
sensors

Article

Deep CNN Sparse Coding for Real Time Inhaler
Sounds Classification

Vaggelis Ntalianis 1,*, Nikos Dimitris Fakotakis 1, Stavros Nousias 1,2,* , Aris S. Lalos 2,
Michael Birbas 1, Evangelia I. Zacharaki 1 and Konstantinos Moustakas 1

1 Department of Electrical & Computer Engineering, University of Patras, 26504 Patras, Greece
2 Industrial Systems Institute, Athena Research Center, 26504 Patras, Greece
* Correspondence: up1020072@upnet.gr (V.N.); snousias@upatras.gr (S.N.); Tel.: +30-2610996170 (S.N.)

Received: 31 January 2020; Accepted: 16 April 2020; Published: 21 April 2020
����������
�������

Abstract: Effective management of chronic constrictive pulmonary conditions lies in proper and
timely administration of medication. As a series of studies indicates, medication adherence can
effectively be monitored by successfully identifying actions performed by patients during inhaler
usage. This study focuses on the recognition of inhaler audio events during usage of pressurized
metered dose inhalers (pMDI). Aiming at real-time performance, we investigate deep sparse
coding techniques including convolutional filter pruning, scalar pruning and vector quantization,
for different convolutional neural network (CNN) architectures. The recognition performance has
been assessed on three healthy subjects following both within and across subjects modeling strategies.
The selected CNN architecture classified drug actuation, inhalation and exhalation events, with 100%,
92.6% and 97.9% accuracy, respectively, when assessed in a leave-one-subject-out cross-validation
setting. Moreover, sparse coding of the same architecture with an increasing compression rate
from 1 to 7 resulted in only a small decrease in classification accuracy (from 95.7% to 94.5%),
obtained by random (subject-agnostic) cross-validation. A more thorough assessment on a larger
dataset, including recordings of subjects with multiple respiratory disease manifestations, is still
required in order to better evaluate the method’s generalization ability and robustness.

Keywords: deep sparse coding; convolutional neural networks; signal analysis; respiratory diseases;
medication adherence

1. Introduction

The respiratory system is a vital structure vulnerable to airborne infection and injury.
Respiratory diseases are leading causes of death and disability across all ages in the world.
Specifically, nearly 65 million people suffer from chronic obstructive pulmonary disease (COPD) and
3 million die from it each year. About 334 million people suffer from asthma, the most common
chronic disease of childhood, affecting 14% of all children globally [1]. The effective management
of chronic constrictive pulmonary conditions lies, mainly, in the proper and timely administration
of medication. However, as recently reported [2], a large proportion of patients use their inhalers
incorrectly. Studies have shown that possible technique errors can have an adverse impact on clinical
outcome for users of inhaler medication [3,4]. Incorrect inhaler usage and poor adherence were found
to be associated with high COPD assessment test scores [5], short durations of COPD, high durations
of hospitalization and high numbers of exacerbations.

Several methods have been introduced to monitor a patient’s adherence to medication. As a
series of studies indicate, effective medication adherence monitoring can be defined by successfully
identifying actions performed by the patient during inhaler usage. Several inhaler types are available
in the market, among which the pressurized metered dose inhalers and dry powder inhalers are the

Sensors 2020, 20, 2363; doi:10.3390/s20082363 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-2811-235X
https://orcid.org/0000-0001-8228-0437
http://dx.doi.org/10.3390/s20082363
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/8/2363?type=check_update&version=2


Sensors 2020, 20, 2363 2 of 29

most common. In any case, the development of a smart inhaler setup, that allows better monitoring
and direct feedback to the user independently of the drug type, is expected to lead to more efficient
drug delivery, thereby becoming the main product used by patients.

The pMDI usage technique is characterized as successful, if a certain sequence of actions is
followed [6]. Appropriate audio based monitoring could help patients synchronize their breath with
drug activation and remind them to keep their breath after inhalation, for a sufficient amount of
time. Several methodologies that engage electronic monitoring of medication adherence, have been
introduced in the past two decades [7], aiming to alter patient behavioural patterns [8,9]. In the field of
inhaler based health monitoring devices, a recent comprehensive review by Kikidis et al. [10] provides
a comparative analysis of several research and commercial attempts in this direction. Cloud based
self-management platforms and sensor networks constitute the next step towards effective medication
adherence and self-management of respiratory conditions [11,12].

In all cases, it is crucial to successfully identify audio events related to medication adherence. In this
direction, several approaches have been proposed in the literature, presenting mainly decision trees or
other state of the art classifiers, applied on a series of extracted features. However, the aforementioned
methodologies come with high computational cost, limiting the applicability of monitoring medication
adherence to offline processing or online complex distributed cloud-based architectures, that are able
to handle the need for resources. Therefore, the demand for computationally fast, yet highly accurate,
classification techniques still remains.

Motivated by the aforementioned open issues, this study lies on the same track as several
data-driven approaches [13–15], presenting a method that recognizes the respiration and drug delivery
phases on acoustic signals derived from pMDI usage. The main focus of this work is the investigation
of acceleration aspects, namely filter pruning, scalar pruning and vector quantization, applied on
convolutional neural networks (CNNs). The adaptation of such strategies allows to reduce computational
complexity and improve performance and energy efficiency. The CNNs are trained to differentiate four
audio events, namely, drug actuation, inhalation, exhalation and other sounds. Five different CNN
architectures are investigated and the classification accuracy is examined as a function of compression
rate. More specifically, the benefits of this work can be summarized in the following points:

• The presented methods are applied directly on the time-domain avoiding computationally
expensive feature extraction techniques.

• The overall classification accuracy for the proposed CNN architecture is high (95.7%–98%),
for both within and across subjects cross-validation schemes.

• A compression rate by a factor of 7.0 can be achieved with accuracy dropping only by 1%.
• The investigated deep sparse coding oriented strategies (Implementation of this work and a part

of the dataset used to validate it, is available online at: https://github.com/vntalianis/Deep-
sparse-coding-for-real-time-sensing-of-medication-adherence), namely filter pruning and vector
quantization, allow compliance with real-time requirements and open the path for adaptation of
the inhaler device into Internet of Things (IoT).

The rest of the paper is organized as follows: Section 2 presents an extensive overview on
relevant literature, Section 3 describes the CNN architectures and our methodology to enforce sparsity,
Section 4 presents the experimental setup and the evaluation study and, finally, Section 5 provides
future directions on the analysis of inhaler sounds.

2. Related Work

This section examines classical and data-driven approaches on classification of inhaler sounds.
Early methodologies encompass electronic or mechanical meters integrated into the device,
activated with the drug delivery button. Howard et al. [16] reported the existence of several such
devices, able to record the time of each drug actuation, or the total number of them. The use of audio
analysis came up later as a method, which can characterize the quality of inhaler usage, while, also,

https://github.com/vntalianis/Deep-sparse-coding-for-real-time-sensing-of-medication-adherence
https://github.com/vntalianis/Deep-sparse-coding-for-real-time-sensing-of-medication-adherence


Sensors 2020, 20, 2363 3 of 29

monitoring the timings of each audio event. The classical audio analysis involves transformation
of the time-domain into a set of features, mainly, in the frequency domain, including Spectrogram,
Mel-Frequency Ceptral Coefficients (MFCCs), Cepstrogram, Zero-Crossing Rate (ZCR), Power Spectral
Density (PSD) and Continuous Wavelet Transform (CWT). Subsequently, audio-based evaluation
employs the extracted features via classification approaches to locate and identify medication-related
audio events.

Holmes et al. [17–19] designed decision trees in the scientific sub-field of blister detection and
respiratory sound classification. This study includes detection of drug activation, breath detection and
inhalation-exhalation differentiation and provides feedback, regarding to patient adherence. As a first
step, the audio signal is segmented into frames of specific length, with overlaps. The mean power
spectral density is calculated for defined frequencies and is used as a threshold to differentiate between
blister and non-blister sounds. Also, the maximum normalized amplitude and the time duration are used
to remove false positive sounds. The algorithm, then, examines the mean PSD, in specific frequency
band, as the last threshold for blister sounds categorization. At the second stage, this algorithmic
approach detects breath sounds. In this case, the audio signal is first filtered to remove high frequency
components above a threshold, using a low-pass type I 6th order Chebyshev filter. Many window
techniques exist for the design of Finite Impulse Response (FIR) and Infinite Impulse Response (IIR)
Filters [20–22], such as Hamming, Hanning and Blackman for FIR Filter design, and Butterworth and
Chebyshev for IIR Filters.

After signal segmentation, one set of 12 MFCCs is calculated for each frame, forming a short-time
Cepstrogram of the signal. Ruinskiy et al. [23] perform singular value decomposition to capture
the most important characteristics of breath sounds obtained from MFCC calculations. They set an
adaptive threshold, according to the lowest singular vector in the inhaler recording, and mark the
singular vectors above this threshold as potential breath events. For the last threshold, at this stage,
the ZCR is extracted for each frame. Finally, the algorithms find the differentiation between inhalations
and exhalations. The mean PSD of identified breaths is calculated for a determined frequency band
and is used as a threshold for classification. Then, the standard deviation of the ZCR was found to be
higher for inhalations in comparison to exhalations and a value is set, from empirical observations.

Taylor et al. [24,25] used the CWT to identify pMDI actuations, in order to quantitatively
assess the inhaler technique, focusing only on the detection of inhaler actuation sounds. As a step
forward data-driven approaches learn by example from features and distributions found in the data.
Taylor et al. [26] compared Quadratic Discriminant Analysis (QDA) and Artificial Neural Network
(ANN) based classifiers using MFCC, Linear Predictive Coding, ZCR and CWT features.

Nousias et al. [13,27] compared feature selection and classification strategies using Spectrogram,
Cepstrogram and MFCC with supervised classifiers, such as Random Forest (RF), ADABoost and
Support Vector Machines (SVMs), demonstrating high classification accuracy.

Pettas et al. [15] employed a deep learning based approach using the Spectrogram as a tool to
develop a classifier of inhaler sounds. The Spectrogram is swept across the temporal dimension with
a sliding window with length w = 15 moving at a step size equal to a single window. The features
of each sliding window are inserted into a recurrent neural network with long-short memory units
(LSTM), demonstrating high performance in transitional states where mixture of classes appear.

Ntalianis et al. [14] employed five convolutional networks, applied directly in the time-domain,
and showed that CNNs can automatically perform feature extraction and classification of audio
samples with much lower computational complexity, at similar or higher classification accuracy than
classical approaches. Each model uses a vector of n = 4000 samples reshaped in a two-dimensional array
(250× 16), that is introduced in the deep CNN. Evaluation was limited to five-fold cross-validation in
a subject-agnostic way, in which different samples from the same subject might be part of the training
and test set, respectively.

This study aims to build upon previous CNN-based approaches for the identification of inhaler
events, by investigating also acceleration strategies. CNNs have been established as a reliable



Sensors 2020, 20, 2363 4 of 29

state-of-the-art, data-driven approach for biosignal classification [28–32]. The adaptation of acceleration
approaches, including filter pruning, scalar pruning and vector quantization, aims to lead to lower
computational complexity and higher energy efficiency, facilitating IoT targeted implementations.
In Section 4 we present the classification accuracy of the aforementioned studies, aiming to compare
results of previous studies with our current approach.

3. Monitoring Medication Adherence through Deep Sparse Convolutional Coding

This section provides a comprehensive analysis of the deep architecture employed to perform the
inhaler audio classification. Based on a main convolutional neural network architecture, five different
variations are being investigated. Furthermore, compression and acceleration strategies, namely filter
and scalar values pruning and vector quantization, are also being analyzed.

3.1. Convolutional Neural Network Architecture

The CNN architecture, presented in Figure 1, consists of three convolutional layers with a
max-pooling layer, a dropout function [33] and four fully connected layers. Using this structure,
five different CNNs were developed as presented in Table 1. For the convolutional kernels the stride is
set equal to one with zero padding, in order to keep the shape of the output of each filter constant and
equal to its input’s dimensionality. Every model utilizes the same sequence of layers, but with a different
number of filters in the convolutional layers, or a different number of neurons in the fully connected
layers, or different activation functions. Specifically, Table 1 presents the stacked layers for each model,
the values of dropout layers, the number of filters in each convolutional layer, the number of neurons in
fully connected layers and the activation function. In the fifth model, we select Exponential Linear Unit
(ELU), due to the fact that the recordings contain both negative and positive values and ELU, in contrast
to ReLu, does not zero out negative values. As far as the training parameters is concerned, the learning
rate is set to 0.001, the batch size is equal to 100 and the categorical cross entropy loss function is
employed. Training is executed through 5-fold cross validation with 20 epochs and Adam optimizer.
In order to train the five CNN architectures, raw recordings in the time domain are directly used as
input. The initial audio files contain multiple events, namely inhalation, exhalation, drug delivery and
environmental noise. The final stage of preprocessing contains the formation of sound samples of 0.5 s
duration (i.e., 4000 samples) collected with a sliding step of 500 samples. Only samples with unique
classes are retained in the dataset. For a given convolutional layer, the previous layer’s feature maps are
convolved with learnable kernels and passed through the activation function to form the output feature
map described by Equation (1).

x`j = f

 ∑
i∈Mj

(
x`−1

i ∗ k`
ij

)
+ b`j

 , (1)

where Mj represents a selection of input feature maps. The output is fed to a set of four dense layers.
The aforementioned architectures were chosen experimentally to keep the classification accuracy high
and, simultaneously, the computational complexity as low as possible. We also experimented with
both shallower and deeper architectures, but did not observe any further improvement.



Sensors 2020, 20, 2363 5 of 29

Table 1. Convolutional neural network (CNN) architecture variations for tested models.

Layers Layer Parameters Model 1 Model 2 Model 3 Model 4 Model 5

Convolutional Layer

Filters 16 16 8 8 16

Kernel Size 4× 4 4× 4 4× 4 4× 4 4× 4

Activation Function ReLu ReLu ReLu ReLu ELU

Max Pooling Kernel Size 2× 2 2× 2 2× 2 2× 2 2× 2

Dropout 0.2 0.2 0.2 0.2 0.2

Convolutional Layer

Filters 16 16 8 8 16

Kernel Size 5× 5 5× 5 5× 5 5× 5 5× 5

Activation Function ReLu ReLu ReLu ReLu ELU

Max Pooling Kernel Size 2× 2 2× 2 2× 2 2× 2 2× 2

Dropout 0.1 0.1 0.1 0.1 0.1

Convolutional Layer

Filters 16 16 8 8 16

Kernel Size 6× 6 6× 6 6× 6 6× 6 6× 6

Activation Function ReLu ReLu ReLu ReLu ELU

Max Pooling Kernel Size 2× 2 2× 2 2× 2 2× 2 2× 2

Dense
Neurons 64 64 64 64 64

Activation Function ReLu ReLu ReLu ReLu ELU

Dense
Neurons 128 32 32 128 128

Activation Function ReLu ReLu ReLu ReLu ELU

Dense
Neurons 64 16 16 64 64

Activation Function ReLu ReLu ReLu ReLu ELU

Dense
Neurons 4 4 4 4 4

Activation Function ReLu ReLu ReLu ReLu ELU

Test Loss 0.2413 0.2459 0.1891 0.2040 0.2145

Test Accuracy 0.9440 0.9397 0.9483 0.9586 0.9570

For the implementation we used NumPy and SciPy, mainly for data mining and numerical
computation tasks, as they are the fundamental packages to define, optimize and evaluate mathematical
expressions, for scientific computing. These libraries also optimize the utilization of GPU and CPU,
making the performance of data-intensive computation even faster. We developed this approach using
Scikit-learn, which is built on top of the two aforementioned libraries and, also, using Tensorflow,
which focuses on building a system of multi-layered nodes (multi-layered nodes system with high-level
data structures). That allowed us to train and run the convolutional networks on either CPU or GPU.
We, furthermore, used Pandas, which focuses on data manipulation and analysis (grouping, combining,
filtering, etc.) and Keras, which is a high-level neural networks API, running on top of Tensorflow.
Lastly, we used Matplotlib, as a standard Python library for data visualization (2D plots and graphs).



Sensors 2020, 20, 2363 6 of 29

Figure 1. CNN Architecture.

3.2. Filter Pruning

In order to reduce the computational requirements of the developed CNN architectures,
we performed filter pruning as described in Reference [34], aiming to remove the less significant
kernels in the convolutional layers, without deteriorating performance. In particular, we evaluate the
contribution of each kernel, at the output of the layer, by calculating the sum of its absolute weights.
For a convolutional layer with an input feature map of

xi ∈ <hi×wi×ni , (2)

where hi, wi, ni are the height, the width and the number of channels of the input respectively,
the output feature response has a shape of

xi+1 ∈ <hi+1×wi+1×ji+1 , (3)

after applying ji+1 filters with a kernel matrix k ∈ <k1×k2×ni . The filter pruning process can be
summarized in the following steps:

1. Compute the sum sj = ∑ni
l=1 ∑ k of the absolute values of the weights in each filter.

2. Sort sj and remove n filters with the lowest sum sj.
3. The rest of the weights remain unchanged.

For the filter pruning operation, two different approaches can be employed. Each layer can be
pruned independently from others, referred to as independent pruning, or by ignoring the removed
filters, also referred to as greedy pruning. The removal of a filter in the i-th layer leads to the removal
of the corresponding feature map, which in turn leads to the removal of the kernels that belong to the
i + 1th layer and are applied on the aforementioned feature map. So, with independent pruning we
sort the filters by taking into consideration the sum of the weights in these kernels. On the other hand,
greedy pruning does not include them in the computation of the sum. Note that both approaches
produce a weight matrix with the same dimensions and differ only on the filters chosen to be pruned.
Additionally, in order to affect the accuracy of the prediction model as less as possible, two training



Sensors 2020, 20, 2363 7 of 29

strategies can be followed: (1) Prune once and retrain. This approach executes the pruning procedure
first and only after all layers are processed the classifier is retrained so that its classification accuracy
reaches its initial value. (2) Iterative pruning and retraining. In contrast to the first approach, with this
method, when a layer is pruned, the rest of the network is immediately retrained, before the following
layer is pruned. In this way, we let the weights of the model adjust to the changes occurred in previous
layers, thus retaining its classification accuracy.

3.3. Pruning Scalar Values

The parameters kk1,k2,ni
of the different filters within each layer of a CNN are distributed in a

range of values, with standard deviation σ. Weights very close to zero have an almost negligible
contribution to a neuron’s activation. To this end, a threshold ` ∈ [`min, `max] is defined so that

kk1,k2,ni
= 0 i f |kk1,k2,ni

| < ` · σ, (4)

`min and `max define the range of values during hyperparameter optimization and were set
experimentally to `min = 0.1 and `max = 1.0. It is important to clarify that we employ the standard
deviation in order to control the maximum number of parameters to be pruned. Finally, this method
was evaluated by directly carrying out pruning on every layer of the classifier and by retraining the
layers that follow the pruned one.

3.4. Vector Quantization

3.4.1. Scalar Quantization

One way to decrease the number of parameters in a layer is to perform scalar quantization to
them [35]. For example, for a fully connected layer with weight matrix W ∈ <m×n, we can unfold the
matrix so that W ∈ <1×m·n and perform k-means clustering as described by the following formula:

min
m·n
∑

i

Ncl

∑
j

∥∥wi − cj
∥∥2

2 . (5)

The codebook can be extracted from the Ncl cluster centers cj produced by the k-means algorithm.
The initial parameters are then assigned with cluster indexes to map them to the closest center.
Consequently, we can reconstruct the initial weight matrix W as:

Ŵij = cz (6)

where
min

z

∥∥Wij − cz
∥∥2

2 . (7)

In respect to the convolutional layers, first, we have to decide on which dimension the k-means
algorithm is going to be applied [36]. In the i + 1 convolutional layer, the weight matrix is a
4-dimensional tensor W ∈ <k1×k2×ni×ni+1 , where ni is the number of channels of the input feature map
and ni+1 the number of channels of the output feature map. It is preferable to perform k-means along
the channels of the output feature maps in order to reduce the computational requirements by reusing
pre-computed inner products.

3.4.2. Product Quantization

The main concept of product quantization is to split the vector space into multiple sub-spaces
and perform quantization in each subspace separately. In this way, we are able to better exploit
the redundancy in each subspace [35]. In particular, let a weight matrix of a fully connected layer
W ∈ <m×n. We partition it column-wise so that:



Sensors 2020, 20, 2363 8 of 29

W = [W1, W2, ..., Ws], (8)

where Wi ∈ <m×(n/s). We apply k-means clustering in each submatrix Wi:

min
n/s

∑
z

Ncl

∑
j

∥∥∥wi
z − ci

j

∥∥∥2

2
, (9)

where wi
z represents the z-th column of the sub-matrix Wi and ci

j the column of the sub-codebook

Ci ∈ <m×Ncl . The reconstruction process is performed based on the assigned cluster and the codebook
for every sub-vector wi

z. So, the reconstructed matrix is:

Ŵ = [Ŵ1, Ŵ2, ..., Ŵs], where (10)

ŵi
j = ci

j, where min
j

∥∥∥wi
z − ci

j

∥∥∥2

2
. (11)

It is important to highlight, that product quantization can be performed to either the x-axis or the
y-axis of W, but most importantly the partitioning parameter s must divide n.

Regarding the convolutional layers, following the same idea as in scalar quantization, we split the
initial space vector into sub-spaces along the channel axis and we perform k-means at the same dimension.
Let a convolutional layer have n channels. Then, its weight matrix has a shape of W ∈ <k×k×c×n.
Introducing the splitting parameter s, each sub-space has a shape of Wl ∈ <k1×k2×ni×(ni+1/s).

3.5. Compression Rate and Computational Complexity

The objectives of the aforementioned algorithms are to reduce the storage requirements as well as
the computational complexity of the classifier. This section provides an insight of the computation of
compression and theoretical speed up that pruning and quantization achieve. As mentioned above,
pruning causes sparsity by forcing weights to become zero. Consequently, these weights are not stored
in memory achieving a compression rate, described by the following expression. This equation is used
to compute the extent of the compression for a model when filter pruning is applied as well.

compression rate =
number o f parameters in not pruned model

number o f non zero parameters a f ter pruning
(12)

On the other hand, quantizing with k-means clustering results in a more complex expression for
the compression rate, because it depends on the magnitude of both codebook and the index matrix.
In particular, for scalar quantization in fully connected layer, the codebook contains Ncl values and
only log2Ncl bits are necessary to encode the centers. Thus, if 32-bit (single-precision) representation is
used for the calculations, the total amount of bits required to store is 32 · k + m · n · log2 (Ncl) and the
compression rate that this method achieves, per layer, is:

32×m× n
32× k + m× n× log2 (Ncl)

. (13)

However, the burden of memory requirements due to the codebook is considered negligible,
comparing to the requirements of index matrix. Therefore the compression rate can be approximated
with the simpler formula [35]:

32/log2Ncl (14)

In case of the convolutional layers the k-means algorithm is performed on the channels axis.
Therefore the number of the weights required to be stored is:

new_weights = k1 × k2 × ni × Ncl , (15)



Sensors 2020, 20, 2363 9 of 29

instead of the initial, which is:

old_weights = k1 × k2 × ni × ni+1 (16)

and the compression rate can be computed by the following formula:

32× old_weights
32× new_weights+ ch× log2(Ncl)

. (17)

Note that the index matrix contains only as many positions as the number of channels in the
convolutional layer. This lies on the fact that by performing clustering along the channels axis,
we produce filters with the same weight values, thus we only need to map the initial filters to the new
ones. Finally, the compression rate that product quantization approach presented in Section 3.4.2 can
achieve, per layer, in the fully connected layer, is calculated by:

32×m× n
32×m× Ncl × s + n× log2(Ncl × s)

. (18)

For this method both the cluster indexes and the codebook for each sub-vector should be stored.
Regarding the convolutional layers, performing the k-means algorithm with Ncl clusters along the
channels the compression rate is calculated by:

32× k1 × k2 × ni × ni+1

32× k1 × k2 × ni × Ncl × s + ni+1 × log2Ncl
. (19)

Next, we present the gain in floating point operations required to perform the classification task,
when the aforementioned techniques are employed. Among these methods, pruning scalar values
and scalar quantization on fully connected layer do not offer any computational benefit. The zeroed
out weights are scattered inside the weight matrix of each layer and, therefore, they do not form a
structural pattern. For example, this method does not guarantee that all zeroed out weights belong
to a certain kernel or to a certain neuron. On the other hand, with filter pruning, we remove whole
filters, reducing efficiently the computational burden. In a convolutional layer the amount of necessary
operations depends on the dimensionality of the input feature map and the number of the weights in
the layer. The total number of floating point operations in a convolutional layer is:

ni+1 × ni × k1 × k2 × hi+1 × wi+1, (20)

where ni is the number of channels of the input feature map, k the dimensionality of the kernel,
ni+1 the channels of the output feature map and hi+1, wi+1 the height and the width of the layer’s
output, respectively. The product of ni+1 · ni · k1 · k2 determines the amount of the weights that the
layer contains.

The pruning of a single filter saves ni · k1 · k2 · hi+1 · wi+1 operations from the current layer and
ni+2 · k1 · k2 · hi+2 · wi+2 from the next layer. These additional operations can be avoided, because the
certain kernels of the next convolutional layer are also removed. Specifically, the aforementioned
kernels are applied on pruned feature maps.

Regarding the fully connected layer, the amount of floating point operations (flops) can be directly
calculated from the dimensions of the weight matrix of a layer. For the weights matrix W ∈ <m×n,
the number of flops is calculated as m · n. The value of m corresponds to the dimension of the
layer’s input and n to the dimension of its output, which is equal to the number of neurons in each
layer. In order to reduce the number of flops in a fully connected layer, we should remove neurons,
decreasing the dimensionality of the layer’s output.

Performing scalar quantization in convolutional layers with Ncl clusters along the channel axis,
we need to execute Ncl · ni · k1 · k2 · hi+1 · wi+1 operations per layer which results in a ratio of:



Sensors 2020, 20, 2363 10 of 29

Ncl × ni × k1 × k2 × hi+1 × wi+1

ni+1 × ni × k1 × k2 × hi+1 × wi+1
(21)

and by introducing the splitting parameter s to perform product quantization, the previous ratio becomes:

Ncl × s× ni × k1 × k2 × hi+1 × wi+1

ni+1 × ni × k1 × k2 × hi+1 × wi+1
. (22)

Finally, performing product quantization on fully connected layers with Ncl clusters and s
sub-spaces, the ratio of the flops required after quantization, to the flops required before quantization,
is calculated as

m× Ncl × s
m× n

=
Ncl × s

n
. (23)

4. Experimental Procedure And Evaluation

4.1. Data Acquisition

Audio recordings from pMDI use were received, using a standard checklist of steps, recommended
by National Institute of Health (NIH) guidelines, as it was essential to ensure that the actuation sounds
were accurately recorded. The data were acquired from three subjects, between 28 and 34 years old,
who all used the same inhaler device loaded with placebo canisters. The recordings were performed
in an acoustically controlled indoor environment, free of ambient noise, at the University of Patras,
to reflect possible use in real-life conditions and to ensure accurate data acquisition. The study
supervisors were responsible for inhaler actuation sounds and respiratory sounds and followed a
protocol, that defined all the essential steps of pMDI inhalation technique. Prior training of the
participants, on this procedure, allowed to reduce the experimental variability and increase the
consistency of action sequences. Each participant annotated in written form the onset and duration of
each respiratory phase, during the whole experiment. Also, the annotation of the different actions was
subsequently verified and completed by a trained researcher and based on visual inspection of the
acquired temporal signal. In total, 360 audio files were recorded with a duration of twelve seconds
each [13–15].

The acoustics of inhaler use were recorded as mono WAV files, at a sampling rate of 8000 Hz.
After quantization, the signal had a resolution (bit depth) of 16 bits/sample. Throughout the processing
of the audio data, no further quantization on the data took place, except the quantization of the CNN
weights into clusters of similar values of the convolutional and fully connected layer. The device for
the recordings is presented in Reference [13]. Figure 2 depicts an overview of the processing pipeline.
The sensor’s characteristics are 105 dB-SPL sensitivity and 20 Hz–20 kHz bandwidth. Each recording
contains a full inhaler usage case. The first person (male) submitted 240 audio files, the second person
(male) 70 audio files and the third subject (female) 50 audio files. Each subject, at first, breathes out and
after bringing the device to their mouth he/she starts to inhale. Simultaneously, the subject presses the
top of the inhaler to release the medication and continues to inhale until having taken a full breath.
Then, breath holding follows for about 10 s and, finally, exhaling.

In order to train and test the proposed classifier, the audio recordings were segmented into inhaler
activation, exhalation, inhalation, and noise (referring to environmental or other sounds) by a human
expert using a graphical annotation tool [13]. A user interface visualizes the audio samples while
the user selects parts of the audio files and assigns a class. The annotated part is stored in a separate
audio file. A full audio recording timeseries example is presented in Figure 3, colored according to the
annotated events. Any signal part that has not been annotated, was considered as noise, during the
stage of validation. This dataset has the potential to allow in-depth analysis of patterns on sound
classification and data analysis of inhaler use in clinical trial settings.



Sensors 2020, 20, 2363 11 of 29

Figure 2. Overview of the processing pipeline.

Figure 3. Annotated audio file of 12 s. Red color corresponds to inhalation, cyan to exhalation, green to
drug activation and black to other sounds.

Each sound sample has a total duration of 0.5 s, sampled with 8 kHz sampling rate and 16-bit
depth. The audio files used for training and testing were loaded through appropriate libraries in a
vector of 4000× 1 dimension and, then, reshaping is performed in order to employ two-dimensional
convolutions. In particular, the first 16 samples are placed in the first row of the matrix, the next
16 samples in the second, and so on, until a 250 × 16 matrix is constructed. An example of the



Sensors 2020, 20, 2363 12 of 29

reshaping procedure is given in Figure 4, while Figure 5 visualizes examples of sounds per class after
this reshaping procedure.

Figure 4. Illustration of reshaping of a vector into a two-dimensional matrix.

(a) Sound of drug class after reshaping (b) Sound of exhale class after reshaping

(c) Sound of inhale class after reshaping (d) Sound of noise class after reshaping

Figure 5. Visualization of the segmented audio files for each respiratory phase after the reshaping procedure.

4.2. Evaluation Schemes

The training and assessment of the five CNN models is performed in three different
cross-validation settings. Firstly, we consider the Multi Subject modeling approach. In this case,
the recordings of all three subjects are used to form a large dataset, which is divided in five equal parts
used to perform five-fold cross-validation, thereby allowing different samples from the same subject
to be used in training and test set, respectively. This validation scheme was followed in previous
work [14] and thus performed, also, here for comparison purposes.



Sensors 2020, 20, 2363 13 of 29

The second case includes the Single Subject setting, in which the performance of the classifier is
validated through training and testing, within each subject’s recordings. Specifically, the recordings of
each subject are split in five equal parts, to perform cross-validation. The accuracy is assessed for each
subject separately and, then, the overall performance of the classifier is calculated by averaging the
three individual results.

Finally, Leave-One-Subject-Out (LOSO) method is employed. With this approach we use the
recordings of two subjects for training and the recordings of the third subject for testing. This procedure
is completed, when all subjects have been used for testing, and the accuracy is averaged to obtain the
overall performance of the classifiers.

4.3. Results

4.3.1. Comparison with Relevant Previous Work

In order to better assess the contribution of the proposed approach, we first summarize in Table 2
the classification performance of previous state of the art algorithms that were presented in Section 2.
In more details, Holmes et al. [17] presented, in 2012, a method that differentiates blister and non-blister
events with an accuracy of 89.0%. A year later, Holmes et al. [18,19], also, developed an algorithm that
recognizes blister events and breath events (with an accuracy of 92.1%) and separates inhalations from
exhalations (with an accuracy of more than 90%). Later, Taylor et al. developed two main algorithms
for blister detection [26,37] based on Quadratic Discriminant Analysis and ANN, and achieved an
accuracy of 88.2% and 65.6%, respectively. Nousias et al. in Reference [13] presented a comparative
study between Random Forest, ADABoost, Support Vector Machines and Gaussian Mixture Models,
reaching the conclusion that RF and GMM yield a 97% to 98% classification accuracy on the examined
dataset, when utilizing MFCC, Spectrogram and Cepstrogram features.

Pettas et. al [15] developed a recurrent neural network with long short term memory (LSTM),
which was tested on the same dataset with this study and using the same modeling schemes, that is,
SingleSubj, MultiSubj and LOSO. For the subject-specific modeling case the overall prediction accuracy
was 94.75%, with higher accuracy in the prediction of breathing sounds (98%). Lower accuracy is
demonstrated in drug administration and environmental sounds. Much higher accuracy is reported
for MultiSubj modeling, where the training samples are obtained from all subjects and shuffled
across time. It yielded a drug administration prediction accuracy of 93%, but a lower prediction
accuracy of environmental sounds (79%), demonstrating a total of 92.76% accuracy over all cases.
Furthermore, the LOSO validation demonstrated similar results, with the SingleSubj case. The high
classification accuracy obtained by LSTM-based deep neural networks, is also in agreement with
other studies [13,19]. Specifically, the recognition of breathing sounds is more accurate than the drug
administration phase, which reaches a value of 88%, while the overall accuracy is 93.75%. In order
to compare our approach with previous studies, we followed the same validation strategies for each
different convolutional neural network architecture and summarize the comparative results in Table 3.

From Tables 2 and 3, it is apparent that the classification accuracy achieved by our approach
does not exceed the performance of the relevant state of the art approaches. In fact, our approach
performs, similarly, with the methods developed by Holmes et al. [17,18], Taylor et al. [24] and
Pettas et al. [15], but the approach of Nousias et al. [13] outperforms our algorithm, mainly, for the
drug and environmental noise classes. However, the utilization of a CNN architecture in the time
domain allows for an implicit signal representation, that circumvents the need of additional feature
extraction (e.g., in the spectral domain) and, thereby, results in significantly lower execution times.
We compare the computational cost of Model 5 of our method with the Random Forest algorithm
presented in Reference [13], both executed in the same machine (Intel(R) Core(TM) i5-5250U CPU @
2.7 GHz). The results are summarized in Figure 6.



Sensors 2020, 20, 2363 14 of 29

Table 2. State of the Art with multi-subject validation setting.

Accuracy per Class (%) Overall Accuracy (%)
Drug Inhale Exhale Noise

Holmes et al. (2012) 89.0 - - - 89.0

Holmes et al. (2013-14) 92.1 91.7 93.7 - 92.5

Taylor et al. (2017) QDA 88.2 - - - 88.2

ANN 65.6 - - - 65.6

Nousias et al. (2018)

SVM

MFCC 97.5 97.7 96.1 96.7 97.0

SPECT 97.5 94.9 58.9 95.4 86.6

CEPST 99.4 98.6 98.2 98.8 98.7

RF

MFCC 97.1 96.7 95.9 95.1 96.2

SPECT 97.7 98.0 97.0 96.5 97.3

CEPST 99.0 98.2 97.4 96.5 97.7

ADA

MFCC 97.5 96.9 96.8 93.6 96.2

SPECT 98.8 98.4 97.0 97.9 98.0

CEPST 99.2 97.5 97.4 97.9 98.0

GMM

MFCC 96.7 97.7 96.1 96.3 96.7

SPECT 99.2 98.2 93.3 88.4 94.8

CEPST 99.4 98.6 99.2 96.9 98.5

Proposed Approach

Model 1 88.4 99.4 92.2 85.7 94.4

Model 2 83.9 99.1 97.5 81.9 94.0

Model 3 86.4 98.9 94.5 80.2 94.8

Model 4 83.6 98.7 96.2 83.4 95.9

Model 5 86.7 97.9 98.3 85.5 95.7

Table 3. State of the Art with all validation settings.

Accuracy per Class (%) Overall Accuracy (%)
Drug Inhale Exhale Noise

Pettas et al. (2019)
Single Subject 83.0 98.0 98.0 87.0 94.8

Multi Subject 93.0 96.0 98.0 79.0 92.8

LOSO 88.0 98.0 96.0 86.0 93.8

Proposed Approach

Model 1

Single Subject 71.5 99.3 98.1 93.1 97.4

Multi Subject 88.4 99.4 92.2 85.7 94.4

LOSO 100.0 96.3 98.8 - 93.2

Model 2

Single Subject 76.7 99.7 96.6 80.9 97.6

Multi Subject 83.9 99.1 97.5 81.9 94.0

LOSO 100.0 93.6 95.4 - 83.4

Model 3

Single Subject 65.3 99.6 98.9 84.2 97.5

Multi Subject 86.4 98.9 94.5 80.2 94.8

LOSO 100.0 92.2 89.0 - 98.0

Model 4

Single Subject 68.4 99.6 99.0 84.9 98.2

Multi Subject 83.6 98.7 96.2 83.4 95.9

LOSO 85.7 82.6 99.2 - 86.0

Model 5

Single Subject 85.0 99.5 99.5 95.0 98.0

Multi Subject 86.7 97.9 98.3 85.5 95.7

LOSO 100.0 92.6 97.9 - 96.2



Sensors 2020, 20, 2363 15 of 29

Figure 6. Comparison of the computational cost of our approach and other studies. Boxplots from left
to right: RF with multiple features (mean time: 7.5 s), RF with only STFT (mean time: 0.6 s) and Model
5 of our CNN (mean time: 0.4 s).

This figure highlights the gain in computational speed up of our approach, compared to the
time consuming Random Forest algorithm with feature extraction. Specifically, Figure 6 shows that
classification by RF, using multiple features, requires more than 7 s, whereas the CNN Model 5 requires
less than half a second. Finally, it is important to note that our approach is faster even when only STFT
is extracted and used as input to the Random Forest.

4.3.2. Pruning Scalar Weights

In order to evaluate the performance of this algorithm, we present the classification accuracy
as well as the compression rate, when no retraining is applied, in Table 4. The parameter l,
which determines the threshold for pruning, varies from 0.1 to 1.0 with a step of 0.1. It is clear
that when increasing the parameter l and consequently the threshold for pruning, the accuracy of the
classifier decays. Among the five models, more robust to changes appears to be Models 1, 4 and 5,
because they retain their performance above 90%, even when the parameter l is set to 0.8. On the other
hand, model 3 and 4 show the worst performance dropping below 90% for intermediate values of l.

The results, presented in Table 5, corresponding to the approach that employs the retraining
technique, show that the classifiers are able to adapt to the changes made in the previous layers,
retaining their high accuracy, independently of the threshold defined by l and σ. It is worth mentioning
that with this approach the lowest classification accuracy is 93% achieved by model 3, whereas model 5
reaches up to 96%, improving its initial performance. Additionally, we are able to compress the
architectures two times more than the previous approach, where retraining process is not included.
This occurs because retraining the network results in larger standard deviation of the weights in each
layer, but with their mean value almost equal to zero. Thus, more weights will be zeroed out.

It should be highlighted that pruning scalar values can only reduce the memory requirements
since there are fewer non zero weights. However, it does not perform structural pruning, meaning that
it is uncertain if the pruned parameters belong to a particular filter or a neuron and therefore it does
not improve the computational time.



Sensors 2020, 20, 2363 16 of 29

Table 4. Evaluation of the performance for the developed architectures with the method of pruning
scalar weights without retraining. Factor l corresponds to the percentage of the standard deviation
used to determine the threshold for pruning.

Factor l 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Model 1

Loss 0.24 0.25 0.24 0.24 0.24 0.23 0.26 0.31 0.38 0.51

Accuracy (%) 94.83 94.14 93.97 93.97 93.80 93.97 93.45 91.91 90.01 87.60

Compression Rate 1.08 1.18 1.29 1.42 1.58 1.79 1.99 2.25 2.55 2.91

Model 2

Loss 0.24 0.26 0.28 0.33 0.60 0.69 1.54 0.98 0.97 1.34

Accuracy (%) 93.97 93.45 93.28 91.56 84.16 82.09 58.86 65.95 69.53 55.93

Compression Rate 1.08 1.19 1.31 1.45 1.63 1.84 2.10 2.40 2.77 3.19

Model 3

Loss 0.19 0.19 0.19 0.23 0.24 0.38 0.74 1.44 1.67 1.56

Accuracy (%) 94.83 94.83 94.32 93.11 92.95 87.77 74.69 56.45 51.80 43.02

Compression Rate 1.08 1.19 1.31 1.45 1.64 1.84 2.08 2.39 2.74 3.1712

Model 4

Loss 0.20 0.20 0.19 0.18 0.19 0.19 0.19 0.22 0.48 0.82

Accuracy (%) 95.69 95.69 95.69 95.52 95.18 95.18 95.00 93.97 85.71 75.21

Compression Rate 1.08 1.17 1.28 1.41 1.56 1.74 1.94 2.17 2.45 2.78

Model 5

Loss 0.21 0.21 0.21 0.20 0.20 0.21 0.21 0.39 0.31 0.64

Accuracy (%) 95.70 95.87 95.87 95.87 95.53 95.01 94.50 88.83 90.20 79.89

Compression Rate 1.08 1.17 1.29 1.42 1.57 1.76 1.98 2.24 2.54 2.89

Table 5. Evaluation of the performance for the developed architectures with the method of pruning
scalar weights with retraining. Factor l corresponds to the portion of standard deviation used to
determine the threshold for pruning.

Factor l 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Model 1

Loss 0.54 0.53 0.66 0.60 0.65 0.53 0.58 0.48 0.50 0.56

Accuracy (%) 94.32 95.35 94.32 95.00 94.83 94.66 95.18 94.83 95.52 95.00

Compression Rate 1.09 1.20 1.35 1.55 1.81 1.90 2.48 2.84 3.26 3.72

Model 2

Loss 0.51 0.57 0.53 0.52 0.48 0.64 0.61 0.54 0.50 0.51

Accuracy (%) 93.80 94.32 94.14 94.66 94.49 94.32 94.66 95.00 95.18 94.49

Compression Rate 1.09 1.22 1.38 1.62 1.74 2.35 2.81 3.28 3.74 4.28

Model 3

Loss 0.39 0.53 0.55 0.56 0.49 0.40 0.45 0.44 0.43 0.41

Accuracy (%) 94.66 94.83 94.14 93.63 94.83 93.80 94.14 93.45 93.45 93.97

Compression Rate 1.09 1.22 1.39 1.61 1.90 2.00 2.59 3.00 3.47 3.92

Model 4

Loss 0.44 0.52 0.49 0.60 0.43 0.52 0.50 0.50 0.47 0.50

Accuracy (%) 95.52 95.18 95.35 95.18 94.83 94.83 95.00 95.00 95.18 94.83

Compression Rate 1.09 1.20 1.35 1.55 1.63 2.11 2.44 2.82 3.21 3.63

Model 5

Loss 0.48 0.55 0.54 0.49 0.51 0.24 0.34 0.40 0.38 0.39

Accuracy (%) 95.70 95.70 95.87 95.53 96.04 95.01 95.01 94.55 94.50 94.50

Compression Rate 1.09 1.20 1.32 1.52 1.78 5.24 5.56 6.03 6.60 7.14

4.3.3. Pruning Filters in Convolutional Layers

In this section, we present the results for the evaluation of all five developed models, after applying
the filter pruning method according to which the filters with the smallest magnitude are removed.
We tested the classification accuracy of the pre-trained models for multiple combinations of pruned
filters and, additionally, we investigated the effect of iterative pruning and retraining. For every model



Sensors 2020, 20, 2363 17 of 29

we chose to leave at least one filter at each convolutional layer. Thus, for Models 1, 2, 5 the number of
the removed filters varies from 1 to 15, whereas for Models 3, 4 it is between 1 and 7. Tables 6 and 7
present the performance of the models in terms of test loss and test accuracy, as well as results for the
compression and the theoretical speed up of each architecture.

Table 6. Results for filter pruning with no retraining.

Pruned Filters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Model 1

Loss 0.22 0.20 0.23 0.24 0.71 1.22 0.85 1.59 1.31 1.48 2.32 2.10 2.09 1.79 1.77

Accuracy (%) 93.97 93.80 93.97 93.97 78.66 59.38 66.95 44.92 49.05 49.40 37.52 46.99 46.30 24.44 16.87

Compression Rate 1.06 1.14 1.22 1.31 1.41 1.53 1.67 1.83 2.02 2.25 2.52 2.86 3.30 3.88 4.67

Flops 0.89 0.78 0.68 0.59 0.50 0.42 0.35 0.28 0.22 0.17 0.12 0.09 0.06 0.03 0.01

Model 2

Loss 0.24 0.25 0.67 2.58 1.35 0.85 1.08 0.66 0.80 0.88 1.13 1.24 1.28 1.46 1.47

Accuracy (%) 93.80 94.15 76.07 51.63 62.48 74.18 69.88 71.25 63.51 70.74 58.00 34.42 27.37 16.87 16.87

Compression Rate 1.08 1.16 1.26 1.38 1.52 1.68 1.89 2.13 2.44 2.84 3.39 4.17 5.38 7.51 12.17

Flops 0.89 0.78 0.68 0.59 0.50 0.42 0.35 0.28 0.22 0.17 0.12 0.08 0.05 0.03 0.01

Model 3

Loss 1.16 4.90 2.25 1.35 1.40 1.47 1.66 - - - - - - - -

Accuracy (%) 71.43 27.37 25.13 37.18 29.60 35.28 35.28 - - - - - - - -

Compression Rate 1.14 1.33 1.59 1.96 2.53 3.53 5.72 - - - - - - - -

Flops 0.79 0.61 0.44 0.31 0.19 0.10 0.04 - - - - - - - -

Model 4

Loss 0.22 0.61 2.78 9.03 1.64 8.08 1.68 - - - - - - - -

Accuracy (%) 94.15 80.38 57.38 16.87 21.69 16.87 16.87 - - - - - - - -

Compression Rate 1.10 1.23 1.38 1.56 1.80 2.12 2.55 - - - - - - - -

Flops 0.79 0.61 0.45 0.31 0.20 0.11 0.05 - - - - - - - -

Model 5

Loss 0.33 2.44 1.56 0.52 0.48 0.53 0.72 1.14 1.26 1.21 1.90 1.67 1.79 1.61 1.64

Accuracy (%) 93.64 66.95 67.99 78.83 79.69 78.83 71.60 47.50 42.68 40.79 35.97 35.46 34.08 35.46 35.46

Compression Rate 1.06 1.14 1.22 1.31 1.41 1.53 1.67 1.83 2.02 2.25 2.52 2.86 3.30 3.88 4.67

Flops 0.89 0.78 0.68 0.59 0.50 0.42 0.35 0.28 0.22 0.17 0.13 0.09 0.0568 0.03 0.01

Table 7. Results for filter pruning with iterative retraining.

Pruned Filters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Model 1

Loss 0.40 0.38 0.47 0.42 0.40 0.39 0.39 0.36 0.32 0.25 0.26 0.2704 0.29 0.20 0.25

Accuracy (%) 94.32 95.18 94.32 94.49 95.18 95.18 94.32 94.66 95.01 94.84 94.84 93.63 92.08 94.32 92.94

Compression Rate 1.06 1.14 1.22 1.31 1.41 1.53 1.67 1.83 2.02 2.25 2.52 2.86 3.30 3.88 4.67

Flops 0.89 0.78 0.68 0.59 0.50 0.42 0.35 0.28 0.22 0.17 0.13 0.09 0.06 0.03 0.01

Model 2

Loss 0.40 0.50 0.37 0.36 0.34 0.25 0.32 0.30 0.29 0.36 0.27 0.21 0.21 0.26 1.32

Accuracy (%) 93.97 93.46 95.18 93.80 94.15 95.52 94.15 94.66 93.97 93.46 94.66 94.66 93.97 93.11 35.46

Compression Rate 1.08 1.16 1.26 1.38 1.52 1.68 1.88 2.12 2.43 2.84 3.39 4.17 5.38 7.51 12.17

Flops 0.89 0.78 0.68 0.59 0.50 0.42 0.36 0.28 0.22 0.17 0.12 0.08 0.05 0.03 0.01

Model 3

Loss 0.33 0.32 0.25 0.26 0.20 0.18 0.27 - - - - - - - -

Accuracy (%) 93.63 94.15 94.84 93.29 93.80 94.15 91.05 - - - - - - - -

Compression Rate 1.14 1.33 1.59 1.96 2.53 3.53 5.72 - - - - - - - -

Flops 0.79 0.61 0.44 0.31 0.19 0.10 0.04 - - - - - - - -

Model 4

Loss 0.37 0.33 0.36 0.25 0.28 0.23 0.35 - - - - - - - -

Accuracy (%) 95.87 94.49 95.15 94.84 93.80 92.94 87.78 - - - - - - - -

Compression Rate 1.10 1.23 1.38 1.56 1.80 2.12 2.55 - - - - - - - -

Flops 0.79 0.61 0.45 0.31 0.20 0.11 0.05 - - - - - - - -

Model 5

loss 0.28 0.32 0.30 0.31 0.2854 0.28 0.23 0.32 0.29 0.31 0.26 0.2545 0.25 0.22 0.22

Accuracy (%) 94.66 95.52 95.52 94.49 95.52 95.00 94.84 94.84 95.00 94.49 93.46 94.15 95.18 93.46 93.11

Compression Rate 1.06 1.14 1.22 1.31 1.41 1.53 1.67 1.83 2.02 2.25 2.52 2.86 3.30 3.88 4.67

Flops 0.89 0.78 0.68 0.59 0.50 0.42 0.35 0.28 0.22 0.17 0.13 0.09 0.06 0.03 0.01

In Table 6 we observe that the classification accuracy of every model is significantly deteriorating,
even at low compression rates. The reason for this is that filter pruning is employed on pre-trained
models and therefore the values of their weights are not the optimal for the new, shallower architectures.
In addition, Model 2 can be compressed at a larger scale than the others, due to its architecture. It has the
most filters in the convolutional layers and, at the same time, the smallest number of neurons in the fully
connected layers, as shown in Table 1, with the amount of parameters belonging to convolutional layers



Sensors 2020, 20, 2363 18 of 29

being approximately 19% of the total number of parameters, whereas for the other models it is 16% or
lower. Note that even with half of the filters removed, the compression rate is low, indicating that the
majority of the weights belongs to the fully connected layer. On the other hand, the removal of a filter
reduces the computational requirements. For example, when we prune 2 out of 16 filters from model 1,
the new, more shallow, architecture requires the 78% of the initial floating point operations to perform
the classification task, providing a reduction of over 20%. Approaching the maximum number of the
pruned filters (leaving only one filter), the required operations are, as expected, considerably reduced
to only 1% of the operations required by un-pruned models.

A countermeasure against the drop of classification accuracy, due to filter removal, is the utilization
of retraining technique, as described in Section 3.2. The results of filter pruning method with iterative
retraining are shown in Table 7. It can be observed that the classification accuracy for all models
except from Models 2, 4 remains over 90%, whereas for Models 2, 4 it drops to 35% and 87% when
15/16 and 7/8 filters are pruned in each layer, respectively. Thus, by applying this method we can
significantly reduce the computational time without sacrificing efficiency. A characteristic example is
Model 5, which reaches up to 95% classification accuracy, even with 13 filters pruned. For the same
model, the respective performance achieved without retraining is 34%, while for both cases, the pruned
models require 5% of the operations needed by the initial un-pruned architecture.

4.3.4. Quantizing Only the Convolutional Layers

To evaluate the performance of the vector quantization method, we applied both scalar and
product quantization to convolutional layers, as well as to fully connected layers of the network.
This paragraph shows the classification accuracy of the developed models with respect to the
compression rate and the number of required floating point operations, when the quantization methods
are applied only on convolutional layers. As mentioned earlier, both scalar and product quantization
are performed along the channel’s dimension. We tested different combinations regarding the number
of clusters and the value of the splitting parameter s.

In particular, for scalar quantization the number of clusters varies between 1 and 8, whereas for
product quantization we tried s = 1, 2, 4 and the maximum number of clusters was set to 8, 4,
2 respectively. Note that for s = 1 we essentially perform scalar quantization. Table 8 shows the
classification accuracy and the achieved compression, as well as the speed up in terms of flops. It is
clear, that by increasing the number of clusters and therefore the number of filters that contain different
kernels, the accuracy of the classifiers increases as well. This originates from the fact that with more
different filters more features of the input can be extracted in convolutional layers. It should be also
mentioned that the compression rate achieved by this method, is lower than the rate achieved by filter
pruning. This happens because an index matrix is required, to map the filters in the codebook to the
filters in the original structure, which increases the memory requirements.

Concerning the amount of required operations in convolutional layers, as described before, it can
be reduced with this approach by reusing pre-computed inner products. In particular, for similar
convolutional kernels we only need to convolve one of them with the input feature map and then the
result is shared. Then, the biases are added and the result passes the activation and pooling function,
to produce the input feature map of the next layer. It is worth mentioning that the percentage of
the required operations is directly proportional to the percentage of the filters needed to be stored.
For example, clustering of 16 filters to 4 clusters causes a 25% reduction in required floating point
operations. Again, comparing the flops for filter pruning and scalar quantization, the first is more
efficient. This is because the removal of a filter reduces the dimensions of the next layer’s input feature
map which is not the case for the scalar quantization.

Next, we evaluate the effect of product quantization on the performance of the models.
Similarly, to scalar quantization on convolutional layer, we examine the fluctuation of the accuracy
with respect to compression rate and the ratio of the required floating operations of the quantized
architectures to the amount of flops for the initial structure, as shown in Table 9. The splitting parameter



Sensors 2020, 20, 2363 19 of 29

takes the values 1, 2, 4. As s increases, the number of clusters in each subspace decreases, since there
are fewer filters. Because both the separation of the weight matrix of each layer and the k-means
algorithm are performed on the channel axis, when s = 1 the results are identical to those with scalar
quantization. Additionally, the increase in the value of s result in a slight decrease in the classification
accuracy of the model. For example, Model 1 with s = 1 and clusters = 4 reaches an accuracy of
93%, whereas with s = 2 and clusters = 2, a combination that produces 4 distinct filters in each layer,
leads to 91%. This decrease indicates that apart from how many filters we group together, it is also
crucial which filters are grouped. By splitting the original space in smaller sub-spaces, we narrow the
available combinations of filters and, thus, filters that differ a lot from each other could be combined
forming one cluster.

Table 8. Results for scalar quantization on convolutional layers only.

Number of Clusters 1 2 3 4 5 6 7 8

Model 1

Loss 4.61 0.38 0.33 0.26 0.25 0.23 0.24 0.24

Accuracy (%) 16.87 90.36 92.94 94.32 94.84 94.84 94.84 94.66

Compression Rate 1.18 1.16 1.15 1.14 1.12 1.11 1.10 1.09

Flops 0.07 0.13 0.19 0.26 0.32 0.38 0.44 0.50

Model 2

Loss 4.35 0.28 0.25 0.22 0.23 0.23 0.24 0.25

Accuracy (%) 16.87 92.08 93.80 94.32 94.32 94.32 94.66 94.32

Compression Rate 1.18 1.17 1.15 1.13 1.12 1.10 1.10 1.08

Flops 0.07 0.13 0.19 0.25 0.32 0.38 0.44 0.50

Model 3

Loss 10.57 0.40 0.25 0.20 0.20 0.18 0.19 0.19

Accuracy (%) 16.87 89.16 93.80 94.49 94.84 95.01 94.84 94.84

Compression Rate 1.10 1.08 1.07 1.05 1.04 1.03 1.01 1.00

Flops 0.14 0.26 0.38 0.51 0.63 0.75 0.88 1.00

Model 4

Loss 10.88 1.08 0.24 0.22 0.22 0.22 0.21 0.20

Accuracy 16.87 72.80 95.18 95.87 95.52 95.52 95.70 95.87

Compression Rate 1.07 1.06 1.05 1.04 1.03 1.01 1.01 1.00

Flops 0.14 0.26 0.39 0.50 0.63 0.75 0.88 1.00

Model 5

Loss 1.78 0.65 0.24 0.22 0.21 0.21 0.21 0.21

Accuracy (%) 35.49 83.47 94.49 95.18 95.35 95.52 95.35 95.70

Compression Rate 1.18 1.16 1.15 1.14 1.12 1.11 1.10 1.09

Flops 0.07 0.13 0.19 0.26 0.32 0.38 0.44 0.50

It is also important to note that the increase of the s parameter leads to a slight decrease of the
compression rate. This is because with higher values of the splitting parameter, the lowest number of
clusters in the weight matrix is increased as well. For example, for s = 1 and clusters = 4, the amount
of different filters is 4, but if we set s = 2 the respective amount would be 8, since we form 4 clusters
in each subspace. Therefore, for the minimum number of clusters (1 cluster) and for s = 1, one filter
will be created. For s = 2, two distinct filters will be formed and finally for s = 4, four filters will have
different weight values.

Concerning the performance of the architectures, with respect to the computational complexity,
we observe in Table 9 that 75% of the initial flops can be avoided for Models 1, 2, 5 without any drop
in classification accuracy. On the other hand, for the remaining models we save 50% of the initial
required operations, with no drop in classification accuracy. For s = 2, we are able to cut the majority
for the operations with Models 1, 2, 5 reaching up to 94% accuracy with 38% of the initial amount of



Sensors 2020, 20, 2363 20 of 29

floating point operations. However, in order to achieve a classification accuracy higher than 90% we
can reduce the amount of the operations by half at most. At 0.5 of the initial number of flops, model 3
reaches up to 95% and model 4 to 93%.

Table 9. Product quantization for all combinations of s and clusters on convolutional layers only.

Splitting Parameter s = 1 s = 2 s = 4

Clusters 1 2 3 4 5 6 7 8 1 2 3 4 1 2

Model 1

Loss 4.61 0.35 0.33 0.26 0.23 0.23 0.24 0.24 2.89 0.35 0.28 0.27 2.65 0.22

Accuracy (%) 16.87 91.74 92.94 93.80 94.66 95.18 94.66 94.66 16.87 91.91 94.15 93.46 39.76 94.66

compression rate 1.18 1.16 1.15 1.14 1.12 1.11 1.10 1.09 1.16 1.14 1.11 1.09 1.14 1.09

Flops 0.07 0.13 0.19 0.26 0.32 0.38 0.44 0.50 0.13 0.26 0.38 0.50 0.25 0.50

Model 2

Loss 4.35 0.27 0.25 0.22 0.22 0.23 0.23 0.24 1.69 0.28 0.23 0.24 1.24 0.26

Accuracy (%) 16.87 91.91 93.63 94.32 94.49 94.49 94.66 94.66 37.00 92.94 93.97 94.32 53.87 93.11

Compression Rate 1.21 1.20 1.18 1.16 1.15 1.13 1.12 1.10 1.20 1.16 1.13 1.10 1.16 1.10

Flops 0.0690 0.13 0.19 0.25 0.32 0.38 0.44 0.50 0.13 0.25 0.38 0.50 0.25 0.50

Model 3

Loss 10.57 0.45 0.27 0.20 0.20 0.19 0.19 0.19 10.30 0.28 0.20 0.1892 2.21 0.19

Accuracy (%) 16.87 45.13 27.00 20.17 19.91 18.84 18.62 18.92 17.04 95.01 95.01 94.83 38.21 94.84

Compression Rate 1.10 1.08 1.07 1.05 1.04 1.03 1.01 1.00 1.08 1.05 1.03 1.00 1.05 1.00

Flops 0.14 0.26 0.38 0.51 0.63 0.75 0.88 1.00 0.26 0.51 0.75 1.00 0.50 1.00

Model 4

Loss 10.88 1.00 0.22 0.22 0.23 0.22 0.21 0.20 11.93 0.28 0.25 0.20 4.41 0.20

Accuracy (%) 16.87 74.35 95.70 96.04 95.52 95.52 95.70 95.87 16.87 93.46 95.35 95.87 37.52 95.87

Compression Rate 1.07 1.06 1.05 1.04 1.03 1.02 1.01 1.00 1.06 1.04 1.02 1.00 1.04 1.00

Flops 0.14 0.26 0.39 0.51 0.63 0.75 0.88 1.00 0.26 0.51 0.75 1.00 0.51 1.00

Model 5

Loss 1.78 0.65 0.23 0.21 0.21 0.21 0.21 0.21 2.01 0.64 0.22 0.21 1.69 0.29

Accuracy (%) 35.59 83.99 94.32 95.01 95.70 95.35 95.70 96.04 35.46 83.47 94.66 95.35 47.85 91.91

Compression Rate 1.18 1.16 1.15 1.14 1.12 1.11 1.10 1.09 1.16 1.14 1.11 1.09 1.14 1.09

Flops 0.07 0.13 0.19 0.26 0.32 0.38 0.44 0.50 0.13 0.26 0.38 0.50 0.26 0.50

To sum up, quantizing convolutional layers using k-means algorithm, either with the scalar or the
product method, we can compress the structure and at the same time we can speed up the production
of the output feature map and, consequently, the prediction of the classifier. Between these two benefits,
the computation gain is greater, since we efficiently can remove up to 75% of the operations required
initially, whereas the maximum compression rate achieved reaches up to 1.2. This result is consistent
with the theory suggesting that convolutional layers are computationally expensive and they do not
add excessive memory requirements. Finally, for product quantization, increasing the value of the
parameter s, the performance of the classifier is deteriorated.

4.3.5. Quantizing Only Fully Connected Layer

Similarly, in this paragraph we present the results for scalar and product quantization, but in
this case they are performed on the fully connected layers. For this approach we selected to perform
quantization with k-means at the y axis of the weights matrix. In this way, we force the neurons to have
the same output response and, therefore, we are able to reduce the computational requirements of the
layers. Subsequently, we compare the requirements in storage and computation between convolutional
and fully connected layer and validate that convolutions are time consuming, whereas fully connected
layers significantly increase memory requirements. For Models 1, 2, 5 we perform scalar quantization
with number of clusters up to 128 and for Models 3, 4 up to 52. We also executed tests for s = 1, 2, 4 and
clusters up to 32, 16, 8 respectively. It is important to mention that because we force some neurons to
have the same output, we do not perform quantization at the output layer of the classifier i.e the last
fully connected layer.

From the results shown in Table 10 it is clear that Models 1, 5, which share the same
structure, have the same behaviour retaining their initial performance until a compression rate of
4.6. Furthermore, we are able to achieve a larger compression for Models 3, 4 because both of them
have the shallowest convolutional structure, with three convolutional layers of 8 filters in each layer.



Sensors 2020, 20, 2363 21 of 29

This means that for these models the weights of fully connected layers occupy a greater portion of
the total amount of the trainable parameters. It is important to highlight that we can compress model
4 more than six times and yet achieve a high classification accuracy up to 93%. Finally, for Models
2, 3 the maximum number of clusters is 52 because the last layer contains 16× 4 = 64 weights and
therefore there is no reason to increase it further. Also, as described above, scalar quantization does
not contribute to the speed up of the classification task and this is why Table 10 does not contain the
flops that the quantized models require.

Table 10. Results for scalar quantization on fully connected layers only.

Number of Clusters 1 4 8 16 24 32 40 52 64 72 96 112 128

Model 1

Loss 1.38 0.18 0.23 0.23 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24

Accuracy (%) 35.46 93.97 94.49 95.00 94.15 94.49 94.32 94.32 94.32 94.66 94.49 94.49 94.94

Compression Rate 6.08 4.61 4.12 3.71 3.51 3.38 3.28 3.17 3.09 3.05 2.94 2.89 2.84

Model 2

Loss 1.38 0.44 0.18 0.26 0.25 0.26 0.27 0.26 - - - - -

Accuracy (%) 16.87 86.75 94.66 93.97 93.80 93.63 93.46 93.63 - - - - -

Compression Rate 5.26 4.15 3.76 3.43 3.26 3.15 3.07 2.98 - - - - -

Model 3

Loss 1.39 0.26 0.18 0.18 0.18 0.19 0.19 0.19 - - - - -

Accuracy (%) 16.87 91.91 95.00 95.35 94.84 95.00 95.00 94.49 - - - - -

Compression Rate 9.56 6.23 5.30 4.60 4.27 4.06 3.91 3.74 - - - - -

Model 4

Loss 0.35 0.23 0.19 0.20 0.21 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Accuracy 35.46 93.29 95.52 95.87 95.70 96.04 95.87 95.87 95.70 96.04 95.87 95.70 95.70

Compression Rate 12.44 7.26 5.10 5.10 4.69 4.43 4.25 4.04 3.90 3.81 3.65 3.53 3.45

Model 5

Loss 1.37 0.19 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21

Accuracy (%) 35.46 94.32 95.70 95.52 95.00 95.87 95.52 95.70 95.87 95.70 95.87 95.87 95.70

Compression Rate 6.08 4.61 4.12 3.71 3.51 3.38 3.28 3.17 3.09 3.05 2.94 2.89 2.84

The next approach to compress and accelerate the fully connected layers is product quantization
through k-means algorithm. Tables 11 and 12 present the classification accuracy, compression rate as
well as the extent of the reduction of floating point operations for different number of clusters and
different values of the splitting parameter s. In Table 11 Models 2, 3 we stop at 12 clusters, because they
have a fully connected layer with 16 neurons and therefore there is no point in increasing the number
of clusters beyond 12. Recall that quantization is performed on the columns of the weight matrix,
that is, on the output response of a layer. It should be noted that the achieved compression rate
is higher as the number of clusters is increasing than the respective rate with scalar quantization.
This lies on the fact that the index matrix for this approach is smaller than the index matrix for scalar
quantization, containing as many slots as the neurons in each layer are. Furthermore, the difference in
the compression rate between the models is due to the difference between their structure. For example,
Model 4 has smaller convolutional layers from Models 1, 2, 5 and larger fully connected layer from
Model 3 resulting in a higher compression rate. Moreover, it is clear that by quantizing fully connected
layers we do not have any gain in computational cost, since the smallest ratio with an acceptable
performance is 0.977, which means that the quantized model needs to execute 97.7% of initial amount
of floating point operations. Finally, Table 12 shows the performance of the classifiers for s = 2 and 4.
In this case, it should be highlighted that increasing the value of s the classification accuracy of the
models decreases, despite the same compression rate. For example, model 1 achieves a classification
accuracy of 94% with s = 2 and 4 clusters but for s = 4 and 2 clusters its accuracy drops to 90%.



Sensors 2020, 20, 2363 22 of 29

Table 11. Product quantization for all combinations of clusters and s = 1 on fully connected layer only.

Splitting Parameter s = 1

Clusters 1 2 4 8 12 16 20 24 28 32

Model 1

Loss 1.39 0.59 0.22 0.24 0.24 0.24 0.24 0.24 0.24 0.24

Accuracy (%) 35.46 80.03 94.49 93.97 94.84 94.14 94.32 94.15 94.49 94.32

Compression Rate 6.16 6.14 6.11 6.05 5.99 5.93 5.88 5.82 5.77 5.72

Flops 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Model 2

Loss 1.40 0.47 0.41 0.31 0.25 - - - - -

Accuracy 16.87 83.30 88.12 92.25 93.80 - - - - -

Compression Rate 5.29 5.27 5.25 5.20 5.16 - - - - -

Flops 0.99 0.99 0.99 0.99 0.99 - - - - -

Model 3

Loss 1.40 0.76 0.19 0.19 0.20 - - - - -

Accuracy (%) 35.46 63.85 94.32 95.18 94.66 - - - - -

Compression Rate 9.74 9.69 9.59 9.41 9.24 - - - - -

Flops 0.99 0.99 0.99 0.99 0.99 - - - - -

Model 4

Loss 1.37 0.57 0.17 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Accuracy (%) 35.97 84.68 94.84 95.69 95.52 95.69 95.52 95.52 95.87 95.87

Compression Rate 13.12 13.03 12.86 12.57 12.31 12.05 11.81 11.59 11.37 11.15

Flops 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99

Model 5

Loss 1.36 0.41 0.21 0.20 0.21 0.21 0.21 0.21 0.21 0.21

Accuracy (%) 35.46 88.81 95.35 95.52 95.87 95.87 96.04 96.04 95.70 95.70

Compression Rate 6.16 6.14 6.11 6.05 5.99 5.93 5.88 5.82 5.77 5.72

Flops 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 12. Product quantization for all combinations of clusters and s = 2, 4 on fully connected layer only.

Splitting Parameter s = 2 s = 4

Clusters 1 2 4 8 12 16 1 2 4 8

Model 1

Loss 1.38 0.52 0.22 0.23 0.24 0.24 1.39 0.38 0.22 0.23

Accuracy (%) 35.46 90.01 94.14 94.14 93.97 94.49 35.46 90.53 93.97 94.15

Compression Rate 6.14 6.11 6.05 5.93 5.82 5.72 6.11 6.04 5.93 5.72

Flops 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Model 2

Loss 1.40 0.47 0.31 - - - 1.37 0.76 - -

Accuracy 16.87 81.41 91.05 - - - 16.87 76.25 - -

Compression Rate 5.27 5.25 5.20 - - - 5.25 5.20 - -

Flops 0.99 0.99 0.99 - - - 0.99 0.99 - -

Model 3

Loss 1.43 0.64 0.95 - - - 1.48 0.37 - -

Accuracy (%) 16.87 79.69 94.84 - - - 16.87 90.71 - -

Compression Rate 9.69 9.59 9.41 - - - 9.59 9.41 - -

Flops 0.99 0.99 0.99 - - - 0.99 0.99 - -

Model 4

Loss 1.37 0.57 0.18 0.20 0.20 0.20 1.38 0.46 0.21 0.20

Accuracy (%) 37.00 85.54 95.35 95.70 95.52 95.70 36.60 88.12 95.01 95.52

Compression Rate 13.03 12.86 12.57 12.06 11.59 11.15 12.86 12.57 12.06 11.15

Flops 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Model 5

Loss 1.36 0.35 0.19 0.21 0.21 0.21 1.37 0.35 0.21 0.20

Accuracy (%) 35.46 91.74 95.18 95.87 95.52 96.04 35.46 89.84 94.66 95.70

Compression Rate 6.14 6.11 6.05 5.93 5.82 5.72 6.11 6.05 5.93 5.72

Flops 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99



Sensors 2020, 20, 2363 23 of 29

4.3.6. Combining Filter Pruning and Quantization

Finally, we investigate the combination of the aforementioned methods by applying filter pruning
in the convolutional layers and quantization on fully connected layers. In this way, we are able to
reduce the requirements of the classifier in both memory and computational power. The approach of
the iterative training is selected for filter pruning, since it yields better results than the approach with
no retraining. Firstly, we perform filter pruning in order to exploit the fact that the weights adjust to
the changes and, then, quantization algorithm, either scalar or product, is executed. Below, we present
the classification accuracy of the developed architecture, with respect to the amount of the pruned
feature maps in convolutional layers and the number of clusters in fully connected layer.

Figure 7 shows how classification accuracy changes as the number of pruned feature maps or
the clusters, produced with scalar quantization, increases. It is clear that the accuracy of all models,
apart from model 2, depends mostly on the number of clusters in fully connected part of the classifier.
When we perform k means on it, with clusters equal to 1, the classification accuracy drops to 35%
(Models 1, 2, 4, 5) and 16% (Model 3). Model 2 reaches 91% or above when 14 out of 16 filters have
been removed and for 8 clusters in each fully connected layer. However, when we prune 15 out of
16 filters its accuracy drops to 35% without improving when the number of clusters is increasing.
On the other hand, the rest of the models keep their classification accuracy at high levels, even when
their convolutional layers are left with only one filter. The best architectures seem to be Models 1 and 5,
which achieve an accuracy over 90% with 8 clusters and even with 15 out of 16 filters removed.

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

(e) Model 5

Figure 7. Classification accuracy of the different models in Table 1 that include filter pruning and scalar
quantization. The horizontal axes represent the number of pruned feature map and number of clusters
in fully connected layer, respectively.

Next, we proceed to the evaluation of combining filter pruning method with product quantization
along y axis of the weight matrix of the fully connected layer. Figure 8 shows the classification accuracy
of the developed models, versus the number of pruned feature maps and the number of clusters in each



Sensors 2020, 20, 2363 24 of 29

subspace, when the value of splitting parameter s is set equal to 1. For Models 1, 4, 5 the maximum
amount of clusters is 32 whereas for Models 2, 3 is 12. Again, the parameter that affects mostly the
performance of the classifier is the number of clusters produced by k-means algorithm. For cluster = 1,
hence when we force all neurons to have the same output response, the classification accuracy drops
dramatically to 35% (Models 1, 5) and 16% (Models 2, 3, 4). It is also clear that the highest classification
accuracy can be achieved with intermediate values of the parameters. For example, model 5 reaches up
to 95.52% accuracy, which is the highest among our architectures, after pruning 7 feature maps and for
8 clusters in fully connected layer achieving 8 times compression of the initial structure. For the same
level of compression model 1 achieves 94.66% (pruned f eature maps = 7, clusters = 8), model 2 93.97%
(pruned f eature maps = 7, clusters = 8), model 3 reaches up to 93.8% (pruned f eature maps = 2,
clusters = 4) and model 4 to 95.01% (pruned f eature maps = 3, clusters = 8).

(a) Classification accuracy for model 1 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(b) Classification accuracy for model 2 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(c) Classification accuracy for model 3 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(d) Classification accuracy for model 4 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(e) Classification accuracy for model 5 with respect to the various
combinations of pruned feature map and the clusters in fully
connected layer.

Figure 8. Classification accuracy for models in Table 1 for the approach that include filter pruning and
product quantization with s = 1.

Increasing the splitting parameter s to the value of 2 we take the results presented in Figure 9.
Similarly to the results obtained from the previous experiments increasing the number of clusters
in each subspace of the weight matrix we are able to improve the performance of the classifier.
Again, the highest classification accuracy, 95.52%, is achieved by model 5 when we prune 3 filters
from the convolutional layer and quantize the neural network at the back end, with 8 clusters in
each subspace, leading to a compression factor of 3.5. However, we can compress it by a factor of



Sensors 2020, 20, 2363 25 of 29

5 and at the same time achieve an accuracy up to 95.35%, which is an acceptable trade off between
accuracy and compression, by quantizing it with 4 clusters instead of 8. For this compression rate
model 1 yields 94.49% (pruned f eature maps = 3, clusters = 4), model 2 reaches up to 93.11% accuracy
(pruned f eature maps = 5, clusters = 4), model 3 up to 92.6% (pruned f eature maps = 1, clusters = 4)
and model 4 achieves an accuracy of 94.66% (pruned f eature maps = 3, clusters = 8). It is important
to note that in order to achieve a compression rate of 8, we need, for model 5, to prune 7 filters and
quantize with 4 clusters, but with a drop at classification accuracy of 2% achieving 93.97%. This result
is consistent with those presented in previous sections, where it is shown that increasing the value of
parameter s, the accuracy of the classifier at the same level of compression decreases.

(a) Classification accuracy for model 1 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(b) Classification accuracy for model 2 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(c) Classification accuracy for model 3 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(d) Classification accuracy for model 4 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(e) Classification accuracy for model 5 with respect to the various
combinations of pruned feature map and the clusters in fully
connected layer.

Figure 9. Classification accuracy for models in Table 1 for the approach that include filter pruning and
product quantization with s = 2.

Finally, Figure 10 presents the results for the classification accuracy with respect to the number of
pruned feature maps and the number of clusters when the splitting parameter s is set to 4. For this
approach the highest classification, 95.52%, is achieved by Model 5 for the number of pruned filters
set equal to five and for four clusters, which results in a compression rate of 4. The following table
presents the number of clusters and pruned filters for each model, with a compression rate equal to 4.

Table 13 summarizes the results from the combination of filter pruning and scalar quantization in
fully connected layers for the five proposed models and for the same compression rate. It can be seen
that Models 1, 4, 5 yield similar classification accuracy despite the fact that Model 4 has fewer filters,
while Models 2 and 3, which contain fewer parameters in the fully connected layer, fail to reach the



Sensors 2020, 20, 2363 26 of 29

same level of accuracy. In other words we can achieve high performance, even twith limited number of
filters, as long as we retain enough parameters at the fully connected layer. Overall, when comparing
the compression techniques, Model 5 seems to achieve the best performance in most of the MultiSubj
evaluation experiments. This fact, along with its superiority in SingleSubj and LOSO validation
schemes, indicates that Model 5 is the most preferable among the five architectures.

(a) Classification accuracy for model 1 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(b) Classification accuracy for model 2 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(c) Classification accuracy for model 3 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(d) Classification accuracy for model 4 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(e) Classification accuracy for model 5 with respect to the various
combinations of pruned feature map and the clusters in fully
connected layer.

Figure 10. Classification accuracy for models in Table 1 for the approach that include filter pruning
and product quantization with s = 4.

Table 13. Number of clusters and pruned filters for each model with a compression rate equal to 4.

Model Accuracy Pruned Feature Maps Clusters Compression Rate

1 95.01% 5 4 4

2 92.43% 2 2 4

3 91.74% 1 1 4

4 95.35% 5 4 4

5 95.52% 5 4 4

5. Conclusions

Asthma adds an important socioeconomic burden both in terms of medication costs and disability
adjusted life years. The accurate and timely assessment of asthma is the most significant factor towards
preventive and efficient management of the disease. It outlines the need to examine the technological
limitations for real time monitoring of pMDI usage, in order to create easy to use tools for safe and



Sensors 2020, 20, 2363 27 of 29

effective management. In this paper, we discussed on current medication adherence monitoring
techniques, addressing related aspects that promote adherence with novel sensing capabilities.
We, also, investigated acceleration approaches employing convolutional neural networks, trained to
classify and identify respiration and medication adherence phases. Employing CNNs directly on
the time domain, facilitated lower memory and processing power requirements. Evaluation studies
demonstrate that the presented CNN-based approach results in faster execution time, requiring 0.4 s to
perform a classification, whereas computationally expensive feature extraction approaches have a mean
execution time of 7.5 s. Aiming at acceleration and compression we furthermore applied deep sparse
coding strategies, namely filter pruning, scalar values pruning and vector quantization. Different CNN
architectures were employed in order to assess the performance of deep sparse coding under various
settings. The goal of such methodologies is to speed up the neural network outcome, allowing for
real-time implementation, adaptable to IoT architectures and devices. Specifically, we achieve
a compression rate of 6.0 in several cases, while maintaining a classification accuracy of 92%.
The proposed work provides an experimental evaluation at a key area with renewed research interest,
characterized by a high potential for novel improvements related to deep neural networks compression
and acceleration. However, our approach is validated only through recordings of three healthy subjects
resulting in a small dataset. More experiments with recordings from both healthy and subjects with
respiratory disease should be carried out in order to thoroughly assess the presented approach and
validate its potential in monitoring medication adherence.

Author Contributions: Conceptualization, A.S.L.; Data curation, S.N.; Formal analysis, V.N., S.N. and A.S.L.;
Funding acquisition, A.S.L.; Investigation, V.N., N.D.F. and S.N.; Methodology, S.N. and A.S.L.; Project
administration, A.S.L. and K.M.; Software, V.N. and S.N.; Supervision, A.S.L., M.B. and K.M.; Validation, V.N.,
N.D.F. and S.N.; Visualization, V.N.; Writing—original draft, V.N. and S.N.; Writing—review & editing, V.N.,
N.D.F., S.N., E.I.Z., A.S.L. and M.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been co-financed by the European Regional Development Fund of the European Union
and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation,
under the call RESEARCH - CREATE - INNOVATE (project code: T1EDK-03832).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study.

Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
pMDI pressurized Metered Dose Inhaler
MFCC Mel-Frequency Ceptral Coefficients
RF Random Forest
ZCR Zero Cross Rate

References

1. World Health Organization The Global Impact of Respiratory Disease. In World Health Organization:
Sheffield; World Health Organization: Geneva, Switzerland, 2017.

2. Ngo, C.Q.; Phan, D.M.; Vu, G.V.; Dao, P.N.; Phan, P.T.; Chu, H.T.; Nguyen, L.H.; Vu, G.T.; Ha, G.H.;
Tran, T.H.; et al. Inhaler Technique and Adherence to Inhaled Medications among Patients with Acute
Exacerbation of Chronic Obstructive Pulmonary Disease in Vietnam. Int. J. Environ. Res. Public Health 2019,
16, 185. [CrossRef] [PubMed]

3. D’Arcy, S.; MacHale, E.; Seheult, J.; Holmes, M.S.; Hughes, C.; Sulaiman, I.; Hyland, D.; O’Reilly, C.;
Glynn, S.; Al-Zaabi, T.; et al. A method to assess adherence in inhaler use through analysis of acoustic
recordings of inhaler events. PLoS ONE 2014, 9, e98701. [CrossRef] [PubMed]

4. Jardim, J.R.; Nascimento, O.A. The importance of inhaler adherence to prevent COPD exacerbations.
Med. Sci. 2019, 7, 54. [CrossRef] [PubMed]

5. Gupta, N.; Pinto, L.M.; Morogan, A.; Bourbeau, J. The COPD assessment test: A systematic review.
Eur. Respir. J. 2014, 44, 873–884. [CrossRef]

6. Murphy, A. How to help patients optimise their inhaler technique. Pharm. J. 2019, 297.

http://dx.doi.org/10.3390/ijerph16020185
http://www.ncbi.nlm.nih.gov/pubmed/30634631
http://dx.doi.org/10.1371/journal.pone.0098701
http://www.ncbi.nlm.nih.gov/pubmed/24905012
http://dx.doi.org/10.3390/medsci7040054
http://www.ncbi.nlm.nih.gov/pubmed/30939829
http://dx.doi.org/10.1183/09031936.00025214


Sensors 2020, 20, 2363 28 of 29

7. Aldeer, M.; Javanmard, M.; Martin, R.P. A review of medication adherence monitoring technologies.
Appl. Syst. Innov. 2018, 1, 14. [CrossRef]

8. Heath, G.; Cooke, R.; Cameron, E. A theory-based approach for developing interventions to change patient
behaviours: A medication adherence example from paediatric secondary care. Healthcare 2015, 3, 1228–1242.
[CrossRef]

9. Alquran, A.; Lambert, K.A.; Farouque, A.; Holland, A.; Davies, J.; Lampugnani, E.R.; Erbas, B.
Smartphone applications for encouraging asthma self-management in adolescents: A systematic review.
Int. J. Environ. Res. Public Health 2018, 15, 2403. [CrossRef]

10. Kikidis, D.; Konstantinos, V.; Tzovaras, D.; Usmani, O.S. The digital asthma patient: The history and future
of inhaler based health monitoring devices. J. Aerosol. Med. Pulm. Drug Deliv. 2016, 29, 219–232. [CrossRef]
[PubMed]

11. Khusial, R.; Honkoop, P.; Usmani, O.; Soares, M.; Biddiscombe, M.; Meah, S.; Bonini, M.; Lalas, A.;
Koopmans, J.; Snoeck-Stroband, J.; et al. myAirCoach: MHealth assisted self-management in patients with
uncontrolled asthma, a randomized control trial. Eur. Respir. J. 2019, 54, 745.

12. Polychronidou, E.; Lalas, A.; Tzovaras, D.; Votis, K. A systematic distributing sensor system prototype for
respiratory diseases. In Proceedings of the 2019 International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), Barcelona, Spain, 21–23 October 2019; pp. 191–196.

13. Nousias, S.; Lalos, A.S.; Arvanitis, G.; Moustakas, K.; Tsirelis, T.; Kikidis, D.; Votis, K.; Tzovaras, D.
An mHealth system for monitoring medication adherence in obstructive respiratory diseases using content
based audio classification. IEEE Access 2018, 6, 11871–11882. [CrossRef]

14. Ntalianis, V.; Nousias, S.; Lalos, A.S.; Birbas, M.; Tsafas, N.; Moustakas, K. Assessment of medication
adherence in respiratory diseases through deep sparse convolutional coding. In Proceedings of the 2019
24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza,
Spain, 10–13 September 2019; pp. 1657–1660.

15. Pettas, D.; Nousias, S.; Zacharaki, E.I.; Moustakas, K. Recognition of Breathing Activity and Medication
Adherence using LSTM Neural Networks. In Proceedings of the 2019 IEEE 19th International Conference
on Bioinformatics and Bioengineering (BIBE), Athens, Greece, 23–28 October 2019; pp. 941–946.

16. Howard, S.; Lang, A.; Patel, M.; Sharples, S.; Shaw, D. Electronic monitoring of adherence to inhaled
medication in asthma. Curr. Respir. Med. Rev. 2014, 10, 50–63. [CrossRef]

17. Holmes, M.S.; Le Menn, M.; D’Arcy, S.; Rapcan, V.; MacHale, E.; Costello, R.W.; Reilly, R.B.
Automatic identification and accurate temporal detection of inhalations in asthma inhaler recordings.
In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, San Diego, CA, USA, 28 August 2012; pp. 2595–2598.

18. Holmes, M.S.; D’Arcy, S.; Costello, R.W.; Reilly, R.B. An acoustic method of automatically evaluating
patient inhaler technique. In Proceedings of the 2013 35th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 1322–1325.

19. Holmes, M.S.; D’arcy, S.; Costello, R.W.; Reilly, R.B. Acoustic analysis of inhaler sounds from community-
dwelling asthmatic patients for automatic assessment of adherence. IEEE J. Transl. Eng. Health Med. 2014,
2, 1–10. [CrossRef] [PubMed]

20. Priya, K.; Mehra, R. Area Efficient Design of FIR filter using symmetric structure. Int. J. Adv. Res. Comput.
Commun. Eng. 2012, 1, 842–845.

21. Proakis, J.G.; Manolakis, D.G. Digital Signal Processing; PHI Publication: New Delhi, India, 2004.
22. Salivahanan, S.; Vallavaraj, A.; Gnanapriya, C. Digital Signal Processing; McGraw-Hill: New York, NY, USA, 2001.
23. Ruinskiy, D.; Lavner, Y. An effective algorithm for automatic detection and exact demarcation of breath

sounds in speech and song signals. IEEE Trans. Audio Speech Lang. Process. 2007, 15, 838–850. [CrossRef]
24. Taylor, T.E.; Holmes, M.S.; Sulaiman, I.; D’Arcy, S.; Costello, R.W.; Reilly, R.B. An acoustic method to

automatically detect pressurized metered dose inhaler actuations. In Proceedings of the 2014 36th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA,
26–30 August 2014; pp. 4611–4614.

25. Taylor, T.E.; Holmes, M.S.; Sulaiman, I.; Costello, R.W.; Reilly, R.B. Monitoring inhaler inhalations using an
acoustic sensor proximal to inhaler devices. J. Aerosol. Med. Pulm. Drug Deliv. 2016, 29, 439–446. [CrossRef]

26. Taylor, T.E.; Zigel, Y.; De Looze, C.; Sulaiman, I.; Costello, R.W.; Reilly, R.B. Advances in audio-based
systems to monitor patient adherence and inhaler drug delivery. Chest 2018, 153, 710–722. [CrossRef]

http://dx.doi.org/10.3390/asi1020014
http://dx.doi.org/10.3390/healthcare3041228
http://dx.doi.org/10.3390/ijerph15112403
http://dx.doi.org/10.1089/jamp.2015.1267
http://www.ncbi.nlm.nih.gov/pubmed/26919553
http://dx.doi.org/10.1109/ACCESS.2018.2809611
http://dx.doi.org/10.2174/1573398X10666140429005007
http://dx.doi.org/10.1109/JTEHM.2014.2310480
http://www.ncbi.nlm.nih.gov/pubmed/27170883
http://dx.doi.org/10.1109/TASL.2006.889750
http://dx.doi.org/10.1089/jamp.2015.1276
http://dx.doi.org/10.1016/j.chest.2017.08.1162


Sensors 2020, 20, 2363 29 of 29

27. Nousias, S.; Lakoumentas, J.; Lalos, A.; Kikidis, D.; Moustakas, K.; Votis, K.; Tzovaras, D.
Monitoring asthma medication adherence through content based audio classification. In Computational
Intelligence (SSCI); 2016 IEEE Symposium Series on IEEE; IEEE: New York, NY, USA, 2016; pp. 1–5.

28. Ganapathy, N.; Swaminathan, R.; Deserno, T.M. Deep learning on 1-D biosignals: A taxonomy-based
survey. Yearb. Med. Inf. 2018, 27, 098–109. [CrossRef]

29. Sakhavi, S.; Guan, C.; Yan, S. Learning temporal information for brain-computer interface using convolutional
neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5619–5629. [CrossRef]

30. Kalouris, G.; Zacharaki, E.I.; Megalooikonomou, V. Improving CNN-based activity recognition by data
augmentation and transfer learning. In Proceedings of the 2019 IEEE 17th International Conference on
Industrial Informatics (INDIN), Helsinki-Espoo, Finland, 23–25 July 2019; Volume 1, pp. 1387–1394.

31. Papagiannaki, A.; Zacharaki, E.I.; Kalouris, G.; Kalogiannis, S.; Deltouzos, K.; Ellul, J.; Megalooikonomou,
V. Recognizing physical activity of older people from wearable sensors and inconsistent data. Sensors 2019,
19, 880. [CrossRef]

32. Angrick, M.; Herff, C.; Mugler, E.; Tate, M.C.; Slutzky, M.W.; Krusienski, D.J.; Schultz, T. Speech synthesis
from ECoG using densely connected 3D convolutional neural networks. J. Neural Eng. 2019, 16, 036019.
[CrossRef] [PubMed]

33. Wu, H.; Gu, X. Max-pooling dropout for regularization of convolutional neural networks. In International
Conference on Neural Information Processing; Springer: Cham, Switzerland, 2015; pp. 46–54.

34. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. In Proceedings
of the 5th International Conference on Learning Representations (ICLR), Toulon, France, 14–26 April 2017.

35. Gong, Y.; Liu, L.; Yang, M.; Bourdev, L. Compressing Deep Convolutional Networks using Vector Quantization.
arXiv 2014, arXiv:1412.6115.

36. Wu, J.; Wang, Y.; Hu, Q.; Cheng, J. Quantized Convolutional Neural Networks for Mobile Devices.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 27–30 June 2016.

37. Taylor, T.E.; Zigel, Y.; Egan, C.; Hughes, F.; Costello, R.W.; Reilly, R.B. Objective assessment of patient
inhaler user technique using an audio-based classification approach. Sci. Rep. 2018, 8, 1–14. [CrossRef]
[PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1055/s-0038-1667083
http://dx.doi.org/10.1109/TNNLS.2018.2789927
http://dx.doi.org/10.3390/s19040880
http://dx.doi.org/10.1088/1741-2552/ab0c59
http://www.ncbi.nlm.nih.gov/pubmed/30831567
http://dx.doi.org/10.1038/s41598-018-20523-w
http://www.ncbi.nlm.nih.gov/pubmed/29391489
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Monitoring Medication Adherence through Deep Sparse Convolutional Coding
	Convolutional Neural Network Architecture
	Filter Pruning
	Pruning Scalar Values
	Vector Quantization
	Scalar Quantization
	Product Quantization

	Compression Rate and Computational Complexity

	Experimental Procedure And Evaluation
	Data Acquisition
	Evaluation Schemes
	Results
	Comparison with Relevant Previous Work
	Pruning Scalar Weights
	Pruning Filters in Convolutional Layers
	Quantizing Only the Convolutional Layers
	Quantizing Only Fully Connected Layer
	Combining Filter Pruning and Quantization


	Conclusions
	References

