
Simultaneous  localization 
and mapping (SLAM) i s 
c on s i d e r e d a n a b s t r a c t 
problem, but robust and 

efficient solutions are critical to en-
able emerging intelligent mobile 
devices.1 From fully autonomous 
vehicles to markerless augmented 
reality (AR) and from gaming to 
household robotics, the ability to au-
tomatically estimate the 3D structure 
of the environment and track a de-
vice’s position and orientation (pose) 
provides the necessary foundation 
to enable high-level interpretation, 
visualization, and interaction. Visual 
SLAM, where a camera is the primary 
sensor, has received significant atten-
tion in robotics, leading to dramatic 
progress over the past decade and 
effective market-ready SLAM solu-
tions incorporated in a range of con-
sumer and industrial products. Such 
solutions have attracted significant 
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attention in mobile and handheld 
computing because the incorporation 
of 3D visual SLAM capabilities into 
smartphones opens up a wide range 
of new applications, such as indoor 
positioning, AR, and mobile gaming. 
However, despite the deployment and 

market penetration, SLAM architec-
tures are still nonscalable and appli-
cation dependent, leading to systems 
with high processing requirements 
and high power consumption.

We argue that addressing SLAM 
architectural issues, which can be in-
trinsically supported by low-power, 
multicore, embedded systems, leads to 
scalable systems, where scalability re-
fers to multimodal SLAMs with various 
sensors operating with common and 
reduced resources in terms of compu-
tation and power consumption, respec-
tively. In the following, we introduce a 
modular SLAM architecture and pro-
vide an example for its application in 
a visual SLAM system that is flexible 
regarding the SLAM implementation 
approach. We demonstrate the effec-
tiveness of the approach through spe-
cific use cases.

STANDARD ARCHITECTURE
SLAM systems typically follow a 
standard architecture that separates 

processing into a front end and a back 
end (see Figure 1). The front end pro-
cesses sensor data, extracts feature 
measurements, performs data asso-
ciation between the features and the 
map, and computes the camera pose. 
Additiona l ly, it is responsible for 

comput i n g  g loba l loop-c los u re 
con st ra i nt s whenever sen sors re-
visit previously mapped locations; 
typically, the estimation of global 
constraints is handled by a separate 
(place recognition) thread.

The back end receives the output of 
the front end as input, which is a set of 
camera poses and constraints among 
those poses. The back end constructs 
a pose graph and optimizes it to com-
pute an optimal estimate of the cam-
era poses. A map of the environment 
can be derived from this optimized 
graph by projecting the features from 
each pose into the reference frame of 
the corresponding optimized pose. 
This is a submapping approach, where 
the 3D structure is refined through a 
local SLAM optimization calculated 
by the windowed bundle adjustment.

MODULARITY IN SLAM 
SYSTEMS
Modularity between the front end and 
back end achieves decoupling between 

sensor processing and map optimiza-
tion, but standard architectures lead 
to systems that are restricted to a par-
ticular SLAM use case and do not pro-
vide flexibility, for example, in terms 
of freely interchanging landmark 
types and sensor modalities. We iden-
tify three types of modularity within 
a SLAM system: 1) a front-end compo-
nent, 2) the front end, and 3) the back-
end modularity.

Front-end component modularity refers 
to the ability to interchange specific 
components w it h i n t he f ront end 
while maintaining the interface with 
the back end; an example is a visual 
odometry at the front end with sup-
port to switch among the following:

1. camera sensor types (for ex-
ample, passive stereo, time of 
flight, and so forth) 

2. multiple cameras (mono, stereo, 
panoramic, and heterogeneous)

3. feature detectors [for exam-
ple, scale invariant feature 
transform (SIFT), features from 
accelerated segment test, and 
Harris] 

4. feature descriptors [for ex-
ample, SIFT, BRIEF (binary 
robust independent elementary 
features), and BRISK (binary 
robust invariant scalable 
keypoints)]

5. disparity estimators (for 
example, block matching CEN-
SUS transform, and so forth) 

6. pose estimators (such as 
perspective-n-point iterative 
closest point) 

7. windowed bundle adjustment 
algorithms (such as Ceres, 
sparse bundle adjustment, 
incremental smoothing and 
mapping) 

8. integration of dense optical 
flow (for example, enterprise 
security management)

9. integration or exclusion of an 
inertial measurement unit (IMU) 

10. a magnetometer-based SLAM 
when the camera sensor doesn’t 
have a view of the world.

Sensor(s) Front End Back End

Variables, 
Constraints

Optimized Map

FIGURE 1. The standard SLAM architecture.

Simultaneous localization and mapping is 
considered an abstract problem, but robust and 
efficient solutions are critical to enable emerging 

intelligent mobile devices.
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Front-end modularity enables swi-
tching among different front ends for 
a given back end. This type of modu-
larity is supported by the Omnimap-
per framework,2 providing greater 
flexibility than front-end component 
modularity since it supports switch-
ing among sensor modalities, for ex-
ample, from depth-sensing cameras 
to line-scan lasers; feature types; and 
map types, for example, from a 2D la-
ser scan to 3D semantic maps while 
deploying a single framework across 
multiple platforms.

Back-end modularity refers to the abil-
ity to switch among different back-
end optimizers. This type of modularity 
requires a common abstraction layer 
between the back and front end(s) to 
ensure independence of the front end(s) 
from the back-end implementation.

A MODULAR, MINIMUM 
VIABLE SLAM
We describe a minimum viable SLAM 
(MVS) system (see Figure 2) that ex-
ploits modularity for scalability, as 
described previously. The front end 
consists of two modules: 1) a local map-
ping and motion estimator and 2) a 

loop-closure optimizer. Furthermore, 
the local mapping and motion estima-
tor is composed of two submodules: 1) 
tracking and 2) local mapping, which 
can be run as separate threads. Overall, 

the front end is coupled with a back end 
that provides global map optimization.

Within the tracking and local map-
ping submodules, each feature is in-
ternally represented with parameters 
such as location and inverse depth, 
which enable superior performance 
in visual SLAMs due to its Gaussian 
error model,3 in contrast to the error 
model of depth measurements. The 
front-end/back-end interface needs 
to abstract the specifics of the related 
feature detectors and descriptors to al-
low any feature detection method that 
satisfies a given set of requirements to 
be used.

Considering a front-end  similar to 
ORB-SLAM,4 feature matching is guided 
by input derived either by a camera mo-
tion model or from an IMU. The IMU 
measurement can be fused with the 

 visual odometer pose from the previous 
frame to robustly predict the reprojec-
tion of the map landmarks into the cur-
rent frame. In the modular SLAM con-
text, the adoption of an IMU should not 
be treated as a separate input to the pose 
graph back end since this would result in 
double counting the IMU measurement 
and could lead to an overconfident (that 
is, inconsistent) estimate. Alternatively, 
IMU measurements can be fused either 
within the local mapping module—en-
hancing the 3D map quality—or directly 
in the back end.

In MVS, the front end maintains a 
local map and, through that, estimates 
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FIGURE 2. A minimum viable visual SLAM. DOF: degrees of freedom.

Front-end component modularity refers to the 
ability to interchange specific components within 
the front end while maintaining the interface with 

the back end.
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the motion constraints for the back 
end. To do this, the front end operates 
a bundle adjustment (BA) fixed-size 
window that slides forward as each 
new frame is input to the system. The 
BA window optimizes both the poses 
and landmark locations, taking lon-
ger range constraints into account. As 
each pose leaves the sliding window, 
a new constraint is passed to the back 
end. This introduces latency between 

the front and back ends. The modular 
design of the local mapping and mo-
tion estimator with its two submod-
ules is effective for this purpose: appli-
cations that require a low-latency pose 
estimates use the output of the odome-
try module. Furthermore, parameters 
such as the BA window size and opti-
mization parameters may be tuned to 
specific application requirements to 
minimize variation in the computa-
tion time of the windowed BA step.

As MVS separates local (small-) 
and large-scale modules, in the back 
end, the global map is composed of the 
poses from the pose-graph optimizer 
and landmarks from the local map-
ping. The latter maintains each land-
mark’s location relative to the frame of 
reference of the first pose initially ob-
served. An additional optional func-
tionality that can also be utilized at the 
back end for improving the pose estima-
tion functionalities is the loop-closure 
optimizer (LCO). The LCO takes key 
input frames from the local mapping 
module, where the key frames contain 
the necessary feature descriptors for 
the back-end computation, for exam-
ple, the (visual) bag-of-words repre-
sentation. Importantly, any feature 
descriptor can be used for the recog-
nition process considering alternative 
input feeds from the sensors.

USE CASES
Common platforms that could de-
ploy the proposed MVS solution are 
connected and autonomous vehicles, 
wheeled platforms equipped with var-
ious radar/visual sensors, and visually 
guided robot arms with end effectors 
equipped with visual sensors. The 
inclusion of the MVS solution to un-
manned aerial vehicle (UAV) platforms 
and head-mounted displays puts tough 

requirements on the latency and ro-
bustness of the front end and requires 
approaches that mitigate against loss of 
visual tracking by fusing measurements 
across a heterogeneous set of sensors. In 
particular, the gold-standard approach, 
referred to as visual-inertial navigation, 
tightly couples the visual tracker with an 
onboard IMU. This is nowadays an open 
research direction in the field of robot-
ics and extended reality with many im-
pressive systems demonstrated over the 
past few years.

UAV platforms and head-mou nted 
displays (HMDs) could also be used 
with the MVS solution. UAVs present 
a number of specific challenges due 
to their high level of agility and their 
low power requirements. Typical plat-
forms include a variety of sensors, 
such as IMUs (accelerometer and gyro), 
downward-pointing sonar for active 
ranging and altitude control, pressure 
sensors for altitude control, a GPS for 
global position updates, and of course 
potentially multiple cameras. The two 
primary requirements that UAVs have 
for visual processing are accurate and 
continuous low-latency pose estimates 
and locally accurate mapping for tasks 
such as path planning, obstacle avoid-
ance, and safe landing-zone identifica-
tion. Although targeted at a different 
application domain, HMDs share many 

of the same challenges as UAVs due to 
their requirement for low-latency pose 
updates. A key difference here is that 
UAVs operate under closed-loop con-
trol, whereas HMDs do not.

SLAMs are increasingly import-
a nt to mobi le produc t s t hat 
automatically reconstruct, inter-

pret, and utilize 3D geometry of their 
surroundings; these products open up 
a wide range of new applications in in-
door positioning, AR, mobile gaming, 
and robotics. The commoditization of 
visual SLAMs is strongly constrained by 
current nonmodular and nonscalable 
designs that are heavily dependent on 
specific sensors and back-end optimiz-
ers. Effective modular architectures, 
like MVS, achieve high flexibility and 
scalability, enabling high performance 
and low power consumption. Impor-
tantly, the proposed MVS architecture 
models camera projections, motions, 
and environments assumes multiview 
geometry and photometric consistency 
and thus enables the development of 
deep-learning SLAMs5 that employ 
powerful deep learning techniques in vi-
sual tasks. Visual SLAMs with learning 
or adaptive capabilities are quite prom-
ising since they were recently shown to 
successfully address such issues as im-
perfect sensor measurements, inaccu-
rate system modeling, featureless areas, 
dynamic lighting, motion blurring and 
camera calibration. 

REFERENCES
1. H. Durrant-Whyte and T. Bailey, 

“Simultaneous localization and 
mapping: Part I,” IEEE Robot. Autom., 
vol. 13, no. 2, pp. 99–110, 2006. doi: 
10.1109/MRA.2006.1638022.

2. T. Schöps, J. Engel, and D. Cremers, 
“Semi-dense visual odometry for 
AR on a smartphone,” in Proc. IEEE 
Int. Symp. Mixed Augmented Reality 
(ISMAR), 2014, pp. 145–150.

3. J. M. Montiel, J. Civera, and A. J. Davi-
son, “Unified inverse depth param-
etrization for monocular SLAM,” in 
Proc. Robot. Scie. Syst., 2006, pp. 1–8.

The two primary requirements that UAVs have for 
visual processing are accurate and continuous 

low-latency pose estimates and locally accurate 
mapping for tasks.

Authorized licensed use limited to: University of Patras. Downloaded on June 14,2021 at 09:14:30 UTC from IEEE Xplore.  Restrictions apply. 



 M A R C H  2 0 2 1  67

4. R. Mur-Artal, J. M. M. Montiel, and 
J. D. Tardós, “Orb-SLAM: A versatile 
and accurate monocular SLAM sys-
tem,” IEEE Trans. Robot., vol. 31, no. 5,  

pp. 1147–1163, 2015. doi: 10.1109/
TRO.2015.2463671.

5. R. Li, S. Wang, and D. Gu, “Ongo-
ing evolution of visual SLAM from 

geometry to deep learning: Chal-
lenges and opportunities,” Cogn. 
Comput., vol. 10, no. 6, pp. 875–889, 
2018. doi: 10.1007/s12559-018-9591-8.

PETROS KAPSALAS is an advanced driv-
er-assistance systems technical leader at 
Panasonic Automotive Systems Europe 
GmbH Langen, Hessen, 63225, Germany. 
Contact him at Petros.Kapsalas@eu.pana-
sonic.com.

ARIS S. LALOS is a principal researcher 
at Industrial Systems Institute/ATHENA, 

Platani, Patras, 26504, Greece. He is a 
Member of IEEE. Contact him at lalos@isi.gr.

DIMITRIOS SERPANOS is the director of 
Industrial Systems Institute/ATHENA and 
a professor at the University of Patras, Rio, 
Patras, 26504, Greece. He is a Member 
of IEEE, Association for Computing 
Machinery, American Association for the 

Advancement of Science, and New York 
Academy of Sciences. Contact him at 
serpanos@computer.org.

KONSTANTINOS MOUSTAKAS is an 
associate professor at the University  
of Patras, Rio, Patras, 26504, Greece.  
He is a Member of IEEE. Contact him  
at moustakas@ece.upatras.gr.

IEEE Pervasive Computing 

seeks accessible, useful papers on the latest 

peer-reviewed developments in pervasive, 

mobile, and ubiquitous computing. Topics 

include hardware technology, software 

infrastructure, real-world sensing and 

interaction, human-computer interaction, 

and systems considerations, including 

deployment, scalability, security, and privacy. 

 Call  
  for Articles

Author guidelines: 

www.computer.org/mc/ 

pervasive/author.htm

Further details: 

pervasive@computer.org

www.com
puter.o

rg/perv
asive

Digital Object Identifier 10.1109/MC.2021.3059057

Authorized licensed use limited to: University of Patras. Downloaded on June 14,2021 at 09:14:30 UTC from IEEE Xplore.  Restrictions apply. 


