
CGI2017 manuscript No.
(will be inserted by the editor)

Adaptive Compression of Animated Meshes by Exploiting
Orthogonal Iterations

Aris S. Lalos · Andreas A. Vasilakis · Anastasios Dimas · Konstantinos

Moustakas

Abstract We introduce a novel approach to support

fast and efficient lossy compression of arbitrary ani-

mation sequences ideally suited for real-time scenarios,

such as streaming and content creation applications,

where input is not known a-priori and is dynamically-

generated. The presented method exploits temporal co-

herence by altering the principal component analysis

(PCA) procedure from a batch- to an adaptive-basis

aiming to simultaneously support three important ob-

jectives: fast compression times, reduced memory re-

quirements and high-quality reproduction results. A dy-

namic compression pipeline is presented that can effi-

ciently approximate the k-largest PCA bases based on

the previous iteration (frame block) at a significantly

lower complexity than directly computing the singular

value decomposition. To avoid errors when a fixed num-

ber of basis vectors is used for all frame blocks, a flexible
solution that automatically identifies the optimal sub-

space size for each one is also offered. An extensive ex-

perimental study is finally offered showing that the pro-

posed methods are superior in terms of performance as

compared to several direct PCA-based schemes while,

at the same time, achieves plausible reconstruction out-

put despite the constraints posed by arbitrarily complex

animated scenarios.

Keywords 3D Animated Meshes · Orthogonal

Iterations · Online Compression

A. S. Lalos, A. Dimas and K. Moustakas
Electrical and Computer Engineering Department, Univer-
sity of Patras, Greece

A. A. Vasilakis
Information Technologies Institute, Centre for Research &
Technology Hellas, Greece

1 Introduction

With the rapid advances in high-performance comput-

ing, scanning operations and content-creation tools, the

output data is expanding rapidly generating massive

datasets. While this can be mitigated by applying com-

pression techniques to the data being archived or trans-

ferred, the tremendous computing resources required

brings tough challenges to be solved. Recently, there

has been increasing interest on acquiring, processing,

storing and transmitting 3D animated meshes facilitat-

ing several real-time applications (e.g. Microsoft Holo-

portation, an immersive telepresence system).

Throughout the years, numerous approaches have

been proposed improving more or less some of the key

animation compression characteristics [16]: encoding-

decoding requirements, reconstruction quality and com-

pression rates. Without loss of generality, these meth-

ods can be classified either as local - or global -based,

depending on the frame window analysis taken for com-

pressing the animation sequence. The main benefit of

the global approaches is an improved compression rate

by analyzing the overall motion coherence, whereas the

local ones focus on local frame-to-frame transitions al-

lowing low-latency streaming.

Skinning as well as principal component analysis

(PCA) can be considered as the most well-known global

methods for providing efficient compact representations

of rigid and highly-deformable animations, respectively.

Though a large variety of different strategies have been

introduced in both skinning [8] and PCA [16], all of

them suffer from excessive computational requirements;

strongly dependent on the geometry size and the to-

tal animation length. While for non-interactive applica-

tions, where animation is known a priori, the compres-

sion choice can easily be determined solely based on the

Andreas
Sticky Note
This is the author's version of an article that has been published in The Visual Computer Journal. Changes were made to this version by the publisher prior to publication.

Andreas
Sticky Note
Marked set by Andreas

2 Aris S. Lalos et al.

[21,30] [41,50] [61,70] [81,90] frame
arrival

SVD update dictionary AOI

[1,10]

update dictionary AOI update dictionary AOI update dictionary AOI
SVD SVD SVD SVD

25x

0

max

Fig. 1 Overview of our animation compression method. Assuming sequential arrival of the animation data (top), the dictio-
nary is dynamically updated for each cluster (block of 10 frames) by employing adaptive orthogonal iterations (AOI). The
reconstructed results of the Handstand animation confirm that AOI achieves similar quality in 25× faster times when compared
to a direct SVD-based solution (bottom).

underlying motion, new challenges rise when attempt-

ing to support unknown arriving geometry (see Fig. 2).

In this work, we introduce a novel out-of-core adap-

tive approach capable of approximating efficiently the

PCA-based dictionary at a significantly lower computa-

tional complexity than directly applying singular value

decomposition (SVD) as illustrated in Figure 1. In-

spired by the observation that only small deformation

variations will normally occur between consecutive poses

[32], we split the animation sequence into uniform frame

blocks and perform subspace tracking by processing

each incoming block at a time. By exploiting temporal

coherence, we are capable of efficiently estimating the

dictionary of the current frame batch using as input

the precomputed dictionary of the previous batch [4].

To this end, we present a general iterative method to

perform orthonormalization by exploring several Or-

thogonal Iterations variants [24]. In cases of high mo-

tion change between frame blocks, the optimal subspace

size k can be automatically and dynamically adjusted

to consistently reconstruct each incoming block of an-

imation data. Our method can be successfully applied

in cases where the animated data is handled as sep-

arate geometry clusters [22] as well as for exploiting

both spatial [1] and temporal correlations [27]. An ex-

tensive experimental evaluation study on a wide range

of animations considering a large spectrum of settings

and configurations is finally offered showing the notable

improvements in processing times (up to 60×) as com-

pared to prior art without sacrificing the final recon-

struction quality.

2 Related Work

Animation compression schemes aim to provide a com-

pact representation of the original animation, without

affecting the perceived amount of distortion during re-

construction. Assuming constant connectivity (which

can be encoded in an extremely efficient way [16], the

sequence consists of a geometric evolution of the ver-

Fig. 2 Selected snapshots of (left) Flag, (middle) Ocean and
(right) Airflow dynamic simulations [12].

tices of the initial mesh over time. A straightforward ap-

proach for compressing the animated geometry can be

derived by applying one of the numerous available static

mesh compression methods [25,14,3,13,18] to each one

of the individual frames. Although such an approach

would result in an efficient exploitation of the spatial co-

herence, it completely ignores the temporal one, missing

a crucial factor to achieve higher compression ratios [9].

A large variety of animation compression algorithms

has been introduced the last few years in the litera-

ture [16]. One can classify them into two core groups

according to whether the time coherence is locally or

globally analyzed. Despite the computationally fast be-

havior of the local approaches (e.g. wavelets [19] and

predictive coding methods [23]), for the remainder of

this paper we will focus on global compression schemes.

PCA-based approaches. Generally, these can be clas-

sified according to where PCA is used to exploit spatial

and/or temporal coherence of the input data; the ma-

trix representation of the sequence’s geometry. Alexa

and Müller [1] were the first to employ PCA to fit a

low dimension subspace to the animation dataset and

express each frame as a linear combination of the largest

eigenvectors (EigenShapes) that spans the selected sub-

space. By exploiting temporal coherence, Karni and

Gotsman [9] advanced this method by performing linear

prediction coding on the extracted spatial PCA coeffi-

cients. Luo et al. have further achieved better compres-

sion ratio and computation times by aggregating similar

Adaptive Compression of Animated Meshes by Exploiting Orthogonal Iterations 3

frames into temporal clusters and compress them sep-

arately [15]. Contrary to the streaming nature of our

method, in this approach the frames belonging to the

same cluster may not be contiguous.

Conversely, several authors [22,27] suggested to ap-

ply PCA on the temporal space (EigenTrajectories);

the main benefit is that it involves the decomposition

of a smaller covariance matrix, since the number of

frames is usually less than the number of vertices. To

capture more efficiently local similarity characteristics,

the authors in [22,2,20] suggested segmenting the mesh

into deformation-aware clusters which are then com-

pressed independently. An adaptive compression allo-

cation procedure is also offered, assigning more PCA

coefficients to clusters that undergo extreme deforma-

tions [2]. To achieve better compression ratio, several

algorithms were introduced to code (i) the PCA bases

via principal components [22] and non-least squares op-

timal linear/accelerated movement [28] as well as (ii)

the PCA coefficients by local predictor coding schemes

such as the parallelogram rule [27], neighbourhood av-

erage and radial basis functions [29] and Laplacian co-

ordinates [26]. These methods can enhance their fi-

nal approximation by representing the residual motion

compensation errors via temporal DCT-(discrete cosine

transform) [17] or PCA-based corrections [11]. Before

storing or transmitting, quantization (uniformly [7] or

not [28]) is finally performed to encode the floating-

point data. Figure 3 provides a generic diagram sum-

marizing the stage flow which one may follow during a

PCA-based compression pipeline.

Subspace tracking approaches. Unfortunately, com-

puting SVD (the standard direct approach to estimate
PCA), can be extremely memory-demanding and time-

consuming for large-scale animation problems (specif-

ically, O(m3) for a matrix of m × m size). On the

other hand, subspace tracking algorithms are fast alter-

natives relying on the execution of iterative schemes for

evaluating the desired eigenvectors per incoming block

of floating point data [4]. These alternatives schemes

can be classified into low (O(mk2)) and high (O(m2k))

complexity, where k(� m) denotes the number of prin-

cipal eigenvectors. The best performance among the

high complexity class is achieved by the Lanczos Itea-

rations (LI) [33], while the primary representative of

the other class is based on the Orthogonal Iterations

(OI) [24]. Although the LI method requires less iter-

ations for evaluating the subspace of a symmetric ma-

trix, the complexity of each one isO(m2k). On the other

hand, the OI alternative can result in very fast solutions

when the initial input subspace is close to the subspace

of interest, as well as the size of the subspace remains at

small levels [21]. The effectiveness of OI is attributed to

Compression

Trajectories

Frames

Bases

Error

[1]

PCA

[22,27]

Predic�ve Coding

Geometry

Connec�vity

Anima�on

Spa�al

Temporal

Clustering

[22,2]

[15]

Coefficients

[7,28][9,27]

Floa�ng Point

Q
ua

n�
za

�o
n

Ar
ith

m
e�

c

[22,28,29]

[11,17]

[16]

Fig. 3 High-level PCA-based compression framework. We
revise accordingly the PCA computation stage providing no-
table speed benefits without altering the general pipeline.

the fact that both matrix multiplications and QR fac-

torizations have been highly optimized for maximum

efficiency on modern serial and parallel architectures.

These properties make the OI approach more attractive

for real time applications. To the best of our knowledge,

subspace tracking algorithms have never been applied

to the animation compression problem, despite their

wide success on a large range of filtering applications.

3 Overview of our method

Apart from the high-quality reconstruction output when

compressing skeletal (skinning-based) and highly de-

formable objects (PCA-based), these methods assume

that (i) all frames of the animation sequence are al-

ready known to the encoder; an unsuitable requirement

for interactive scenarios, (ii) the maximum animation

length lasts a few seconds (assuming real-time render-

ing at 30fps) as well as (iii) the geometry size is upper-

bounded to a fixed number of triangles; avoiding mem-

ory overflows and performance delays.

We introduce a general, fast and lossy compression

approach suited when the animated data is either dy-

namically produced or too large to fit into main mem-

ory at once. From a high-level point of view, the basic

structure of our framework is very similar with that of

the aforementioned methods, altering only the encoding

stage from offline to online, leaving the rest unchanged

including connectivity compression, geometry cluster-

ing, dictionary coding and quantization (see Fig. 3). In

this work, the animation sequence is divided into an

uniform block of frames corresponding to disjoint tem-

poral intervals, which are then encoded independently

one from another by performing adaptive (online) PCA-

based compression (in either the spatial or the tempo-

ral domain). Assuming low dictionary variance between

successive frame blocks, we successfully apply subspace

tracking via adaptive orthogonal iterations (AOI) sig-

nificantly reducing the processing requirements needed

if the conventional PCA schemes are alternatively uti-

lized. When quality consistency of reconstructions is of

utmost importance, the optimal subspace size k can

dynamically be adjusted in an iterative manner. The

entire pipeline is illustrated in Figure 4 and discussed

in further detail in the following sections.

4 Aris S. Lalos et al.

Adap�ve Processing Encoder

autocorrela�on
matrix

Reconstruc�onDecoder

features
reprojec�on

features
projec�on

previous
dictionary

[]

current dictionary

[]
Anima�on

pose Pi clusters Ci

Di

Ei

Fi

Ei

Ei-1

subsequence Si

Di

Di
[]

Ai
z

dic�onary
projec�on

orthonormaliza�on

AOI method

Fig. 4 Our adaptive animation compression pipeline. Temporal, and optionally spatial, clustering is initially employed to
support the encoding of sequentially arriving animation frames (left). For each incoming block of frames, the dictionary is
estimated by readjusting the subspaces computed at the previous block via adaptive orthogonal iterations (middle). High-
quality reconstructions are finally computed by efficiently combining the estimated dictionary and feature vectors (right).

3.1 Preliminaries on PCA-based compression

The central idea of principal component analysis is to

reduce the dimensionality of a data set D consisting

of a large number of interrelated variables without sac-

rificing the variation present in the data set. This is

achieved by transforming to a new set of variables,

the principal components, which are uncorrelated, and

which are ordered so that the first few retain most of

the variation present in all of the original variables [5].

The input is a series of f consecutive static, point

or triangular, meshes P1, . . . ,Pf , namely poses. Each

pose Pi with n vertices can be represented by two dif-

ferent sets Pi = (Vi,Fi) corresponding to the vertices

Vi and the indexed faces Fi. In our case, all poses have

the same connectivity Fi = F , yet different geometry

Vi. So, the animation data matrix D can be defined as:

D =

p11, p12, . . . , p1j , . . . , p1n

...
...

. . .
...

. . .
...

pf1, pf2, . . . , pfj , . . . , pfn

 ∈ <3f×n, (1)

where pij = [xij , yij , zij]
T

are the x, y, z Euclidean co-

ordinates of the vertex position pj in pose Pi.

The classic PCA-based approaches provide efficient

representations in either the spatial [1] or the temporal

space [22] by suggesting to evaluate the autocorrelation

matrix A in the domain with the smaller size:

A =

{
1
e ·DDT ∈ <e×e if f � n (temporal)
1
n ·D

TD ∈ <n×n otherwise (spatial)
, (2)

where e = 3f . For the sake of simplicity, we will focus

on the temporal case. After constructing the autocor-

relation matrix (Eq. (2)), the direct SVD is applied to

A leading to a factorization of the form:

A = UΣUT (3)

where U = [u1, . . . ,ue], ui ∈ <e×1 and UT are called

the left- and right-singular vectors, respectively. The

matrix Σ = diag(λi), λi ∈ < contains the singular val-

ues of A: λi ≥ λj > 0, ∀i > j ≥ r = rank(A). The

encoding is performed by projecting the trajectories of

each vertex to the subspace dictionary defined by the k-

eigenvectors E = [u1, . . . ,uk] ∈ <e×k that correspond

to the k-largest eigenvalues [λ1, . . . , λk], creating a fea-

ture vectors matrix F:

F = ETD ∈ <k×n, where k ≤ r. (4)

The compressed frames are finally decoded by multi-

plying the feature vectors with the dictionary:

D̂ = EF ∈ <e×n (5)

3.2 Adaptive processing via direct SVD

The most computational and memory demanding oper-

ation of the previously described compression method is

the SVD-based dictionary estimation. However, assum-

ing that the dynamic data is processed in sequential

manner (because it is either generated or streamed), a

naive encoding solution is to temporally cluster the an-

imation [15] into consecutive subsequences {S1,S2, . . .}
of frame block sizes {d1, d2, . . .} and then directly per-

form SVD on each subsequence Si = {Py+1, . . . ,Py+di
},

y =
∑i−1

j=1 dj . For simplicity reasons, we subdivide the

time space into uniform batches: di = d,∀i > 0. In

mathematical terms, the animation matrix D can be

rewritten as a concatenation of sub-matrices Di which

we assume that are available sequentially:

D = [DT
1 DT

2 . . .]
T
, where (6)

Di =

p(i−1)d+1,1, . . . , p(i−1)d+1,n

...
. . .

...

pid,1, . . . , pid,n

 ∈ <3d×n

Adaptive Compression of Animated Meshes by Exploiting Orthogonal Iterations 5

3.3 Adaptive Processing via Orthogonal Iterations

By exploiting subspace tracking, we introduce an ef-

ficient way to adaptively estimate the dictionary at

a lower cost as compared to the direct evaluation of

SVD for each incoming sequence Si. In this section,

we initially present the orthogonal iteration method

(Sec. 3.3.1) followed by the analytic description of our

adaptive scheme to the animation compression prob-

lem, capable of readjusting the dictionary of previous

subsequence Si−1 in an iterative way. More specifically,

we offer two alternative adaptive orthogonal iterations

(AOI) schemes; the Bandwidth-consistent (BAOI) which

allows the user to determine the compression efficiency

by keeping fixed the dictionary size for the entire an-

imation (Sec. 3.3.2) as well as the Quality-consistent

(QAOI) that identifies the optimal subspace size re-

quired for achieving an user-defined acceptable recon-

struction quality goal (Sec. 3.3.3).

3.3.1 Orthogonal Iterations (OI)

The Orthogonal Iterations [24] is an iterative proce-

dure that can be applied to compute the singular vec-

tors corresponding to the k dominant singular values of

a symmetric, non-negative definite matrix and can be

summarized in the following lemma [5]:

Lemma 1 Consider a symmetric, positive definite ma-

trix M ∈ <n×n with λj > 0 and uj , 1 ≤ j ≤ n be

its non-zero singular values and corresponding singular

vectors respectively. Consider the sequence of matrices

{E(t)} ∈ <n×k, defined in the iteration t as

E(t) = o norm(ME(t− 1)), t = 1, 2, . . . (7)

where o norm function stands for the orthonormal-

ization procedure. Then, provided that the initial ma-

trix ET (0) is not singular results at limt→∞E(t) =

[u1, . . . ,uk].Note that the convergence rate of this func-

tion depends on the σk = |λk/λk+1| factor.

3.3.2 Bandwidth-consistent AOI (BAOI)

In order to derive a low complexity compression scheme,

we exploit the two attractive properties of the OI: (i)

computational efficiency as well as (ii) fast convergence

when the initialization is close to the subspace of in-

terest. To this end, we suggest executing a single or-

thogonal iteration per incoming subsequence Si using

as initial input the subspace Ei−1 that corresponds to

the previous subsequence Si−1. More specifically, when

we acquire the data block Di we can replace M in Eq.

(7) with the symmetric data autocorrelation matrix Ai,

Algorithm 1: BAOI update process

1 E(0)← Ei−1;
2 for t← 1 to tmax do
3 E(t)← o norm(Az

iE(t− 1));
4 end
5 Ei ← E(t);

leading to the following method for estimating the sub-

space of interest Ei = o norm(AiEi−1). Depending

on the choice of Ai we can obtain alternative subspace

tracking methods. The simplest and most efficient selec-

tion is the block estimate of the autocorrelation matrix,

Ai = DiD
T
i + δ · I3d (8)

where δ is a small scalar value that is used to ensure

that Ai is non-negative definite and Is is the identity

matrix of size s.

A common way to increase the estimation accuracy

of the presented scheme is by executing more than one

orthogonal iterations tmax per incoming block of ani-

mated data Di, using a fixed matrix Ai. Contrary to

the direct SVD approach, our method can benefit from

the convergence properties of OI by substituting the

matrix Ai with Az
i , where z > 1. This action increases

the convergence speed of the method from σk to σz
k.

Taking into account these observations, we can con-

clude on Algorithm 1.

To preserve orthonormality and initialize the sub-

space to the direct SVD subspace, it is important that

the initial estimate E1 is orthonormal. For that rea-

son, the initial subspace is estimated by applying di-

rect SVD via Eq. (3), while the following subspaces

i = 2, . . . are adjusted using Algorithm 1. A summary

of the proposed technique is highlighted with pink in

Algorithm 3.

3.3.3 Quality-consistent AOI (QAOI)

So far we have assumed that a fixed, either insuffi-

cient or redundant, number k of components per frame

block is used, neglecting the fact that the motion behav-

ior may significantly vary during the whole animation

sequence. To this end, we present a dynamic scheme

that automatically identifies the optimal subspace size

ki for “error-consistently” compressing each incoming

frame block Si based on the previous subspace size

ki−1 and two user-defined low and high quality thresh-

olds εlow, εhigh (instead of adjusting tmax); thus allow-

ing the user to easily trade reconstruction quality with

speedup. The idea is to repeatedly increase or decrease

ki−1 factor with the number of iterations t, i.e. ki =

ki−1± t, with k0 = k, until the value of an error metric

6 Aris S. Lalos et al.

Algorithm 2: QAOI update process

1 E(0)← Ei−1; ki ← (i > 0) ? ki−1 : k;
2 for t← 1 to ∞ do
3 E(t)← o norm(Az

iE(t− 1));

4 r(t) ←
∑n

j=1

(
dij −E(t)ET (t)dij

)
;

if |r(t)| < εlow then

5 E(t)←
[
E(t) r(t)

|r(t)|

]
; ki ← ki + 1;

6 else if |r(t)| > εhigh then
7 E(t)← [e1 . . . eki

] ; ki ← ki − 1;
8 else
9 break;

10 end

11 end
12 Ei ← E(t)

e(t) lies within the goal quality range (εlow, εhigh). Note

that if we, instead, split the animation into non uniform

frame blocks (while keeping the subspace size fixed) will

potentially introduce unnecessary delays attributed to

the packetization of a large number of frames.

In practical scenarios it is reasonable to assume that

the feature vectors Fi of each block Di resides in sub-

spaces Ei of different sizes. The subspace size ki of

the incoming data block Di = [di1 , . . . ,din] , dij ∈
<3d×1, should be carefully selected so that the rele-

vant animation data block characteristics are identified

with the minimum loss of information. To quantify the

loss of information at each iteration t, we suggest us-

ing the l2-norm of the following mean residual error

r(t) =
∑n

j=1

(
dij −E(t)ET (t)dij

)
. When moving from

a high to low motion complexity, the incoming frame

block Si require less than ki−1 principal eigenvectors

to be sufficiently reconstructed. In this case, the sub-

space size ki is iteratively decreased by 1 by simply

selecting the first ki−1 − 1 columns of E(t) until the

goal quality is achieved ‖r(t)‖2 > εlow. On the other

hand, inspired by the incremental PCA, we can simply

add one normalized column in the estimated subspace

E(t) = [E(t) · (r(t)/ ‖r(t)‖2)] and then perform the or-

thonormalization stage. The proposed dynamic scheme

can be easily integrated in Algorithm 3 (see blue color)

by replacing Algorithm 1 with 2.

Orthonormalization. There are a number of differ-

ent choices that can be used for the orthonormalization

of the estimated subspace. The most widely adopted

are the Householder Reflections (HR), Gram-Schmidt

(GS) and Modified Gram-Schmidt (MGS) methods [6].

While all variants exhibit different properties related to

the numerical stability and computational complexity,

without loss of generality we used HR for the orthonor-

malization stage.

Algorithm 3: BAOI/QAOI encoding process

Function: Encoder (Di,Ei−1, k, z, tmax/εlow, εhigh)
Input : Current block of data Di, dictionary of pre-

vious block Ei−1, power number z, or-
thogonal iterations tmax/errors εlow, εhigh

Output : Dictionary Ei and feature vector matrix Fi

1 Estimate autocorrelation matrix Ai via Eq. (8);
2 if i == 1 then
3 Estimate initial dictionary E1 via Eq. (3);
4 else
5 Update Ei using Ei−1 and ki−1 via Alg. 1/2;
6 Orthonormalization via HR, GS or MGS.

7 end
8 Estimate feature vectors matrix Fi via Eq. (4);
9 return {Ei,Fi};

10 // where ‘text’ and ‘text’ defines the bandwidth- and
quality-consistent AOI implementations, respectively.

4 Results and Discussion

We present an experimental analysis of our subspace

tracking approach as compared to the direct applica-

tion of PCA in an adaptive setup focusing on encod-

ing performance and decoding robustness (Sec. 4.2) of

different animation sequences under a broad set of con-

figuration parameters (Sec. 4.1). A short discussion is

finally offered describing on how to select a compression

variant from the given repertoire (Sec. 4.3).

4.1 Simulation Setup

To provide an objective comparison between the tested

solutions, we follow the general pipeline stages described

in Section 3 and illustrated in Figure 4 using a se-

ries of 3D dynamic point clouds and triangular meshes

with fixed connectivity, that represent a wide range of

rigid and highly-deformable motions (see Table 1 and

video). We assume that the animation poses are not

known ahead in time and are generated and processed

sequentially. To that end we divide the animation into

uniform blocks of consecutive frames or namely subse-

quences {Si} (Sec. 3.2) that are processed individually.

In addition, our framework supports also the segmen-

tation and processing of spatial clusters allowing a par-

allel adaptive implementation of very dense animated

meshes. METIS [10], an efficient topological partition-

ing approach was used that uniformly partitions a mesh

based on its connectivity. For each data block, compact

representations can be computed by approximating the

k-largest PCA bases in spatial or temporal space via

SVD: Jacobi singular value decomposition (Sec. 3.2).

Note that experiments were also tested with the trun-

cated SVD resulting to similar observations.

BAOIz(tmax): bandwidth consistent adaptive orthog-

onal iterations on the Az matrix (Sec. 3.3.2). Note

Adaptive Compression of Animated Meshes by Exploiting Orthogonal Iterations 7

Animation Vertices Frames Block Bases Rate Error (STED) × 10−2 Performance (sec)

[Temporal Space]
Name n f d k bpvf SVD BAOI BAOI(2) SVD BAOI BAOI(2)
Tablecloth 4225 240 30 15 6.35 13.608 13.721 13.652 0.152 0.05 (2.71×) 0.06 (2.45×)

60 30 6.39 13.142 13.321 13.211 0.464 0.09 (4.73×) 0.12 (3.93×)
Flag 2704 1000 125 50 5.62 26.211 26.935 26.438 13.26 0.69 (19.22×) 1.08 (12.28×)

250 50 3.20 27.450 28.069 27.641 74.89 1.47 (50.98×) 2.62 (28.58×)
Tsunami 4225 1250 125 35 3.75 9.6370 9.6381 9.6376 27.11 1.28 (21.18×) 1.81 (14.98×)

250 70 4.10 8.6660 8.6736 8.6663 140.10 2.58 (54.30×) 3.88 (36.11×)
[Spatial Space]

Nameclusters n f d k bpvf SVD BAOI BAOI(2) SVD BAOI BAOI(2)
Handstand40 10002 160 40 4 4.96 18.404 19.269 18.966 196.5 3.24 (60.60×) 6.38 (30.80×)
Handstand100 40 4 5.79 16.154 16.656 16.359 23.84 0.84 (28.48×) 1.71 (13.92×)
Camel100 21887 50 10 2 9.33 13.665 14.824 13.849 325.0 10.9 (29.76×) 20.9 (15.57×)
Camel200 10 2 9.65 13.649 14.762 14.037 65.90 4.36 (15.11×) 7.44 (8.86×)
Elephant200 42321 48 24 4 7.93 10.983 10.907 10.900 157.2 5.08 (30.93×) 9.57 (16.43×)
Elephant400 24 4 8.61 9.7720 9.7860 9.7810 33.11 1.76 (18.81×) 3.39 (9.76×)

Table 1 Extensive comparison in terms of quality and performance of the SVD and BAOI for a variety of compression
configuration setups in a highly motion-divergent collection of dynamic sequences. The minor reconstruction differences between
the testing methods are significantly reduced (with a small speedup reduction cost) by performing an extra orthogonal iteration.

that, the default values for BAOI parameters are

z = 1, tmax = 1 unless specified otherwise, meaning

that BAOI corresponds to BAOI1(1).

QAOI(εlow, εhigh): quality consistent adaptive orthog-

onal iterations (Sec. 3.3.3) until goal reconstruction

quality resides between (εlow, εhigh).

IPCA: Incremental PCA. It identifies the best sub-

space size for achieving a user-defined quality.

For simplicity reasons, uniform quantization [7] is per-

formed on the generated dictionary (qd = 14bits) and

feature vectors (qf = 12bits).

Encoding performance. We measure the performance

in terms of milliseconds (ms) for executing only the

dictionary estimation process (without including the

initialization SVD step), since the rest stages remain

the same for all variants under study (see Fig. 4). The

experiments were performed on an Intel Core i7 4790

@3.6GHz CPU with 8GB RAM.

Reconstruction quality. The evaluation of the dis-

tortion amount between the original and reconstructed

animation is traditionally performed by vertex-based

error metrics such as the well-established KG error

metric [9] which is defined as KG = 100 · ||D−D̂||F
||D−E(D)||F ,

where || · ||F denotes the Frobenius norm and E(D)

is a matrix whose columns consist of the average ver-

tex positions for all frames. On the other hand, STED

error metric has been shown to correlate well with per-

ceived distortion by measuring spatiotemporal edge dif-

ferences [30]. The overall error is evaluated as a hy-

potenuse of two parts; spatial ES and temporal ET er-

rors using a weighting constant w to relate them STED

=
√

ES
2 + w2 ·ET

2. In this work, we have used both

SVD
5.5/1.1/0.002s

Original
bpv/KG/�me

BAOI
5.5/1.2/0.0001s

OD3GC [18]
6.8/82/0.008s

MBL [13]
6.5/12.5/0.02s

Fig. 5 Comparison of PCA based approaches with static
mesh compression methods at Samba animation sequence.

metrics to measure distortion related to absolute via

KG (Fig. 1, 6-8, 10) as well as relative changes via

STED (Table 1 and video) of the vertex positions.

Compression efficiency. Data-rate is measured in

bits per vertex per frame (bpvf) encapsulating the mesh

connectivity, the feature vectors matrix and the dictio-

nary coefficients required for reconstructing the original

dataset at the decoder.

4.2 Experimental Study

Impact of spatiotemporal correlations. Figure 5

illustrates a reconstructed frame using two state of the

art static mesh compression approaches, MBL [13] and

OD3GC [18] as compared to the SVD and BAOI ap-

proaches. Observe that the exploitation of PCA signif-

icantly outperforms the application of static compres-

sion approaches on a frame to frame basis in terms of

both reconstruction accuracy and execution time.

Impact of frame block size (d). Figure 6 illustrates

how altering the time subdivision length d = {50, 250}

8 Aris S. Lalos et al.

K
G

 E
rr

or

Flag Animation (f:1000)

2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

bpvf

0.333

1.133

d: 250 - k: [50,100,150,200]
SVD
BAOI
BAOI2

BAOI(2)
BAOI(3)

: 70.73s
: 1.365s (52x)
: 1.599s (44x)
: 2.511s (28x)
: 3.307s (21x)

2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

d: 50 - k: [10,20,30,40]
SVD
BAOI
BAOI2

BAOI(2)
BAOI(3)

: 1.47s
: 0.28s (5.2x)
: 0.30s (4.9x)
: 0.37s (4.0x)
: 0.45s (3.3x)

1.874
2.3

0.413

Fig. 6 Approximation and performance evaluation for the
Flag animation sequence for different compression ratios us-
ing various frame block sizes.

affects the reconstruction accuracy as well as the to-

tal processing time when encoding, under a wide com-

pression ratio range (bpvf = 2, . . . , 12), the Flag ani-

mation sequence that consists of 1000 frames. First of

all, it is highly evident how the reconstruction quality

of BAOI converges to the one of the SVD when the

number of OI is slightly increased. Furthermore, the

block size d should be carefully selected when focus-

ing on the final reconstruction quality since updating

the dictionaries less (d = 250) or more (d = 50) fre-

quently does not guarantee better approximation out-

put. In terms of performance, we observe the supe-

riority of BAOI for all sizes when compared to the

SVD method even when more than two OI are em-

ployed. Note that while updating the dictionaries less

frequently (d = 250) results to a higher performance

gain (21×-52×), the total encoding time in each case is

proportionally higher (following a linear behavior) than

the one performed with a smaller block size (d = 50).

Similar conclusions can also be derived from Table 1

(Temporal Space).

Impact of iterations/multiplications (tmax, z). Fig-

ure 6 as well as Table 1 show how the BAOI closes

the gap and finally reaches, in high precision, the lev-

els of reconstruction quality (in both KG and STED

metrics) derived by the SVD when increasing the num-

ber of OI for a wide range of compression configurations

and animations. We further observe that the speedup of

BAOI is exponentially decreased when moving to higher

OI. As we expected, BAOIz is faster than BAOI(tmax)

when tmax = z > 1, since a matrix multiplication re-

quires less computations time than performing one OI.

Heatmap visualizations are also offered showing the dis-

tortion alleviation when one extra OI is used (Fig. 7).

0 max

Original SVD BAOI BAOI(2)

Fig. 7 Heatmap visualization differences of KG between
SVD and BAOI for Tablecloth (top), Flag (middle) and
Camel Collapse poses (bottom). Insets highlight how the se-
vere approximation artifacts are mitigated using one extra OI.

Impact of partitioning (c): Figure 8 shows the im-

pact on compression quality and performance when uni-

form geometry clustering the Handstand animation into

c = {40, 100} parts. First of all, it is clearly shown that

the more components mesh is partitioned into, the less

distortion artifacts arise (see also spatial space scenarios

in Table 1). However, this comes at the cost of sacrific-

ing compression efficiency, since we store the same num-

ber of features (k = {3, . . . , 7}) for more sub-meshes On

the other hand, it should be noted that processing small

independent parts reduces significantly the computa-

tional complexity of the reconstruction, allowing at the

same time a parallel compression implementation (not

performed here). Last but not least, the segmentation

must not reach high levels in order to maintain the per-

formance gain of BAOI.

0

0.5

1

1.5

2

2.5

3 4 5 6 70

0.5

1

1.5

2

k

K
G

 E
rr

or

Handstand Animation (f: 160, d: 35) 40 parts
SVD
BAOI
QAOI (1e−2,1e−10)
QAOI (1e−4,1e−10)

100 parts
SVD
BAOI
QAOI (1e−2,1e−10)
QAOI (1e−4,1e−10)

(43.7s,4.37)

(4.34s,6.05)
(7.29s,13.2)

(1.36s,4.37)

(43.7s,5.46)

(3.32s,6.56)
(6.71s,13.6)

(1.36s,5.46)

(12.6s,4.71)

(0.71s,5.89)
(1.18s,8.68)

(0.42s,0.42)

(12.6s,5.87)

(0.67s,6.54)
(1.10s,9.03)

(0.42s,5.87)

Fig. 8 Approximation as well as time and compression ratio
(in brackets) for various k using different spatial clustering
on the Handstand animation.

Adaptive Compression of Animated Meshes by Exploiting Orthogonal Iterations 9

Impact of frame incoherence: Figure 9 shows the

rich reconstruction quality when QAOI and BAOI (d =

200) are employed respectively on highly inconsistent

point cloud animation generated from (a) the transient

analysis of the particles behavior in a patient specific 3D

lung model reconstructed from CT scans (f = 215) [12]

and (b) morphing from one letter into another forming

the word “2017” (f = 600). Despite the high motion

variance of animated particles, performing dictionary

updates with QAOI and BAOI do not impose any no-

ticeable perceptual visual error, generating in the end

plausible global illuminated image results with a huge

performance speedup (up to 18.64×) as compared to

the direct SVD approach.

Impact of error thresholds (εlow, εhigh). Figure 8

shows that the QAOI scheme allows the user to deter-

mine the reconstruction quality (by altering the error

bounds) of the Handstand animation; but, by deterio-

rating the compression efficiency and slightly increasing

the execution time as compared to the BAOI approach.

However, it still achieves up to 10× lower execution

times as compared to the SVD approach. Similar con-

clusions are also drawn from Figure 10 by observing the

per frame normalized square error of the reconstructed

Tablecloth animation (f = 240, d = 40, k = 6). While

BAOI scheme exhibits the fastest execution time and

the best compression efficiency, it suffers from high vari-

ability in the reconstruction error. On the other hand,

QAOI provides a stable reconstruction accuracy (al-

most identical when compared to the IPCA) that can

easily be adjusted by the defined thresholds. However,

this comes with a slight increase on the execution time

(more OI) as well as a significant increase on the final

compression rate (dynamic k).

4.3 Discussion & Limitations

The thorough experimental study on a vast collection

of 3D dynamic meshes that represent a wide range of

animations (ranging from rigid motions to complex sim-

ulations, see Table 1 and video) showed that the sub-

space tracking approaches allow the robust estimation

of dictionaries at significantly lower execution times

compared to the direct SVD implementations. In gen-

eral, the BAOI scheme focus on fast streaming scenarios

while QAOI approach aims at providing progressively

high reconstruction accuracy. Despite the superiority

of BAOI when compared to the direct SVD, the initial

subspace size should be carefully selected in order to

simultaneously achieve the highest reconstruction qual-

ity and fastest compression times (Fig. 6). Experiments

showed that plausible reconstructed animations can be

generated by employing either tmax = 1 and z = 2 or

O
rig

in
al

BA
O

I

 1 100 200 300 400 500

0.0 1.0

600

Di
ffe

re
nc
e

frame

Original QAOI
32frame 44 88

Original QAOI Original QAOI

Fig. 9 QAOI (top) and BAOI (bottom) produces high qual-
ity visual reproduction despite the extreme temporal incoher-
ence between frame blocks in two particle simulations.

0 40 120 200 240

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Frame

Tablecloth Animation (f: 240, d: 40, k: 6)

no
rm

al
iz

ed
 sq

ua
re

 e
rr

or

80 160

BAOI
SVD

QAOI(1e−6,1e−10)
IPCA (1e−6,1e−10)

1.35/0.29/4.15

QAOI(1e−4,1e−10) 1.05/0.73/5.97
IPCA (1e−4,1e−10) 1.04/10.3/5.97

1.02/1.52/12.8
1.02/12.5/12.8

KG/Time/bpvf

1.27/8.94/4.15

Method

Fig. 10 Observe how fast QAOI reaches the levels of recon-
struction quality of IPCA for the entire Tablecloth animation.

tmax = 2. The execution of more tmax, z increases the

computational complexity without affecting noticeably

the reconstruction quality (Fig. 6). Finally, the approx-

imation artifacts that occur in a single frame block may

slightly increased and propagated when moving to the

subsequent ones (Fig. 9). To address the latter issue,

we suggest to either re-initialize the subspace of inter-

est using the SVD or execute an QAOI update, when

the decoded meshes are detected to drift too far from

the original ones.

5 Conclusions

We have introduced two novel approaches to support

fast and efficient compression of fully dynamic scenarios

with an undefined motion pattern and unknown topol-

10 Aris S. Lalos et al.

ogy modification behavior. In the heart of our pipeline

lies an adaptive PCA-based dictionary estimation stage

designed to simultaneously maintain three important

criteria: fast encoding times, plausible decoding results

and out-of-core behavior. While this stage is general

and independent of the underlying compression frame-

work, an extensive analysis has demonstrated the per-

formance superiority of our online variant compared

to prior compression solutions while the reconstruction

quality is maintained in high level of detail. Despite

the tremendous progress on the landscape of the dy-

namic compression field, we believe that our approach

provides a novel insight at a key area with renewed re-

search interest, where high potential for novel improve-

ments such as dynamic clustering [15,31] is feasible in

the near future.

6 Acknowledgments

This work has been supported by the H2020-PHC-2014

RIA project MyAirCoach (grant no. 643607).

References

1. Alexa, M., Müller, W.: Representing animations by
principal components. Computer Graphics Forum 19(3),
411–418 (2000)

2. Amjoun, R., Straßer, W.: Efficient compression of 3D
dynamic mesh sequences. WSCG 15(1–3), 99–106 (2007)

3. Cheng, Z.Q., Liu, H.F., Jin, S.Y.: The progressive mesh
compression based on meaningful segmentation. The
Visual Computer 23(9), 651–660 (2007)

4. Comon, P., Golub, G.H.: Tracking a few extreme singular
values and vectors in signal processing. Proceedings of
the IEEE 78(8), 1327–1343 (1990)

5. Golub, G.H., Van Loan, C.F.: Matrix computations,
vol. 3. JHU Press (2012)

6. Hua, Y.: Asymptotical orthonormalization of sub-
space matrices without square root. Signal Processing
Magazine 21(4), 56–61 (2004)

7. Ibarria, L., Rossignac, J.: Dynapack: Space-time com-
pression of the 3D animations of triangle meshes with
fixed connectivity. In: Proceedings of the 2003 SIG-
GRAPH/EG Symposium on Computer Animation, SCA
’03, pp. 126–135. Aire-la-Ville, Switzerland (2003)

8. Jacobson, A., Deng, Z., Kavan, L., Lewis, J.: Skinning:
Real-time shape deformation. In: ACM SIGGRAPH
2014 Courses (2014)

9. Karni, Z., Gotsman, C.: Compression of soft-body
animation sequences. Computers & Graphics 28(1),
25–34 (2004)

10. Karypis, G., Kumar, V.: A fast and high quality mul-
tilevel scheme for partitioning irregular graphs. SIAM
Journal on Scientific Computing 20(1), 359–392 (1998)

11. Kry, P.G., James, D.L., Pai, D.K.: Eigenskin: Real time
large deformation character skinning in hardware. In:
Proceedings of the 2002 SIGGRAPH/EG Symposium
on Computer Animation, SCA ’02, pp. 153–159 (2002)

12. Lalas, A., et al.: Numerical assessment of airflow and
inhaled particles attributes in obstructed pulmonary sys-
tem. In: 2016 IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM), pp. 606–612 (2016)

13. Lalos, A., et al.: Compressed sensing for efficient encoding
of dense 3D meshes using model-based bayesian learning.
IEEE Transactions on Multimedia 19(1), 41–53 (2017)

14. Lee, D.Y., Sull, S., Kim, C.S.: Progressive 3D mesh
compression using mog-based bayesian entropy coding
and gradual prediction. The Visual Computer 30(10),
1077–1091 (2014)

15. Luo, G., Cordier, F., Seo, H.: Compression of 3D
mesh sequences by temporal segmentation. Computer
Animation and Virtual Worlds 24(3-4), 365–375 (2013)

16. Maglo, A., Lavoué, G., Dupont, F., Hudelot, C.: 3D
mesh compression: Survey, comparisons, and emerging
trends. ACM Comput. Surv. 47(3), 44:1–44:41 (2015)

17. Mamou, K., Zaharia, T., Prêteux, F.: A skinning ap-
proach for dynamic 3D mesh compression. Computer
Animation and Virtual Worlds 17(3-4), 337–346 (2006)

18. Mamou, K., Zaharia, T., Prêteux, F.: TFAN: A low
complexity 3D mesh compression algorithm. Comput.
Animat. Virtual Worlds 20(2), 343–354 (2009)

19. Payan, F., Antonini, M.: Temporal wavelet-based com-
pression for 3D animated models. Comput. Graph.
31(1), 77–88 (2007)

20. Rus, J., Váša, L.: Analysing the influence of vertex
clustering on PCA-based dynamic mesh compression.
In: Proceedings of the 6th International Conference on
Articulated Motion and Deformable Objects, AMDO’10,
pp. 55–66. Springer-Verlag, Berlin, Heidelberg (2010)

21. Saad, Y.: Analysis of subspace iteration for eigenvalue
problems with evolving matrices. SIAM Journal on
Matrix Analysis and Applications 37(1), 103–122 (2016)

22. Sattler, M., Sarlette, R., Klein, R.: Simple and efficient
compression of animation sequences. In: Proceedings of
the 2005 SIGGRAPH/EG Symposium on Computer An-
imation, SCA ’05, pp. 209–217. ACM, NY, USA (2005)

23. Stefanoski, N., Ostermann, J.: SPC: Fast and effi-
cient scalable predictive coding of animated meshes.
Computer Graphics Forum 29(1), 101–116 (2010)

24. Strobach, P.: Fast recursive orthogonal iteration subspace
tracking algorithms & applications. Signal Processing
59(1), 73–100 (1997)

25. Tian, J., et al.: Adaptive coding of generic 3D triangular
meshes based on octree decomposition. The Visual
Computer 28(6), 819–827 (2012)

26. Váša, L., Marras, S., Hormann, K., Brunnett, G.:
Compressing dynamic meshes with geometric laplacians.
Computer Graphics Forum 33(2), 145–154 (2014)

27. Váša, L., Skala, V.: CoDDyaC: Connectivity driven
dynamic mesh compression. In: 3DTV Conference, pp.
1–4. IEEE (2007)

28. Váša, L., Skala, V.: COBRA: Compression of the basis
for PCA represented animations. Computer Graphics
Forum 28(6), 1529–1540 (2009)

29. Váša, L., Skala, V.: Geometry-driven local neighbour-
hood based predictors for dynamic mesh compression.
Computer Graphics Forum 29(6), 1921–1933 (2010)

30. Váša, L., Skala, V.: A perception correlated comparison
method for dynamic meshes. IEEE Transactions on Visu-
alization and Computer Graphics 17(2), 220–230 (2011)

31. Vasilakis, A.A., Fudos, I.: Pose partitioning for multi-
resolution segmentation of arbitrary mesh animations.
Computer Graphics Forum 33(2), 293–302 (2014)

32. Vasilakis, A.A., Fudos, I., Antonopoulos, G.: PPS: Pose-
to-pose skinning of animated meshes. In: Proceedings of
the 33rd Computer Graphics International, CGI ’16, pp.
53–56. ACM, New York, NY, USA (2016)

33. Xu, G., Kailath, T.: Fast estimation of principal
eigenspace using Lanczos algorithm. SIAM Journal on
Matrix Analysis and Applications 15(3), 974–994 (1994)

