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Abstract: Border gateway protocol (BGP) is the main protocol used on the Internet today, for the exchange of routing
information between different networks. The lack of authentication mechanisms in BGP, render it vulnerable to prefix
hijacking attacks, which raise serious security concerns regarding both service availability and data privacy. To address
these issues, this study presents BGPGraph, a scheme for detecting and visualising Internet routing anomalies. In
particular, BGPGraph introduces a novel BGP anomaly metric that quantifies the degree of anomaly on the BGP
activity, and enables the analyst to obtain an overview of the BGP status. The analyst, is afterwards able to focus on
significant time windows for further analysis, by using a hierarchical graph visualisation scheme. Furthermore,
BGPGraph uses a novel method for the quantification of information visualisation that allows for the evaluation, and
optimal selection of parameters, in case of the corresponding visual analytics algorithms. As a result, by utilising the
proposed approach, four new BGP anomalies were able to be identified. Experimental demonstration in known BGP
events, illustrates the significant analytics potential of the proposed approach in terms of identifying prefix hijacks and
performing root cause analysis.
1 Introduction

Today’s rapidly expanding Internet provides data delivery and
communication service to millions of end users. At the same time,
the border gateway protocol (BGP) is responsible for exchanging
external routing information amongst the autonomous systems
(AS) that comprise the Internet.

Due to the lack of authentication mechanisms in BGP, an
unauthorised network can originate prefixes [A prefix defines a set
of consecutive IP addresses] owned by other networks [1]. This
procedure is called prefix hijacking, and raises serious security
issues concerning both service availability and data privacy. In
general, there are two types of prefix hijacks [2]: hijack of prefix
ownership and AS-path hijack. Because of these security issues,
the BGP protocol is vulnerable to either intentional or
unintentional attacks from ASes. One of the most common cases
of prefix hijack is router misconfiguration [1, 3], which causes the
announcement of multiple unauthorised prefixes, leading to large
service availability problems in other networks as well (e.g.
AS-9121 incident [4]).

Thus far, previous efforts for providing solutions on prefix
hijacking are presented from two aspects [5]: hijack prevention
and hijack detection. Hijack prevention solutions include
cryptographic based authentications [6, 7], where BGP routers sign
and verify the origin AS of each prefix. On the other hand, hijack
detection mechanisms [1, 8, 9] are provided when a prefix hijack
has already happened and needs to be detected.

This paper focuses on prefix hijack detection, with the use of
anomaly metrics and visualisation. Specifically, two types of
anomalies are addressed: isolated hijacks, and distributed
anomalies. Isolated hijacks concern a prefix ownership hijacking
between a specific pair or a small number of networks, in which
one network originates prefixes belonging to this small set of other
networks. Distributed anomalies concern cases of large routing
deviation, such as when a specific network originates prefixes that
belong to multiple other networks, or a network that withdraws a
lot of prefixes due to internal problems. These two categories of
anomalies will be referred to, for the rest of the paper as small
scale and large scale anomalies, respectively.
2 Related work

Quite a number of methods have been proposed in the literature for
BGP prefix hijack detection. Deshpande et al. [8] proposed the use
of multiple features that characterise the BGP activity. A generalised
likelihood test is applied on each feature separately, to detect time
windows that deviate more than a specified threshold, regarding to
the normal activity, and thus, are rendered as candidates for
including anomalies. The alerts created for each feature are
afterwards correlated in time. In addition, Zhang et al. [10]
proposed the use of wavelets applied on multiple feature vectors
extracted from BGP data. This approach is able to detect outliers for
each feature separately, which represent possible BGP anomalies.
Moreover, Al-Rousan et al. [9] proposed the generation of multiple
features extracted from the BGP messages, that characterise the
BGP activity at different time periods. Afterwards, the authors used
feature selection methods to select the most descriptive features,
which are fed to a naive Bayes classifier for the identification of
anomalous time periods. Each of the aforementioned approaches,
are able to detect time windows of instability, but further require
further processing to identify the ASes responsible for the detected
anomalies. To overcome this issue, Khare et al. [1] proposed a
method that identifies suspicious routing announcements, by taking
each AS past routing announcements into account. Based on the
assumption that the prefixes are usually announced by a stable set
of ASes during their lifetime, the authors proposed a metric that
captures the ASes that affect multiple other networks
simultaneously. The approach proposed in this paper, also addresses
the root cause analysis problem by utilising visualisation methods,
which enable the analyst to identify the ASes responsible for the
anomalies. In addition, unlike previous approaches which target the
identification of specific types of anomalies, this paper addresses the
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identification of both small scale and large scale anomalies in a
common framework.

There are many network visualisation systems available today [11],
but very few of them deal with BGP routing changes. BGPlay [12]
allows Internet Service Providers to monitor the reachability of a
specified prefix from the perspective of a given border router, while
incorporating animation to highlight its routing changes. Cortese
et al. [13] used the idea of topographic maps to enhance BGPlay
visualisations by positioning the ASes to different areas on the map
according to their ranking. Wong, et al. [14] proposed TAMP, a
system that uses statistical methods to aggregate BGP data, to
visualise and diagnose BGP anomalies. AS are displayed as nodes
while connectivity is illustrated by using links. More attributes such
as size and colour are used to encode auxiliary information. The
LinkRank visualisation approach [4], which is the closest work to
the one presented on this paper, provides a high level view of
Internet routing changes. Each node in the graph represents an AS,
while the size of the nodes illustrates the amount of IP ownership
change. All the aforementioned approaches do not take into account
the information content of the visualisations, and the information
loss, caused by the mapping of the input data to the visualisation.
This information loss can cause the analyst to misinterpret the
patterns in the data and conduct wrong conclusions. To address this
issue, this paper utilises a novel method for the selection of
the appropriate parameters in the visualisation so as to minimise the
information loss, and as a result maximise the information that is
presented to the analyst using the proposed visualisation scheme.
3 Motivation-contribution

Most of the previously referred approaches for prefix hijack
detection, focus on the identification of time windows that include
anomalies, but require further processing for root cause analysis,
that is, the identification of the ASes responsible for the detected
anomalies. Towards this end, the proposed BGPGraph approach
on this paper, utilises visualisation methods for root cause
analysis, in which the analyst is presented with a time series of
anomaly scores, and is able to focus on significant time periods
for further analysis. In addition, unlike previous approaches which
target the identification of specific types of anomalies, this paper
addresses the identification of both small scale and large scale
anomalies in a common framework.

Recently, it has been suggested [15, 16] that it might be possible to
employ concepts from the theories of data communication for the
purpose of evaluating and improving the effectiveness of
information visualisation techniques. Information theory can be
used to measure the information content of a specific visualisation
approach, and the information loss that is inevitably caused by the
components of the visualisation pipeline [15]. Such an approach
could enable quantitative comparisons of visualisation approaches,
with respect to their information content. Moreover, it could
provide sufficient means to improve the way information is
visualised and, thus, lead to automated visualisation optimisation
processes. Towards this direction, the present work presents the
use of entropy measures to capture the information loss, caused by
the visualisation of the input dataset. The proposed metrics are
afterwards utilised to recognise the definition of the parameters of
the visualisation, so as to maximise its information content. This
optimisation scheme is applied in a highly challenging analytics
problem, namely the Internet routing visualisation, where
approaches are challenged in, both terms of analytics potential and
scalability.

The contributions of BGPGraph are summarised as follows:

† Propose multiple descriptive metrics for anomaly detection in
BGP, taking into account both prefix hijacks and routing
information.
† Identify both small scale and large scale anomalies using a
common framework.
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† Perform root cause analysis in addition to anomaly detection,
using visualisation methods that are optimised with respect to their
information content.

4 Analysis of small scale anomalies

This section describes the analysis procedure followed to define
multiple metrics, capable of capturing small scale anomalies. In
the context of this paper, the term small scale anomalies refers to
an isolated or a small set of prefix hijacks caused by the same
network. For the identification of isolated prefix hijacks the
multiple origin AS (MOAS) events are taken into account.
Specifically, a MOAS event occurs when the same prefix appears
to belong to at least two different ASes, that is, the same prefix is
announced by two different ASes. The analysis utilised, is based
on the methodology presented in [17], applied in the case of
MOAS events.

Specifically, four descriptive metrics are extracted and assigned to
every MOAS event based on the country of origin of the ASes
involved in these events (more details can be found in [17]):

i. CAP: Probability of appearance of each MOAS event, as
calculated for a specific target country.
ii. CAPZ: Z-score of the probability of appearance CAP of each

MOAS event, as calculated for a specific target country.
iii. CGL: The geographic length between the two countries
involved in the MOAS incident.
iv. CGLZ: The z-score of the geographic length CGL between the

two countries involved in the MOAS incident.

These four metrics characterise the MOAS behaviour, but the
detection of MOAS anomalies without the combination of these
metrics into a common framework is still difficult. The work
presented in [17] does not combine these metrics, but instead uses
scatterplots to show that they are able to discriminate between
normal and abnormal cases. Towards this end, BGPGraph
combines these small scale metrics into a single anomaly metric
using a weighted sum approach. The generated metric is able to
capture small scale anomalies in an efficient manner utilising the
descriptive power of the small scale metrics.
5 Hierarchical visualisation

This section presents the visualisation method that is used in the
context of the BGPGraph approach for root cause analysis.
Specifically, a graph metaphor is utilised to visualise the BGP
routing changes on per AS level. The graph representation is
commonly used in the visualisation domain [18]. The reason for
this is that it is a very intuitive way to present the connections
between objects, as it directly targets the human perception system
[18]. The objects are represented by vertices, while their
connections/relationships by edges.

It must be underlined that the graph representation of the AS
inter-relationships is too large (more than 50,000 AS and 100,000
connections) to be visualised on a limited display size. For this
reason, a hierarchical clustering scheme is utilised, to reduce the
size of the visualised graphs and enable scalable analysis.

The AS-graph is a graph G(V, E) whose set of vertices V = {vi|i∈
[1, N]}, where N is the total number of ASes, is the set of all the
ASes and each vertex represents an AS. The set of edges is
E = {ei(vj, vk )|vj, vk [ V}, where each edge represents the
existence of a physical connection between the ASes. The graph is
created from the AS-paths of the BGP announcements.

The proposed graph visualisation approach, is used to visualise the
difference on traffic between consecutive time windows, measured in
the number of IP addresses which changed paths. The reason for
using the difference of IPs as weights of the edges and the
vertices, lies in the nature of the Internet routing protocol. When a
source AS sends information to a destination AS, this information
follows a path consisting of ASes and links. As it was mentioned
IET Inf. Secur., 2016, Vol. 10, Iss. 3, pp. 125–133
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Fig. 1 Cluster Hierarchy of the AS-Graph. As it is shown the number of vertices is reduced as the level increases, but the topology of the original graph (a), is
preserved. The monitoring point is the orange node

a level-0
b level-3
c level-7
earlier, if a link or an AS fails (for various reasons such as
misconfiguration, hardware problem etc.), according to the
inherent Internet dense architecture, the router searches for another
path to reach its destination. Thus, there is a transfer of BGP
routes from one path to another. Another example of route transfer
is the case of prefix hijacks. This routing transition is captured
well, using the proposed IPs different metrics. Thus, the
visualisation shows these events in a practical and meaningful
way. Red colour in the visualisations represents negative weights,
while green colour represents positive weights.

The magnitude of the corresponding weight is mapped to the
width of the edges or the radius of the vertices, which are
represented by two sets, one that defines the quantisation levels of
the vertex radii and another that defines the quantisation levels of
the edge widths:

R = {ri|rmin ≤ ri ≤ rmax, i [ [0, Lr] and

i [ N}ri = rj, for i = j, r0 = 0 and ri , ri+1

(1)

W = {wi|wmin ≤ wi ≤ wmax, i [ [0, Lw] and

i [ N}wi = wj, for i = j, w0 = 0 and wi , wi+1

(2)

where ri is the radius of the ith circle in visual degrees, rmin is the
minimum radius and rmax is the maximum radius. Lr is the number
of different radius values or alternatively the radius quantisation
levels. The same notation is used for the edges width set W.
Furthermore, it is assumed that the sets are ordered, which is
expressed through the relation: ri < ri+1. To define the sets R and
W, the visual acuity of the human visual system needs, to be
initially measured and quantified. There are many studies and
metrics on the acuity of the human visual system [18], but the
most practical one is the Weber’s Law or Just-Notable Difference
[19], which is the one utilised here. It is practical because it is
directly applicable to the task of defining the sets R and W due to
the fact that it calculates the minimum required difference in
stimuli in order for a human to understand that the inputs are
different. Other alternatives for perceiving visual stimuli such as
Ricco’s law and Stevens’ power law [20] do not measure the
minimum required difference, but instead measure the perceived
intensity with respect to the actual intensity. In addition, the
Weber’s Law, has been widely utilised in multiple research studies
addressing perception issues in visualisation [21–23].

Since the AS-Graph is too large to be visualised at once, a
clustering method is utilised to produce a hierarchy of coarse to
fine graphs that are easier to visualise and perceive in a
hierarchical manner, while still maintaining the significant
information. Each cluster represents a collection of ASes. For the
clustering creation the approach proposed by Gansner et al. [24] is
IET Inf. Secur., 2016, Vol. 10, Iss. 3, pp. 125–133
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utilised. In this case the notation Gl(Vl, El) represents the graph of
the l level of the hierarchy. The superscript is used in general to
represent the level. Vl is the set of vertices and El is the set of
edges of the lth level. In this case G0(V0, E0)≡G(V, E). The
results of the application of the clustering algorithm on the
AS-Graph of 2004 are shown in Fig. 1.

It should be noted that the utilised clustering approach [24] allows
the analyst to select parts of the graph, that must be visualised with
higher granularity than the rest of the graph, and thus, create hybrid
graphs comprised of multiple levels.
6 Quantification of the information

In this section the information content of the input data and proposed
visualisation method is quantified using entropy metrics. The input
dataset will be referred to as the input signal, while the
visualisation will be referred to as the output signal. These metrics
are used for the calculation of the information loss caused by the
mapping of the input data to the visual attributes of the visualisation.
6.1 Entropy of the input signal

The input signal represents the input dataset that is used by the
proposed approach for visualisation purposes. In the respective
case, the input signal is composed of the weights that directly
reflect the routing changes between consecutive time windows.

The entropy metric is used to calculate the information content of
the entire graph that is currently visualised. The notation G(Vc, Ec)
represents the graph that is currently visualised by the system,
along with all the respective weights. The graph G(Vc, Ec) can
represent either a level of the hierarchy c = l, or a hybrid graph
comprised of vertices end edges from different levels. This way,
the entropy of the edge weights, of the entire graph, that is
currently visualised is defined as:

H in
G (E

c) = −
∑Y
i=1

yi
ytotal

log
yi

ytotal

( )
(3)

where Y is the number of different edge weight instances that are
visualised, yi is the number of occurrences of the ith weight and
ytotal =

∑Y
i=1 yi the total number of weight occurrences, but with

respect to the edge weights of the entire graph. The same
procedure is repeated to find the entropy H in

G (V
c) of the vertex

weights of the entire graph.
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Fig. 2 Mapping function F: <n � Vm from the edge weight to the edge
width. Green colour represents positive weight values and red negative
6.2 Entropy of the output signal

In general, a visualisation system uses a mapping function to map the
input data to the visualisation features: F: <n � Vm, where<n is the
input signal in the space of real numbers and has n features, and Vm is
the visualisation space (scatterplots, graphs, glyphs etc.) that has m
features. In the proposed scheme, the output signal is the
visualised graph. Because of various factors, such as the display
capacity, visual clutter and the limitations of the human vision
system, a transfer of all the information of the input to the output
signal, is usually not possible. As explained in Section 5, in the
context of the proposed approach, the edge weights are mapped to
the width and colour of the edges and the vertex weights are
mapped to the radius and colour of the vertices. Hence the
visualisation space Vm has four features (m = 4): the width and
colour of edges and the radius and colour of vertices.

Furthermore, in (1) and (2), the set of the vertex radius values
R and the set of edge width values W were defined. In addition,
|W| = Lw quantisation levels were defined for the edges width and
|R| = Lr quantisation levels were defined for the vertices radius.
The role of the mapping function F is to map the edge and vertex
weights to the elements of the sets W and R. Fig. 2 shows the
mapping function F:<n � Vm, that maps the edge weight to the
edge width. A similar mapping function is used for the mapping
of the vertex weight to the vertex radius.

To formulate the mapping function F, a variable Xi is initially
defined as follows:

Xi =
0, i , −Lw∑i

j=−Lw
xj, −Lw ≤ i ≤ Lw∑Lw

j=−Lw
xj, i . Lw

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭ (4)

where xi represents the size of the section of the input weight that is
mapped to the width wi or radius ri, as depicted in Fig. 2. The
mapping function F is defined as:

F(eweight) = |i|, if Xi−1 ≤ eweight , Xi (5)

where eweight is the corresponding edge weight that is mapped to
width wk∈W, for k = F(eweight).

To find the entropy of the output signal, (3) is used, but the
difference is that the weights are first mapped to the elements of
the sets W and R through the mapping function F. This way the
corresponding entropies Hout

G (Ec, F) (entropy of the edges weights
of the entire graph), Hout

G (Vc, F) (entropy of the vertices weights
of the entire graph) are calculated. The superscript ‘out’ represents
the output signal. It is apparent that the value of the output
entropy depends on the mapping function F: <n � Vm that
inevitably induces information loss.
7 BGPGraph framework

This section is comprised of two subsections. Section 7.1 utilises
entropy metrics to define the mapping function F from the input
edge and vertex weights to the visual attributes of the graph, so as
to minimise the information loss caused by their visualisation.
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Section 7.2 presents the proposed BGP anomaly metric, which is
capable of capturing both small and large scale anomalies.

7.1 Visualisation optimisation

In this section, the proposed visualisation method is optimised with
respect to its information content. Due to limited display size, and in
many cases, limited number of visual attributes (e.g. limited number
of available edge widths or vertex sizes), the transfer of all the
information to the visualisation is usually not possible. The
amount of information that is not visualised represents the amount
of information loss. Large information loss reflects poor
visualisation quality, since most of the data are not visualised and
important patterns are lost (e.g. difference in the size of two
vertices/edges might not be visible). On the other hand, low
information loss reflects the fact that most of the data are
visualised, and insights about the data are easier by the analyst.
Thus, low information loss represents good quality visualisations.
The optimisation procedure results in visualisations which convey
the larger amount information (e.g. reveals a difference in the size
of two vertices/edges not seen previously), and thus, render the
analytical procedure easier.

The entropy metrics defined in Section 6 are used to optimise
the visualisation result. In particular, the method proposed, estimates
the mapping function F: <n � Vm, which maximises the entropy of
the output signal and as a consequence, to minimise the information
loss, caused by the traversal of information through the visualisation
pipeline [15]. This procedure enables the analyst to make decisions
guided through the acquired information, while minimising the
amount of false conclusions that might arise due to large information
loss. The proposed optimisation procedure highlights parts of the
graphs that have high information content, and as a result are relevant
to the analysis.

In Section 6.2, is explained that the role of the mapping function F
is to map the edge and vertex weights to the elements of the sets R
and W ((1) and (2)). Without loss of generality only the edge
width case will be analysed in this section.

The mapping function F: <n � Vm is defined in such a way, so
that the entropy of the output signal is maximum, according to the
following optimisation problem:

x = argmax
�x

Hout
G Ec, F �x( )( ){ }

(6)

where x is a vector of edge weight quantisation ranges
x = (x−Lw

, x−(Lw−1), . . . .x0, . . . .x(Lw−1), xLw ). The mapping
function F is defined in (5). Furthermore, Hout

G is the output
entropy of the edge weights of the currently visualised graph.

The result is the definition of the mapping function from the input
data to the sizes of the nodes and edges of the graph, so as to reduce
the number of values that are mapped to the same sizes, and enable
the analyst detect otherwise not visible small differences between
different values. Results of the minimisation of (6) on the
visualisation are illustrated in Figs. 5–7.

The downhill simplex method [25] is utilised for the optimisation
procedure. Alternative optimisation schemes have also been
considered and tested (such as gradient descent, simulated
annealing, and compass search [25]). However, it is highly
underlined that the proposed optimisation problem has many local
minimum values, and it is very difficult to identify the exact
global minimum in such problems. The downhill simplex method
was selected due to the fact that it provided better results in the
majority of the cases, since it was able to identify a local
minimum closer to the global minimum.

7.2 BGP anomaly metric

This section presents the procedure followed for the definition of the
small and large scale anomaly metrics, as well as their subsequent
fusion for the definition of a single anomaly metric, capable of
capturing both small and large scale anomalies.
IET Inf. Secur., 2016, Vol. 10, Iss. 3, pp. 125–133
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Fig. 3 Effect of the ΔT parameter has on: (1) The average running time of
the algorithm, (2) The number of algorithm iterations (in logarithmic scale),
(3) The number of small scale detections, and (4) The number of large scale
detections. The data represent a total period of T = 1 day
7.2.1 Large scale anomaly metric: In Section 6, two entropy
metrics where proposed so as to quantify the information of the
input signal (i.e. routing changes) at each time instance. The main
characteristic of the large scale anomalies is that they represent
large routing deviation between ASes and links. The large number
of routing deviations is captured well using the proposed entropy
metrics, and thus, they are used for the definition of the large
scale anomaly metric. Specifically, the entropy of the edge weights
of the entire graph H in

G (E
c), and the entropy of the vertex weights

of the entire graph H in
G (V

c), are utilised for this calculation.
It should be pointed out that the entropy is not a perceptually

linear metric. Specifically, the difference of one (measured in bits)
indicates twice as much information. To make the entropy
metric perceptually consistent, the entropies are transformed as
follows: H in′

G (Ec) = 2H
in
G (Ec) and H in′

G (Vc) = 2H
in
G (Vc).

The large scale anomaly metric is defined as the fusion of the
entropies of the edges and vertices of the current graph, and is
defined as:

AE = w1
∗H in′

G (Ec)+ w2
∗H in′

G (Vc) (7)

where w1 and w2 are the weights of the edges and vertices entropy,
respectively, and H in′

G (Ec) = 2H
in
G (Ec), H in′

G (Vc) = 2H
in
G (Vc). The higher

the value of the large scale anomaly metric is, the higher the
probability of a large scale BGP anomaly occurrence.

The calculation of the large scale anomaly metric depends on two
parameters: the selected time step ΔT, and the value of c, which can
represent either a level of the hierarchy c = l, or a hybrid graph
comprised of vertices end edges from different levels. As it was
mentioned in Section 5, the clustering algorithm was designed in
such a way that the higher levels of the clustering hierarchy
contain the important information in an abstract form, while
irrelevant information is filtered. Thus, by using high levels of the
clustering hierarchy for the calculation of the entropy anomaly
metric, the clutter induced by the irrelevant information is reduced.
The value of c = 11 was used for the experiments on this paper.
The value of the second parameter, the time step ΔT, depends on
the size of the time period T that is examined for anomalies. For
large time periods, larger time steps ΔT must be selected, to
reduce the number of iterations needed. In general the algorithm
needs r = T/ΔT iterations. On the other hand, for small time
periods the value of the time step ΔT must be relatively small, so
as to achieve finer granularity.

There are multiple research works which utilise ΔT parameter for
aggregation and feature extraction purposes. In all of the cases the
value of ΔT is set manually to a period of 1 to 10 minutes [8, 9,
26–28]. In the context of this paper, similarly to previous
approaches, the value of the ΔT parameter is manually selected.
Extensive experimentation on multiple known prefix hijack events,
where the algorithm was applied on single day periods (T = 1 day),
revealed that a value of ΔT = 30 s is sufficient for their successful
identification, while still keeping the number of algorithm
iterations/runtime small. Specifically, Fig. 3 shows the effect that
the different values of the ΔT parameter has on: (i) The average
running time of the algorithm, (ii) The number of algorithm
iterations (in logarithmic scale), (iii) The number of small scale
detections, and (iv) The number of large scale detections. The data
represent a total period of T = 1 day. The number of small scale
detections is static (equal to 15), due to the fact that the maximum
operator is utilised within the time window ΔT (see (9)). On the
contrary, the number of large scale anomalies that are detected by
the algorithm drops from the maximum which is 5 for ΔT≤ 300 s,
down to 3 for ΔT = 600 s, and 1 for ΔT > 600 s. This means that
ΔT = 300 s is a threshold for the sufficient identification of the
large scale anomalies. In this paper, ΔT = 30 s is chosen due to the
fact that it has a sufficient distance from the threshold of 300 s,
while the running time of the algorithm is still relatively small
(around 10 minutes).

7.2.2 Small scale anomaly metric: In Section 4 four metrics
were defined that are capable of capturing small scale anomalies.
IET Inf. Secur., 2016, Vol. 10, Iss. 3, pp. 125–133
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In this section, these four metrics are fused into one metric, the
small scale anomaly metric. This metric is used to discover small
scale events that deviate from normal behaviour, and as a result
are considered as anomalies. First of all, the four metrics defined
in Section 4 are normalised to [0, 1] and afterwards the fusion
procedure is defined as follows:

A′
M = w3(1− CAP)+ w4(1− CAPZ)+ w5CGL+ w6CGLZ (8)

where w3, w4, w5, and w6 are the weights of each of the four small
scale metrics.

It should be noted that the anomalous BGP MOAS incidents are
characterised by low CAP and CAPZ values, while also
demonstrating high CGL and CGLZ values. Thus, by using (1−
CAP), (1−CAPZ), (CGL) and (CGLZ) in the calculation of the
small scale anomaly metric, high values of this metric point to
possible BGP MOAS anomalies.

Unlike the case of the large scale anomaly metric in which the
calculation is performed in predefined time windows ΔT, the small
scale anomaly metric is defined for each MOAS incident detected.
To facilitate the fusion procedure, the two metrics must be defined
in a common time frame. Thus, the small scale anomaly metric
A′
M is registered in specific time windows ΔT as follows:

AM = max(A
′
M ), for each time step DT (9)

where ΔT is the time step that is also used for the large scale
anomaly metric. In other words, the maximum small scale
anomaly score of all the MOAS events that occurred within a
specified time window, is chosen as a representative for this time
window.

7.2.3 Global anomaly metric: The global anomaly metric is
defined as the weighted sum of the normalised values of the large
scale anomaly metric and small scale anomaly metric:

A = wE
∗AE + wM

∗AM (10)

Thus, the calculation of the BGP anomaly metric depends on the
values of the parameters of the following vector: [c, ΔT, w1, w2,
w3, w4, w5, w6, wE, wM]. The value of this vector is set to [11, 30
sec, 0.5, 0.5, 0.25, 0.25, 0.25, 0.25, 0.5, 0.5] so as to take all the
metrics equally into account.

By utilising the weighted sum approach, large importance metrics
provide large contribution to the value of the final anomaly metric. In
other words, the weights characterise the degree of contribution of
each metric to the final anomaly score.

The BGP anomaly metric A is used to construct plots that
summarise the anomaly score of the BGP activity over a specific
period of time, called anomaly plots. These plots are bar plots, in
which the length of each bar represents the magnitude of the
corresponding anomaly score for the specific time window ΔT.
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Fig. 4 Anomaly plot for the 24-Dec-2004. The time step is set to ΔT= 30 s.
Two spikes are clearly observed, one around 9:24 GMT, and one around
19:48 GMT. The monitoring point is AS-3549
Using the anomaly plots, the analyst can select to focus on specific
periods of time were the anomaly score is high and as a result
something significant might be happening. Afterwards, the analyst
can examine the BGPGraph visualisation of the selected period, so
as to perform the analysis on a greater depth.
Fig. 6 Entropy optimised view of level 11 after increasing the granularity of
the green cluster of Fig. 5. It is apparent that AS-9121 is the one that hijacks a
big portion of Internet routes
8 Event analysis and experimental results

In this section the BGPGraph framework is used to explore state of
the art prefix hijack events, and demonstrate the analytical potential
of the proposed approach. The BGP announcement data in this paper
are collected from the RIPE [29] BGP monitoring project, and
specifically from the monitoring points of AS-3333, AS-3549,
AS-4608, AS-4777, and AS-7018. A list of 12 known anomalous
BGP events which are visible from these monitoring points is used
to evaluate the BGPGraph approach, while additional new events
are being detected, by utilising the proposed method are also
presented.
8.1 Event analysis – router misconfiguration

In this section, the BGPGraph framework is applied on the detection
and analysis of a BGP router misconfiguration event that occurred on
24th December 2004 [4]. The observations in this section are made
through the monitoring point of AS-3549.

Fig. 4 depicts the anomaly plot of 24th December 2004.
Observing this overview plot, a pattern emerges. At 9.24 GMT the
anomaly score suddenly increased its value by a factor of five.
Fig. 5 Abstract view of level 11 of the clustering hierarchy, visualising the even
entropy optimised version

a Hout
G (Ec, F ′) = 3.31 Hout

G (Vc, F ′) = 3.97
b Hout

G (Ec, F ′) = 1.93 Hout
G (Vc, F ′) = 2.62

c Hout
G (Ec, F ′) = 0.67 Hout

G (Vc, F ′) = 0.87
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This is an indicator that something might be happening. As a
result, the user selects a small time window around 9.24 GMT and
the AS-Graph of the level-11 of the clustering hierarchy is then
visualised (Fig. 5a), thus allowing a more focused and in depth
analysis.

Observing Fig. 5a, it is apparent that one cluster of ASes gains
weight (gains IPs), and is represented with green colour, while all
the neighbouring clusters lose weight (lose IPs), a fact which is
shown by using red colour. This behaviour is also observed in the
case of the edges, which all lose weight, except for one path
having as starting point the green cluster.

After increasing the granularity of the cluster that is gaining
weight (Fig. 6) it is obvious that AS-9121 is responsible for this
event, since it gains weight (announces a lot of IPs) and all its
neighbour vertices lose weight (lose IPs). This event concerns a
clear case of router misconfiguration, in which AS-9121 originated
many prefixes that it did not own, thus making a route through
AS-9121 more preferable than some of the longer but genuine
routes. Although, this event was caused by an error and not a
malicious act, the consequences had a global impact, as for several
t that took place on Dec 24, 2004 concerning AS-9121. Subfigure (a) is the
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Fig. 7 Entropy optimised views of level 11 of the clustering hierarchy, visualising the AS-Graph around 19:48 GMT

a The Green cluster comprised of 988 Ases gains a lot of IPs and paths
b Increasing the granularity of the green cluster reveals AS-9121 as the main actor of this event
hours several of Internet users were unable to reach a large number of
Internet sites.

The entropy of the visualisation in Fig. 5b, Fig. 5c is lower compared
with 5a. It is apparent from these figures that the lower the entropy, the
lower the information content of the visualisation. For example in
Fig. 5c the user cannot discriminate between many of the edge as
well as the vertex weights. On the contrary, in the optimised version
of Fig. 5a the differences are more apparent and insights about the
data are more easily obtained by the user and as a consequence the
analytic potential is increased. Even if the event is visible in both
the high and the medium entropies, in the high entropy view, the
impact of the event to the neighbouring ASes is much clearer.

In addition to the aforementioned misconfiguration event, it is
obvious from the anomaly plot depicted in Fig. 4 that there is a
second event, captured by the spike around 19:48 GMT. Level-11
of the clustering hierarchy for this time period is depicted in
Fig. 7. The green cluster in Fig. 7a that is comprised of 988 ASes
gains IPs, while all the neighbouring clusters lose IPs. After
increasing the granularity of this cluster, AS-9121 is revealed as
the only vertex that gains IPs, as depicted in Fig. 7b. This means
that AS-9121 after almost ten hours of the previous
misconfiguration event, announces once again prefixes it does not
own. This event is clearly visible using BGPGraph even if it has,
compared with the first, a much smaller duration and lower
anomaly score, as depicted in the anomaly plot.
Table 1 List of small and large scale anomalies detected using the proposed a

Date
(yyyy-MM-dd)

Start time (hh:
mm)

Responsible
ASN

Monitoring po

2010-04-08 15:54 23,724 3333, 3549, 4608
7018

2009-12-15 09:53 39,386 3333, 3549, 4608
2009-08-13 00:34 4800 3333, 3549, 4608

7018
2009-05-05 16:34 10,834 3333, 3549, 4608

7018
2009-02-14 11:09 8895 3333, 4608, 4777
2008-12-31 07:30 6849 3333, 3549, 4608

7018
2008-08-26 07:18 24,739 3333, 4608, 4777
2008-06-17 14:28 8953 4608, 7018

2008-04-28 09:49 44,237 3333, 7018
2008-02-24 19:47 17,557 3549, 3333
2005-10-21 06:09 3356 333, 3549, 4608

7018
2004-12-24 09:20 9121 3333, 3549, 4608

7018
2010-09-10 04:05 9260 7018
2010-05-19 21:15 29,550 3549
2009-05-05 00:49 8001 3333
2008-09-22 18:06 45,433 4777
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8.2 List of detected BGP anomalies

Table 1 provides a list of small and large scale anomalies, which
have been detected with use of the BGPGraph approach and other
methods in the literature. This table provides several attributes for
each anomaly, such as the time of the event, the responsible ASN,
the monitoring points from which the anomalies were detected,
and the status of the anomaly (i.e. if the anomaly is confirmed in
the literature or detected using the proposed approach). The last
column represents the methods that were able to identify the
anomaly represented by each row of the table.

As shown in Table 1, concerning the small scale events, the
proposed approach was able to efficiently detect eleven known
prefix hijacking events [1, 4], including the youtube-Pakistan
incident [30] which is captured only by BGPGraph. In addition,
four new anomalies detected, using BGPGraph and were not
previously reported in the literature are also presented in this table.

Furthermore, the analysis of the large scale anomalies in Table 1
identified large routing changes, most of which concern prefix
hijacks, also detected with the small scale analysis. In addition to
prefix hijack detection, however, the large scale analysis revealed
an event or routing change that did not concern prefix hijacking.
Specifically, on 21st October 2005 around 06:09 GMT, AS-3356
experienced internal problems, which resulted in losing a lot of
prefixes that it previously owned [4], and caused a large number
pproach

int(s) Alarm type Anomaly
status

Detection method

, 4777, small scale, large
scale

confirmed [1] BGPGraph, [1, 8, 9]

, 4777 small scale confirmed [1] BGPGraph, [1]
, 4777, small scale confirmed [1] BGPGraph, [1]

, 4777, small scale confirmed [1] BGPGraph, [1]

, 7018 small scale confirmed [1] BGPGraph, [1]
, 4777, small scale, large

scale
confirmed [1] BGPGraph, [1, 8, 9]

, 7018 small scale confirmed [1] BGPGraph, [1]
small scale, large

scale
confirmed [1] BGPGraph, [1]

small scale confirmed [1] BGPGraph, [1]
small scale confirmed [30] BGPGraph

, 4777, large scale confirmed [4] BGPGraph, [8, 9]

, 4777, small scale, large
scale

confirmed [4] BGPGraph, [1, 8, 9]

small scale new anomaly BGPGraph
small scale new anomaly BGPGraph
small scale new anomaly BGPGraph
small scale new anomaly BGPGraph
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Fig. 8 Root cause analysis of a known anomaly, and all the new anomalies detected using the proposed BGPGraph approach

a Youtube-Pakistan incident [30], where AS-17557 (Pakistan) announces prefixes previously belonging to AS-36531 (Youtube)
b New anomaly detected using the proposed approach on 2008-09-22 around 18:06, where AS-45433 announces prefixes previously belonging to AS-17596
c New anomaly detected using the proposed approach on 2009-05-05 around 00:49, where AS-8001 announces prefixes previously belonging to AS-38380
d New anomaly detected using the proposed approach on 2010-09-10 around 04:05, where AS-9260 announces prefixes previously belonging to AS-17597
e New anomaly detected using the proposed approach on 2010-05-19 around 21:15, where AS-29550 announces prefixes previously belonging to AS-41689. The ASes involved in the
anomalies are manually highlighted in the red ellipsoids
of BGP withdrawal messages. This event concerns a case that the
small scale analysis is not able to detect, since there are no MOAS
incidents involved.

For the detection of new anomalies, the same procedure presented
in Section 8.1 was followed. The anomaly plots for the specific dates
were created, and large anomaly scores were identified in the
corresponding time instances. This fact indicated the existence of
anomalies in these time periods. Further analysis using the
proposed methods revealed the responsible ASes for these
anomalies. Specifically, Fig. 8 shows multiple anomalies, a known
anomaly, and all the new anomalies detected using the proposed
BGPGraph approach. Fig. 8a illustrates the Youtube-Pakistan
incident [30], where AS-17557 (Pakistan) announces prefixes
previously belonging to AS-36531 (Youtube). Figs. 8b–e illustrate
the set of new anomalies detected using the proposed approach.
The ASes involved in the anomalies are manually highlighted in
the red ellipsoids. When compared with the known
Youtube-Pakistan, in all the cases the value of the anomaly score
is high, while there is also a transfer of traffic from one path to the
other, which shows that the responsible ASes announce prefixes
previously belonging to other ASes.

Table 2 presents a comparison of the proposed approach with
three other recent BGP anomaly detection approaches proposed in
the literature: Khare et al. [1], Deshpande et al. [8], and
Al-Rousan et al. [9]. The comparison takes place with regards to
Table 2 Comparison of the different anomaly detection methods

Method BGPGraph Khare
et al.
[1]

Deshpande
et al. [8]

Al-Rousan
et al. [9]

Percentage of
known large scale
anomalies
detected

100% 80% 80% 80%

Percentage of
known small scale
anomalies
detected

100% 90.1% – –
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the (i) Percentage of known large scale anomalies detected, and
(ii) Percentage of known small scale anomalies detected. As
shown in this table, the proposed BGPGraph approach is able to
identify more anomalies in all the cases.
9 Conclusions

This paper presented a novel BGP anomaly metric, capable of
capturing both large and small scale BGP anomalies. Anomaly
plots of this metric were utilised, so as to provide an overview of
the BGP activity over a specific period of time, and help the
analyst focus on interesting time windows to perform their analysis
by using the BGPGraph visualisation approach.

The BGPGraph utilised a hierarchical graph visualisation scheme
to enable the exploration of BGP routing changes. The proposed
approach also introduced an information theoretic metric for the
quantification and optimisation of the generated visualisations. The
hierarchical visualisation provides high level overview of the input
graph, while the analyst can further investigate abnormalities in
more detail.

The framework is seen to be very efficient in the analysis of BGP
routing changes and aids the analyst through the automated
estimation of parameters and thresholds that are usually manually
selected.
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