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Gait Recognition Using Geometric
Features and Soft Biometrics

Konstantinos Moustakas, Member, IEEE, Dimitrios Tzovaras, Member, IEEE, and Georgios Stavropoulos

Abstract—This letter presents a novel framework for gait recog-
nition augmented with soft biometric information. Geometric gait
analysis is based on Radon transforms and on gait energy images.
User height and stride length information is extracted and utilized
in a probabilistic framework for the detection of soft biometric
features of substantial discrimination power. Experimental valida-
tion illustrates that the proposed approach for integrating soft bio-
metric features in gait recognition advances significantly the iden-
tification and authentication performance.

Index Terms—Authentication, gait recognition, height, identifi-
cation, soft biometrics, stride.

I. INTRODUCTION

HE area of biometrics for access control and security

has been extensively researched during the last four
decades. Biometrics measure the unique physical or behav-
ioral characteristics of individuals as a means to recognize
or authenticate their identity. Common physical biometrics
include fingerprints, hand or palm geometry, and retina, iris, or
facial characteristics. Behavioral characteristics include among
others signature, voice (which also has a physical component),
keystroke pattern, and gait.

During the latest years, there has been a growing interest in
the identification of the humans based on their way of walking
that is motivated by the unobtrusiveness of the trait and the
promising reported recognition rates. The results of this research
field can be directly applied for surveillance, identity verifica-
tion, and in medical applications as well.

Recently the term soft biometrics has been introduced in the
literature to describe the biometric traits that are easily extracted
but lack the distinctiveness and discriminating power of typical
biometrics. It has been also reported that soft biometrics could
increase the recognition or verification rates of typical biometric
systems [1].

A. Previous Work

Most of the recent gait analysis methods can be divided into
two main categories; model-based and feature-based methods.

Manuscript received October 14, 2009; revised December 23, 2009. First
published January 22, 2010; current version published February 19, 2010. This
work was supported by the European Union (EU) funded ACTIBIO IST STREP
(FP7-215372). The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Nikolaos V. Boulgouris.

The authors are with the Informatics and Telematics Institute/Centre for
Research and Technology Hellas, Thermi-Thessaloniki 57001, Greece (e-mail:
moustak @iti.gr; tzovaras @iti.gr; stavrop @iti.gr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LSP.2010.2040927

Model-based approaches, study static and dynamic body pa-
rameters of the human locomotion [2], like stride length, stride
speed and cadence [3]. On the other hand, feature based tech-
niques do not rely on the assumption of any specific model of
the human body for gait analysis. They employ simple temporal
correlation, linear time normalization [4], full volumetric corre-
lation on partitioned silhouette frames [5], and dynamic time
warping [6]. In general, feature-based methods are seen to per-
form better even if they exhibit limitations, e.g. dependency on
the walking direction or image noise.

The use of soft biometrics for recognition has been only re-
cently studied [1], [7]. Due to their low discriminating power,
they are rarely used independently for recognition or verifica-
tion but are used to verify hypotheses or in general to reduce the
search space in typical biometric systems [8].

B. Contribution

The present paper proposes a novel scheme for the integra-
tion of two or even more soft biometric traits in a biometric
recognition system using a stochastic framework. In particular,
the “height” soft biometric trait along with the “stride length”
are utilized to augment the information obtained by a gait
recognition system and to ultimately advance its performance.
It should be emphasized that the proposed approach goes
beyond explicit weighted fusion of different traits [9] at the
score level, including also soft biometrics, as performed in
[1], [7] since it exhibits some disadvantages like the need of
the computation of a soft biometric score or weighting func-
tions for fusion at the score level based usually on posterior
probabilities. The proposed stochastic framework includes soft
biometrics directly in the estimation of the biometric score.

II. AUGMENTING GAIT RECOGNITION WITH SOFT BIOMETRICS

Fig. 1 illustrates the architecture of the proposed framework.
The initial gait sequence is processed so as to extract the geo-
metric gait features and the soft biometric features. Then using
the proposed probabilistic framework the geometric gait score
and the soft biometric measurements are combined so as to gen-
erate the final score.

Let f, be the biometric geometric feature of a gait sequence.
Let also 2 be the set of all identities x;, ¢ € {1,..., N}, where
N is the number of elements in 2. Now let fs .z be the soft
biometric feature that can be both scalar or vectorial. In our
case, fsof 1S instantiated by f;, and f that correspond to the
soft biometric features of height and stride length.

Without loss of generality we will provide the subsequent
analysis for the soft biometric feature for height f,. Let us also
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Fig. 1. Architecture of the proposed framework.

define the notion of minor cluster M; as a subset of the soft bio-
metric feature space I’ that exhibits notable variation in terms
of f;, and has the following characteristics.

The a priori probability of a soft biometric feature to belong
to a minor cluster is very low

p(fn € M;) =p; < 1. (D

There exists a subset S; of {2 such as

Ve € Si, p(fn € Mi|z) > a
Vo & Si, p(fn € Mi|z) ~p;i°

Moreover, M is the union of all minor clusters whose number
Ny should be significantly lower than the size || of

35, Q{ ®)

M=UM,Vi=1,... Ny
Ny < Q. 3)

Definition: A cluster M; of the feature space, associated to
a subset S; of the set of identities €2 is characterized as minor
cluster iff (1)—(3) hold.

The idea under the aforementioned analysis is that the soft
biometric information could be highly discriminative for spe-
cial cases of identities or groups of identities exhibiting soft bio-
metric features that vary from the average features of the popu-
lation [9].

An issue of high importance is to link the soft biometric in-
formation to the geometric gait feature f; when the soft bio-
metric feature is available. Let us define the recognition prob-
ability (or score) after measuring f, and link it with the soft
biometric height fj,

p(x|fg) =p (J7|fg7fh € Mih)p (fh € Mih)
+p (x| fy, fr & M) p (fu & M) (4

where M denotes the minor cluster related to the “height” soft
biometric. Moreover

p (fh € Mih|fg7$) p(x)
p (fh € Mih|fg)

p($|fgafh EMih) = (5)

Thus

p($|fg7fh € Mq,h) _ p (fh € quh|fg7x)p (fh quthfg)
p($|fg7fh ¢M1h)

o (fu g M} fyw)p (i € Mf|fg)(~6)
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Since f, and f, € M are independent events then

h T
_ p(fn € M}z) p(fylw)
B p(fg|$)
=p (fn € M]'|z) @)

Thus, (6) turns into

p ($|fgvfh € Mih) _ pg(l _ph) -k (8)

p(x|fg7fh¢Mth) (1_plrl)ph

where p! = p(fn, € M}'|,z) and p" = p(fr, € M]). By these

xr
means (4) transforms to

k

p(alfo fn € MY) = T

p(z|fy). ©
Now if z ¢ S; then k = 1. On contrary if z € S; then assuming
that the feature f;, € M; then the following relationship should
hold: p(z|f,, fn € MJ") > p(z|f,), which is valid only for
k > 1in (9) that is ultimately reduced to the condition p" > p"
that is valid following (1) and (2). The variable a can be tuned
according to the application and represents the strictness of the
definition of the minor cluster in the soft biometric feature space.

Using a similar analysis the above concept can be extended to
two or more auxiliary soft biometric modalities. For the present
case, it can be easily shown that

p(x|fg7fh € Mihvfs € M:)
B k !
_1_ph+kph1_ps+lps

p(zlfg) (10)

where f; is the stride soft biometric feature, p5 = p(fs €
M|, ), p° = p(fs € MF), M} are the stride soft biometric
minor clusters, and [ = p3 (1 — p®)/(1 — pi)p®.

III. IMPLEMENTATION DETAILS

The application of the framework of Section II in a gait
recognition scenario requires first of all the development of
a geometric gait recognition algorithm. Moreover, the height
and stride length soft biometric features should be extracted.
Finally, the probabilities p(f, € M), p(fs € M;) and
p(fn € M!M2), p(fs € M;|z) have to be modelled. In the
following subsections these implementation details are briefly
described.

A. Geometric Gait Recognition Synopsis

The geometric gait recognition feature vector f, is extracted
using two different algorithms so as to illustrate the invariance
of the proposed scheme on the geometric gait recognition algo-
rithm utilized. The first algorithm that is presented in [10] and
[11] is based on the radial integration transform (RIT) that is
applied on gait sequence silhouettes. The algorithm results in
a single geometric gait feature vector f, of proven efficiency
[10]. The second algorithm is based on gait energy images as
described in [12] and is based on matching spatiotemporal im-
ages of human gait.
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B. Height and Stride Length Estimation

A comprehensive analysis on the height and stride length es-
timation is out of the scope of this paper. However, in order to
make this paper self contained a brief outline of the algorithms
follow.

The height and the stride length soft biometric features are
estimated utilizing the calibrated stereoscopic sequences that
were obtained by capturing the HUMABIO [10] and ACTIBIO
databases. Since real world coordinates and absolute distances
can be extracted through calibrated stereoscopic sequences, the
problem of the estimation of the height and stride length fea-
tures is trivially reduced in the selection of the features that
correspond to the highest-lowest part of the subject, concerning
height, and to the largest distance between the legs within a gait
cycle.

C. Modelling Minor Clusters and A Priori Probabilities

A significant task for applying the framework of Section II
is to define the minor clusters and to model the probabilities
p(fn € M), p(fs € M) and p(fi € MP o), p(fs € M),

Assuming a uniform partition of the soft biometric feature
space F' into N clusters, then the minor clusters are defined
through (1), where the value of p; is experimentally set as p; =
0.1. The number of clusters L is set to L = 10 for both height
and stride length soft biometric feature spaces.

As soon as information of a population is available then the
probabilities p(f, € M), p(fs € M) can be directly es-
timated as long as the minor clusters are defined. Concerning
probabilities p(f, € M!|x), p(fs € Mf|z) their definition is
flexible and could also depend on the application, e.g. whether
the soft biometric feature space is discrete or continuous.

In the present case, both the soft biometric feature spaces
for gait and stride length, are continuous. p(f;, € M!|z) and
p(fs € M7 |z) are modelled using a Gaussian model

R
———c w2, if fn € M} (11)

0, if f, ¢ M

p(frn € M}'z) =

where 4 and 0! are the mean and the standard deviation of
the population of M}*. The same model is also applied for the
estimation of p(fs € M?|z).

IV. EXPERIMENTAL RESULTS

Since benchmarking databases like the USF gait challenge
do not include depth information, the proposed algorithms have
been tested in both the HUMABIO and ACTIBIO databases that
include gait sequences captured with stereoscopic cameras. The
HUMABIO database, extensively described in [10] was cap-
tured in an indoor environment and consists of 75 subjects in
the first and 51 in the second capture session. The collection
protocol had each person walk multiple times naturally along a
predefined path, so that the view is approximately fronto-par-
allel. The ACTIBIO database is a proprietary activity recogni-
tion dataset that also includes two sessions of gait sequences
from 28 subjects that were captured in two months difference.

The subjects were asked to walk several times following pat-
terns of increased complexity (e.g. fronto-parallel, progressive
deviation in the walking direction).

It should be also mentioned that even if benchmarking of gait
recognition algorithms can depend on the benchmarking data-
base, this in not the case for the proposed framework. Assuming
a correctly structured database that includes subjects with dif-
ferent soft biometric features close to the distribution observed
in the real world, e.g. with different heights, the proposed frame-
work is seen to augment and improve performance of any gait
recognition algorithm implemented and does not depend on the
database from a qualitative point of view. It is obvious that for
the case of a database where all subjects would have the same
height, the proposed algorithm would not offer any added value.

The proposed framework has been tested both in terms of
identification and authentication rates. It should be mentioned
that sequences from different recording sessions are used for
enrolment and identification/authentication that is generally
assumed as a challenge in gait recognition. The sessions have
a time gap of six and two months for the HUMABIO and
ACTIBIO databases, respectively.

A. Identification

Fig. 2(a) and 2(b) illustrate comparative results in the
ACTIBIO database, using as geometric gait feature extraction
the algorithms of [10] and [12] respectively. Fig. 2(c), illus-
trates comparative results in the HUMABIO database using for
gait feature extraction the method described in [10].

All aforementioned diagrams illustrate the efficiency of the
proposed approach using different algorithms for gait feature
extraction and different databases. Four curves are displayed in
each figure that correspond to the cumulative matching scores
(CMYS) using only the gait feature (gait), combined with height
(gait + height), stride length (gait + stride), both soft bio-
metrics (gait + height + stride). As expected, augmenting the
gait feature with additional soft biometric information signifi-
cantly increases the gait recognition efficiency. It should be also
emphasized that from a theoretical point of view the proposed
framework is expected to advance the recognition rate for incor-
rect identification cases for subjects that exhibit soft biometric
features of substantial discrimination power, i.e., for subjects
that lie within the minor clusters.

A direct quantitative comparison of the proposed scheme with
other existing algorithms for soft biometric fusion with clas-
sical biometric traits [7] should be performed only taking sev-
eral considerations into account. First of all, the proposed frame-
work provides direct means for exploiting soft-biometric infor-
mation in classical biometric systems. The only precondition
is the modelling of the conditional and a priori probabilities as
described in Section III-C, which is a relatively trivial task. The
approach in [7] provides a general score-level fusion framework
that however needs to explicitly estimate weighting parameters
that regulate the effect of the soft biometric traits in the final
score. The estimation of these weights is a non-trivial task as
also mentioned by the authors of [7]. Moreover, the proposed
approach from a general point of view does improve the a pos-
teriori probability of a candidate subject taking into account its
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Fig. 2. (a) Cumulative matching scores (CMS) for the ACTIBIO database using as baseline the algorithm in [12], (b) CMS for the ACTIBIO database using as
baseline the algorithm in [10], (c) CMS for the HUMABIO database using as baseline the algorithm in [10], (d) FAR-FRR diagrams for the ACTIBIO database
using as baseline the algorithm in [12], (¢) FAR-FRR diagrams for the ACTIBIO database using as baseline the algorithm in [10], (f) FAR-FRR diagrams for the
HUMABIO database using as baseline the algorithm in [10], (g) comparative results of the proposed approach with the approach of [7] in the ACTIBIO and in the

(h) HUMABIO database.

soft biometric feature, but does not diminish it if the soft-bio-
metric measurement is not valid, which illustrates also resis-
tance to soft biometric feature estimation noise.

However, even if the aforementioned algorithms are different
in essence, Fig. 2(g) and 2(h) provide comparative results of the
proposed framework and the approach in [7]. It should be men-
tioned that the weights needed in [7] are optimally selected by
exhaustively searching in the parameter space for the optimal
results. The improved efficiency of the proposed scheme is con-
sidered as a reflection of the resistance of the proposed approach
to soft-biometric features estimation noise and the fact that only
soft biometric features with high discrimination efficiency, i.e.
minor clusters, are considered.

B. Authentication

Concerning authentication the false acceptance (FAR) and
false rejection ratios (FRR) are extracted and illustrated in
Fig. 2(d) and 2(e) for the ACTIBIO database using for gait
feature extraction the algorithms of [10] and [12] respectively,
while Fig. 2(f) depicts the FAR-FRR curves in the HUMABIO
database. It should be mentioned that the proposed framework
manages to decrease the FAR and FRR in the equal error rate
EER point (4% to 15% decrement) in the ACTIBIO database
depending on the soft biometrics used. Moreover, the increment
in performance becomes more notable for difficult application
scenarios where the state-of-the-art gait recognition and au-
thentication scenarios cannot achieve very high recognition and
authentication rates.

V. CONCLUSIONS AND FUTURE WORK

An efficient framework for augmenting gait recognition algo-
rithms with the height and stride length soft biometrics has been
proposed. The advantage of this framework is that no fusion at
the score level is needed, while it can also be directly applied to

any gait recognition algorithm. Experimental validation illus-
trates the efficiency of the framework in different databases and
using different algorithms for gait feature extraction.
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