted bidirectionally, thus resulting in accurate estimates for
the first as well as for the last frames. Next, depth values are
assigned to every pixel of the object using interpolation based
on Delaunay triangulation. This results in an interpolation pro-
cedure assigning depth values only for the object points that
lie inside the polygon defined by the feature points. The depth
values of the object points that lie outside of it are computed as a
weighted average of the depths of the TFs nearest to them (typ-
ical value for is 3). The contribution of each TF to the depth
of each point decreases as the distance between them increases.
Furthermore, it is worth noting that using the proposed layered
approach for 3-D structure estimation, the EKF produces more
robust results since the high 3-D shape frequencies appear at
the object boundaries. When each object is treated separately
the depth estimation becomes more accurate.
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Fig. 6. (a) First frame. (b) 20th frame. (c) Generated frame with the standard object-based method. (d) Generated frame with the proposed method. (e) Dense
depth map. (f) Occlusion masks for the four tower objects; light gray, dark gray, and black represent 
 ;
 , and 
 , respectively.

As in the case of the presented experiments the processed
GOF contains about 20–30 frames. Because of this restricted
size, objects appearing in the first frame are highly likely to ap-
pear in the last frame as well, and vice versa. However, in the
rare case of a very fast moving object, which is identified in
only one of the first or last frame the algorithm will reduce into
unidirectional object tracking, which will be forward or back-
ward depending on whether the object is identified in the first or
last frame of the GOF. It should be noted that the results of the
intermediate procedures of the proposed method can, if needed,
be manually refined, e.g., for scenes with extremely low texture,
where motion estimation may fail. The developed authoring tool
[Fig. 5(a)] is used for this purpose.

Using the produced dense depth map and assuming parallel
geometry, i.e., assuming that the second virtual camera is dis-
placed only along the horizontal axis, the 3-D points are pro-
jected in the second virtual image plane using the Z-Buffer algo-
rithm. The final step is to produce the stereoscopic video. After
implementing all above techniques the stereo-video is generated
by reassembling the processed scenes.

III. EXPERIMENTAL RESULTS

In order to test the proposed algorithm, several sequences
were processed. In the following the result of two experiments
are reported, which were conducted using the standard object-
based method [6] as well as with the extended method proposed
in Section II. All results can be seen in high resolution online
[15].

The synthetic “tower” and the real “pianist” sequences con-
sisting of 20 frames with size 512 512 and 720 576, re-
spectively, were used. The main objects are identified in the
first and last frame and after extracting and tracking the fea-
ture points, reliable object masks are produced for each frame.
The tracked features are also used in the EKF implementation,
thus producing dense depth maps. By increasing the stereo base-
line, depth differences become more enhanced. Subjectively,
the stereoscopic viewing error was seen to be negligible. When
present, this error is generated from gaps, or erroneous interpo-
lation at the occluded areas of the scene. However we note that
the human visual system does not recognize this error, if one of
the two images is perfect and the errors in the second image not
very high.

Fig. 5(b) and (c) present the percentage of image points not
registered to an object for each frame for the “tower” and “pi-
anist” scene, respectively. The difference in the efficiency of the
standard object-based algorithm [6] and the proposed extended
method is obvious. If there are several occluding objects in a
scene, this difference will become more pronounced.

For each of the two sequences, Figs. 6 and 7 illustrate the
first and last frame of the sequence, the reconstructed stereo
frame obtained by executing the standard object-based method
[6], as well as the one formed by executing the proposed ex-
tended algorithm described in detail in Section II, the accurate
dense depth map and the occlusion masks. Typical anaglyph im-
ages are available in full resolution at [15] in order to illustrate
the stereoscopic effect.
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Fig. 7. (a) First frame. (b) 20th frame. (c) Generated frame with the standard object-based method. (d) Generated frame with the proposed extended method. (e)
Dense depth map. (f) Occlusion masks for the four pianist scene objects; light gray, dark gray, and black represent 
 ;
 , and 
 , respectively.

Fig. 8. Two frames of the Ludo sequence.

The quality differential between the two reconstructed frames
is obvious for both experiments. In the “tower” experiment,
the smaller white tower is occluded by the larger one, which
is closer to the image plane and a part of it appears in the
latter frames of the sequence. These emerging areas produce
inaccurate object masks, if the sequence is processed with
the simple object-based method. By applying the proposed
extended method, the resulting mask is very accurate and the
produced image is much more realistic.

Figs. 7(a) and (b) show that there is a rotation in the pianist’s
head between the first and the last frame. Specifically, the ro-
tation becomes significant in the 10th frame and produces oc-
cluded and emerging areas in the right and left side of the pi-
anist’s head, respectively. The difference between the standard
object-based algorithm and the proposed extended method can
be seen in the peak signal-to-noise ratio (PSNR) chart of the pi-
anist’s head of Fig. 5(d). Notice that PSNR can be extracted
because the original left image sequence is available. While

the quality of the sequence falls after the tenth frame using the
standard algorithm, it stays in high levels using the proposed
method.

In order to obtain quantitative results about the depth es-
timation, the proposed algorithm was applied to the “Ludo”
sequence (Fig. 8), in which the distance of the person from
the camera is known and thus quantitative results about the ac-
curacy in the depth estimation can be extracted. For this se-
quence the PSNR of the 3-D structure estimation was found to
be dB and the mean square error in real world
dimensions was 1.39 cm or 1.3% of the average depth of the
scene, which was 153 cm.

IV. CONCLUSION

A robust method was presented for the generation of a stereo-
scopic image sequence using as input only a monoscopic video.
The scene is divided into objects and after inserting and tracking
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a number of features, an efficient algorithm for reliably tracking
object masks is applied for every object and every frame of
the sequence. Then the EKF based algorithm produces esti-
mates of scene structure and the second virtual image is synthe-
sized using a novel Bayesian framework to classify the occluded
points to the objects. Finally, the 3-D points are projected to a
new virtual image plane. With the proposed algorithm the prob-
lems posed by the appearance of occlusions and emerging areas
are dealt with by using a direct method for the calculation of
the intensity values of points which become visible in future or
past frames, combined with a probabilistic algorithm for points
which do not. Experimental results illustrate the robustness of
this approach.
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