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Abstract—The new generation 3D scanner devices have
revolutionized the way information from 3D objects is acquired,
making the process of scene capturing and digitization
straightforward. However, the effectiveness and robustness of
conventional algorithms for real scene analysis are usually
deteriorated due to challenging conditions, such as noise, low
resolution, and bad perceptual quality. In this work, we present a
methodology for identifying and registering partially-scanned and
noisy 3D objects, lying in arbitrary positions in a 3D scene, with
corresponding high-quality models. The methodology is assessed
on point cloud scenes with multiple objects with large missing
parts. The proposed approach does not require connectivity
information and is thus generic and computationally efficient,
thereby facilitating computationally demanding applications, like
augmented reality. The main contributions of this work are
the introduction of a layered joint registration and indexing
scheme of cluttered partial point clouds using a novel multi-scale
saliency extraction technique to identify distinctive regions, and an
enhanced similarity criterion for object-to-model matching. The
processing time of the process is also accelerated through 3D scene
segmentation. Comparisons of the proposed methodology with
other state-of-the-art approaches highlight its superiority under
challenging conditions.

Index Terms—point cloud registration, partially-scanned point
clouds, saliency, weighted ICP, cluttered scene.

I. INTRODUCTION

THE scanning and digitization of 3D objects of the real,
physical world has recently attracted a lot of atten-

tion. Nowadays, there are many applications in different areas
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(e.g., entertainment, industry, medical visualization, military,
heritage, etc.) that utilize 3D objects, either in the form of point
clouds or 3D meshes. Future trends show that both this type of
applications and the need for reliable 3D object representation
will continue to increase. However, in practical scenarios, there
are many factors that inevitably affect the quality of the acquired
3D objects, such as illumination conditions or relative motion
between device and target during the scanning process, which
can create random fluctuation of the data, the formation of ad-
ditional and unnecessary points on the surface and points away
from the surface (outliers). The device itself may also generate
a pattern of systematic noise that is added to the surface of the
3D object. Additionally, due to time limitations or a random
non-ideal acquisition angle, the point clouds may be incomplete
or deformed, which can cause errors in matching and registra-
tion [1]. Researchers strive to overcome the existing limitations,
trying to provide robust solutions that can be used in realistic
circumstances and challenging scenarios. One of the most com-
mon research problems upon digitization is the recognition of
partially-observed objects in cluttered scenes, which is funda-
mental in numerous applications of computer vision, such as
intelligent surveillance, remote manipulation of robots in man-
ufacturing, autonomous vehicles, automatic assembly, remote
sensing, retrieval, automatic object completion. In this work, we
assume the existence of scanned point clouds that have been ac-
quired using low-resolution and low-cost 3D scanning devices.
These noisy point clouds represent real cluttered scenes con-
sisting of different partially-observed objects, denoted as query
models. Additionally, we assume the existence of high-quality
and complete 3D models, denoted as target models, which serve
as the ideal representation of the query models. The target mod-
els have been acquired using high-resolution scanning devices,
and have also been post-processed to remove noise and outliers.
Even though the query and target models may represent the
same object, they have different resolution, orientation, while
the query object is subject to occlusion, making the processes
of matching and registration an arduous task. The objective of
this research is threefold;
� To identify different query objects partially visible in a

point cloud scene.
� To match each query object with the corresponding original

target model (if detected).
� To register query and target objects in the point cloud scene

through 3D registration.
The successful integration of the steps is a challenging

task, especially due to the presence of noise and outliers,
occlusions, missing parts, different resolutions. Motivated by
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the need to overcome all the aforementioned challenges and
limitations, inherent in each step of the process, we designed an
end-to-end methodology that demonstrates the following main
contributions:
� A layered broad-to-narrow registration scheme that re-

duces the likelihood of getting trapped in local minima,
following a RANSAC-style initialization, based on den-
sity estimation in the space of rigid transformations, and
a subsequent transformation refinement through a novel
weighted ICP approach.

� Computational acceleration during object identification
through scene segmentation acting as a data selection (i.e.
reduction) step.

� Reduction of the effects of noise and object partiality, based
on a novel multi-scale saliency extraction technique that
allows identification of distinctive regions and reduction
of ambiguity in the matching process.

� A novel point cloud descriptor combining pose information
with local geometric properties that allows to identify point
correspondences even in the case of extreme partiality of
the query object. An enhanced point cloud similarity crite-
rion is also introduced for accurate target-to-query object
matching and registration.

It should be emphasized that our method does not require
training data, for the matching process, since it uses only ge-
ometric descriptors of each model. Appropriate computational
provisions were made in every step of the methodology to pro-
duce a fast and robust solution. The rest of this paper is orga-
nized as follows: Section 2 presents previous work in related
areas. Section 3 describes the proposed method in detail. Sec-
tion 4 presents the experimental results in comparison with other
state-of-the-art methods. Section 5 draws the conclusions and
directions for future work.

II. PREVIOUS WORK

Maybe the most critical step of a 3D object recognition and
matching process is the feature descriptor extraction. In the lit-
erature, a great number of feature descriptors have been pro-
posed [2], such as spin image [3], direct spacial matching [4],
point’s fingerprint [5], 3D shape context (3DSC) [6], snap-
shot [7], local shape descriptors [8], Mesh Histogram of Ori-
ented Gradients (MeshHOG) [9], exponential map [10] and ro-
tational projection statistics [11]. The feature descriptors can be
divided into two broad categories: the global feature descriptors
and the local feature descriptors. Global feature descriptors rep-
resent the geometric and topological properties of the entire 3D
model, but they ignore the shape details and require an accurate
segmentation of the object. Therefore, they are not usually suit-
able for the recognition of a partially observed object lying in
cluttered scenes. The global feature-based methods are usually
used in the context of 3D shape retrieval and classification. Some
popular implementations include geometric 3D moments [12],
shape distributions [13], viewpoint feature histogram [14], and
potential well space embedding [15].

On the other hand, local descriptors focus on narrow neighbor-
hoods, while coarse areas are still present for disambiguation [1].
They can generally handle occlusion and clutter better than the
global methods [16], therefore local descriptor approaches are
inherently more effective for 3D object recognition [17]. Taati
and Greenspan [8] formulated the local shape descriptor for

object recognition and localization in range data as an opti-
mization problem. They presented a generalized platform for
constructing local shape descriptors that subsumes a large class
of existing methods, allowing for tuning to the geometry of spe-
cific models. Salti et al. [17] developed a hybrid structure be-
tween Signatures and Histograms aiming to a more favorable
balance between descriptive power and robustness. Their pro-
posed descriptor, called as Signature of Histograms of OrienTa-
tions (SHOT), attempts to leverage on the benefits of both Sig-
natures and Histograms approaches. Buch et al. [18] introduced
a method for fusing several feature matches to provide a signif-
icant increase in matching accuracy, which was consistent over
all tested datasets. Lu and Wang [1] presented a novel matching
algorithm of 3D point clouds based on multiple scale features
and covariance matrix descriptors. They applied a combination
of the curvature and eigenvalue variation, to precisely detect the
key points under multiple scales. Darom and Keller [19] pro-
posed an intrinsic scale detection scheme per interest point and
utilized it to derive two scale-invariant local features for mesh
models. First, they presented the Scale Invariant Spin Image lo-
cal descriptor that is a scale-invariant formulation of the Spin Im-
age descriptor, and then, they adapted the SIFT feature to mesh
data by representing the vicinity of each interest point as a depth
map and estimating its dominant angle using PCA to achieve
rotation invariance. Lu et al. [2] presented an effective algo-
rithm to recognize 3D objects in point clouds using multi-scale
local surface features. It first detects several keypoints in each
scene/model and then extracts several feature descriptors with
different scales at each keypoint [20], [21].

Point cloud registration refers to the problem of aligning two
or more different point clouds that do represent only partially
overlapping regions. Generally, the higher the overlap, the eas-
ier the registration of the two scenes. However, there are nu-
merous factors that can negatively affect the results [22], such
as noise and outliers due to different illumination conditions or
relative motion between the scanner and the scene, occlusions
and tangled areas. The most well-known and widely used base-
line registration method is the Iterative Closest Point (ICP) algo-
rithm. Throughout the years, several ICP-based approaches have
been presented [23]–[25] providing very good results; however,
the registration is usually inaccurate when the two related point
clouds do not have a good relative initial alignment or do not ex-
hibit an ample overlap. Bouaziz et al. [26] introduced the sparse
ICP which promises superior registration results when dealing
with outliers and incomplete data. On one hand, it provides bet-
ter results than the traditional ICP approach, however, it needs
parameter adjustments for different use cases, limiting of appli-
cation potential. Mavridis et al. [27] identified the reasons for
the low efficiency of the original Sparse ICP approach and they
proposed a registration pipeline that improves the convergence
rate of the method by using a more efficient hybrid optimiza-
tion strategy. Yuan et al. [28] try to solve this problem using a
combination of ICP and Principal Component Analysis (PCA),
which is used to reflect the similarity of the two point clouds. Au-
thors of other works separate the process into a coarse and a fine
registration [29], [30]. Moreover, the 4-Points Congruent Sets
(4PCS) techniques are very popular, especially for global regis-
tration strategies [31]–[33] such as algorithms based on RAN-
dom SAmple Consensus (RANSAC) [34]–[36]. Other related
works try to find representative local or global features that are
used later as descriptors for matching. Makadia et al. [37] used
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Fig. 1. Pipeline of the proposed methodology. For the sake of simplicity, we illustrate here only the target models that are also present in the selected partially
observed scene.

extended Gaussian images that can be approximated by spheri-
cal histograms of the surface orientations. Their algorithm uses
only global information and it does not estimate any local fea-
ture. Recently, many deep learning approaches have also been
presented [38]–[41], trying to exploit recognizable features from
a training dataset, using them later for fast registration, however,
they are very vulnerable (as well all the machine learning tech-
niques) in cases where the training and the testing datasets have
been created under different circumstances.

III. WORK-FLOW OF THE PROPOSED METHOD

In this work, we focus on point clouds P consisting of n ver-
ticesv. The i-th vertexvi is represented by the Cartesian coordi-
nates, denoted vi = [xi, yi, zi]

T , ∀ i = 1, . . . , n. Thus, all the
vertices can be represented as a matrixV = [v1, v2, · · · ,vn] ∈
R3×n. Let’s also denote with ΨK

i the set of the K nearest neigh-
bors of point i. Throughout the paper each neighboring point
j can be indicated through its vertex coordinates (vj ∈ Ψi) or,
for simplicity, only through its index (j ∈ Ψi). Point cloud P
represents the scanned scene, consisting of different partially
visible 3D objects. The objective of this work is to match and
replace these objects with the corresponding high-quality 3D
objects that are assumed to be available beforehand.

The irrelevant objects and the noise seriously affect the opti-
mization process [42]–[50]. Our methodology extends previous
work on point cloud registration [34] to overcome its limitations
in the case of noisy point clouds. Our idea is that the obtained
alignment solution can be improved if registration is guided by
the most relevant salient part of the scene. The subsequent steps
after the broad-phase registration include feature extraction, sim-
ilarity assessment and saliency estimation. These steps are more
computationally efficient when a part of the point cloud is used
rather than the whole scene, as in some cases the scene might
be very big. In the next sections, we describe how we robustify
and accelerate computations at the same time by identifying and
focusing only on salient parts of the scene that potentially cor-
respond to the target model. This data selection step not only
accelerates the calculations as it allows to search for pairs of
landmarks (necessary for the final registration step) in a reduced
space, but also leads to a reduction of the impact of the outliers.

An outline of our methodology is illustrated in Fig. 1 and can
be summarized as follows:

1) Broad-phase registration: First, a fast global registration
technique [34] is applied, which helps both for the deci-
sion of the matching and the final fine registration process,
providing a better initial alignment between the query and
the target object (subsection III-A).

2) Segmentation, robustification, feature extraction and
matching: In parallel, the whole scene is divided into
clusters using our parameter-free implementation of the
popular density-based clustering algorithm [51]. Scene
clusters, which are geometrically more similar to the
registered point cloud of the previous step, are merged to
create the query object (subsection III-B1). A robustifi-
cation step is applied to facilitate the identification and
removal of spurious point sets (obtained by imperfect
scanning) that might blur the object boundaries affecting
the registration and the execution time (subsection III-D).
The proposed feature vectors, combining pose with local
multi-scale geometric information (subsection III-B2),
are then extracted and used as descriptors for model to
object correspondence assessment (subsection III-B3).
Finally, based on the defined point similarity criterion, the
best-related pairs of vertices between the matched (com-
plete and partial) objects are identified (subsection III-B4).

3) Narrow-phase registration: The final step includes the
calculation of a rigid transformation that brings the previ-
ously identified pairs of corresponding points into align-
ment (subsection III-C).

A. Broad-Phase Registration

The first step of the matching process is to align each tar-
get model to the scanned scene by global registration, without
incorporating knowledge of the model class. We have selected
a recently proposed global registration algorithm [34] that has
shown very good performance in different realistic datasets. For
completeness, we present here an overview of the algorithm,
while details can be found in [34]. The algorithm finds a num-
ber of candidate transformations by matching pairs in a roughly
uniformly distributed subset of vertices of the input objects based
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Fig. 2. Broad-to-narrow phase registration. Each target model is registered to the partial scene. The clusters that are geometrically close to the registered model
are selected to create the query object for the matching comparison step.

on local shape properties (i.e., principal curvatures and the first
principal direction). The optimal transformation is selected by
localizing a density peak in the space of candidate rigid trans-
formations. In order to find the density peak, a metric d(T1, T2)
is needed, which measures the distance of a transformation T1

from a transformation T2. A density estimation function can be
defined using some kernel function F as:

ρ(x) =
∑
i

F (d(Ti, x)). (1)

Various kernel functions can be used for F , however, mostly
for efficiency reasons, a simple Gaussian F (r) = e−(br)2 is pre-
ferred, where b is a spread parameter. Instead of looking for
the general location of the true global maximum of ρ, ρ is
only evaluated at each candidate position and the maximum
among them is chosen as the result. Given the spread param-
eter b and some small threshold ζ, only samples within the ra-
dius r =

√−ln(ζ)/b contribute significantly (> ζ) to the den-
sity. Therefore, the task is to find, for each candidate, a set of
candidates up to the distance r. Because of the non-Euclidean
topology of the search space, a KD-tree cannot be used for this
purpose, however, a more general acceleration structure - the
Vantage Point Tree [52] - can be used. Measuring the distance
between two transformations commonly involves relating their
rotation and translation components, which is notoriously diffi-
cult. Instead, embracing the inherent dependence of such relation
on the character of the input data, the metric can be derived from
the difference of the effect the two transformations have on the
vertices of the input objects:

d(T1, T2) =
∑
i

||R1vi + t1 −R2vi − t2|| (2)

where R1 and R2 are the rotations of T1 and T2 respectively
and t1 and t2 are the translation vectors of T1 and T2 respec-
tively. Since the sampling density of the input objects may be
quite irregular, a more robust option is to integrate distance over
triangles instead of summing over vertices. The value of the
corresponding integral over a single triangle t can be expressed
as:

dt(T1, T2) =

∫
t

||R1v + t1 −R2v − t2||da. (3)

where a(t) represents the simplest geometric area (i.e., consist-
ing of three vertices) represented by a triangle t. Since this work
is designed for point clouds and does not request actual con-
nectivity information, triangles are defined based on the point’s
closest neighbors. Finally, the full rigid transformation metric is
obtained by summing over all triangles:

d(T1, T2)
2 =

∑
i=1

dti(T1, T2)
2 (4)

A remarkable property of both expressions for transformation
distance, i.e. the vertex sum and the triangle integral, is that with
linear pre-processing, they can be evaluated in constant time, i.e.
independently on the sampling density of the input objects.

It is important to note here that the target object may not
appear in the partially observed scene, as presented in the forth
line (i.e., rhino model) of Fig. 2. The global registration step
is not required to identify if there is a correlation between the
target model and the query model, but only to provide the best
possible solution. The final decision on the correspondence of
the two models will be made in the narrow-phase registration
step according to subsection III-B4.

After the broad-phase registration, all the high-resolution
models have been mapped to the scene using global alignment.
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Then the solution is further refined to become more robust to
outliers.

B. Scene Segmentation and Model-to-Object Matching

1) Point Cloud Segmentation by Density-Based Clustering:
The semantic segmentation of the scene is often challenging, as
the 3D objects lying in the scene might appear tangled with each
other, due to abnormalities created by imperfect scanning. Let’s
also note that supervised [53] or semi-supervised [54] learning
techniques that exploit prior knowledge in the form of shape pri-
ors or large training datasets with semantic annotations cannot
be applied here to facilitate segmentation, because such large
scale annotations are not always available. Our method is based
on the assumption that, even if different objects overlap, (i.e.
their distance is small in some regions), the local point density
within each object is larger than these across different objects
in the scene. Therefore for parcellation of the scene, we for-
mulate a density-based algorithm, i.e the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [51], and im-
plement a parameter-free approach, as explained in the sequel.
More specifically, DBSCAN is used for the automated segmen-
tation of a point cloud scene into separate clusters, which can be
potentially used for matching and registration, reducing the total
execution time. The number of clusters is not required before-
hand. Considering point cloud P ∈ Rn×3, the clustering result
is represented by an vector k ∈ Zn [55] with elements:

ki =

{
j if vi belongs to cluster j ∈ {1, . . . ,m}
−1 if vi is an outlier , (5)

where m represents the number of clusters. Each scene may
consist of a different number of 3D objects and a 3D object
may be represented by more than one clusters due to imperfect
scanning, occlusions, etc. One parameter of the DBSCAN algo-
rithm which needs to be predefined is the neighborhood radius ε.
Our contribution is that we allow the threshold ε to be spatially
adapted and be larger in sparse regions in order to retain suffi-
cient neighbors everywhere. The method becomes more robust
with this adaptation, especially in cases where the 3D objects
have different density of points in different areas of their surface.
More specifically, we assign a value that is inversely proportional
to the local density, such as twice the average distance of the Ka

nearest neighbors.

εi = 2

Ka∑
j=1

Dij

Ka
∀ i = 1, . . . , n (6)

where Dij ≡ D(i, j) is the Euclidean distance of the i vertex to
its jth nearest vertex. The spatially adaptive value of ε allows us
to differentiate which points belong to a cluster, and which are
large-scale outliers or noise points. After the broad-phase regis-
tration step, all clusters being geometrically close to the regis-
tered target model (according to a predefined distance threshold)
are merged to form a new point cloud (i.e., query object), denoted
as Q.

2) Salient Points Detection: Our purpose in this step is to
identify if each high-quality target model T ∈ Rnt×3 and each
segmented query object Q ∈ Rnq×3 (where nt ≥ nq due to
occlusion, low-quality, etc), represents the same structure. To
define similarity between each set of point clouds we propose
descriptors that encode spectral saliency. In the following we
describe the proposed features, and how they are used to extract

point-to-point correspondences, necessary for the final registra-
tion step.

The feature descriptors that we use are related to the saliency
map of the point cloud. Saliency is a value assigned to each
vertex of a point cloud that represents its perceived importance.
In the case of raw point clouds without context information,
saliency characterizes the geometric properties. High values of
saliency represent more perceptually protruding vertices. In this
work, we assume that geometric lines, corners, and edges are
more distinctive perceptually than flat areas, according to the
theory of visual saliency of sight.

To estimate the saliency map, we use a similar pipeline, as
the one described in [56], but we extract the saliency map using
only spectral analysis, avoiding the computationally complex
geometric analysis. For each point vi of the point cloud Q ∈
Rnq×3, we construct a matrix Ni ∈ R(k+1)×3 comprising of
the normals of vi and the normals of the k-nearest neighboring
points of vi (generally, we set k = 20):

Ni = [ni, ni1 , ni2 , · · · , nik ]
T ∀ i = 1, . . . , nq (7)

For the estimation of the point normals, a plane is approximated
based on the set of closest neighboring points, according to [57]:

ni =
1

|Ψi|
∑
v∈Ψi

(v − vi)(v − vi)
T (8)

The eigenvector corresponding to the smallest eigenvalue of ni,
is the best estimation of its normal vector. The matrices Ni are
also used for the computation of covariance matrices Ci:

Ci = NT
i Ni ∈ R3×3 (9)

The matrix Ci = UΛUT is decomposed into a matrix U,
consisting of the eigenvectors, and a diagonal matrix Λ =
diag(λi1, λi2, λi3), consisting of the corresponding eigenvalues.
Finally, the saliency value si of a vertex vi is determined as the
value given by the inverse l2-norm of the corresponding eigen-
values:

si =
1√

λ2
i1 + λ2

i2 + λ2
i3

(10)

Based on this equation, flat areas producing high eigenvalues
correspond to small saliency values, while the most salient ver-
tices are those that represent high-frequency features (i.e., edges
and corners) and thereby produce small eigenvalues. These fea-
tures are more recognizable by the human brain, since they are
perceptually more distinctive. The same process for extracting
the saliency maps is followed for partial objects as well as the
target models. The only difference is that computations for the
target models are performed only once (offline) and a small set
of salient points is stored to be used for the subsequent matching
process.

3) Multi-Scale Feature Extraction: First, the saliency values
of the two compared models are normalized according to:

sti = 1− e
−Ks∗sti
smax

∀ i = 1, . . . , nt

sqi = 1− e−Ks∗sqi
smax

∀ i = 1, . . . , nq

(11)

where smax = max(max(st),max(sq)). Then, we perform spa-
tial smoothing of the saliency map with a uniform kernel of
increasing size and use the obtained values to form a feature
vector with the multi-scale saliency values. The neighborhood
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Fig. 3. (a) [Up] Original high-quality 3D mesh (Chef model) (consisting of 176912 vertices), [Down] partially scanned point cloud object of the same model
(consisting of 45811 vertices), (b) [Up] salient vertices of the original model (consisting of 55935 vertices), [Down] salient vertices of the partial scanned object
(consisting of 16324), (c) [Up] remaining salient vertices of the high-quality model that creates unique pairs with the salient vertices of partially-scanned model
(consisting of 11162 vertices) and [Down] vice versa, and (d) Enlarged regions illustrating the identified correspondences in red color.

size is selected as Ψk·K with K = 5 and k = 1, . . ., 5, although
these parameters may vary. Smaller scales increase feature vec-
tor specificity, while larger scales smooth out noise and irreg-
ularities making the shape descriptor more robust. The use of
multiple scales allows us to combine both properties and leads
to unique and accurate correspondences. This process is applied
for each point cloud in T as well as Q. Specifically, for each
vertex i, we create a corresponding vector ai ∈ R5, according
to:

ai = [

∑
j∈ΨK

i

sj

K

∑
j∈Ψ2˜K

i

sj

2˜K
. . .

∑
j∈Ψ5˜K

i

sj

5˜K
]T (12)

Then, we concatenate the multi-scale saliency values with the
vertex coordinates to obtain the final feature representation. Fi-
nally, for each one vertex, we create the augmented feature vector
f ∈ R8, consisting of the vertex coordinates and the correspond-
ing values of the vector a:

f = v ∪ a =

[
vT

aT

]
(13)

4) Model-to-Object Correspondence Estimation: The fea-
ture vectors f , calculated using Eq. (13), are used for the eval-
uation of similarity between the query and target point clouds,
looking for their unique pairs of vertices p which exhibit the
smallest feature vector distance. It is expressed through the
l2-norm:

p = (vt,vq) = arg minvt,vq
||ft − fq||2 (14)

Finally, we keep only the firstKp pairs having the highest feature
vector similarity. An example is shown in Fig. 3 c-3 d, where fea-
ture vector correspondences are illustrated with red color. These
Kp pairs are the best-identified correspondences between model
T and object Q. Let’s note here that we use the augmented fea-
ture vectors f , which include multi-scale geometric descriptors
in addition to 3D location, to avoid erroneous surface mapping
obtained by chance due to accidentally good local geometric fit

(small Euclidean distance) of the partial point cloud. These aug-
mented feature vectors can ensure not only spatial proximity,
but also local shape similarity.

At this point of the methodology, the obtained pairs of cor-
responding vertices include matches for each target model T
to each query object Qj , j ∈ {1, . . . ,mq}, where the mq de-
notes the number of the query objects. To identify the correspon-
dences, we introduce a dissimilarity factor cj which is defined
as the mean distance of the Kp pairs of the best-related vertices
between model T and each object Qj .

cj =
1

Kp

Kp∑
i=1

||ft
i
− fqji

||2 (15)

where fqji
∈ Qj is the feature vector matched to ft

i
∈ T. The

lower the value of c, the more similar are the two point clouds.

C. Narrow-Phase Registration

Having identified and matched the target and query object
pairs in the scene, the fine registration is achieved by identify-
ing a set of corresponding points and then finding the optimal
transformation that brings those pairs of points (control points)
into alignment. In this step, we initialize the registration with
the solution obtained from the global initial alignment and re-
fine it using a weighted ICP approach. The objective is, given
a set of control points p = (vti ,vqi) with vt ∈ T and vq ∈ Q,
to estimate a rigid transformation T that minimizes a distance
(or more general an error) function.

As the partial object contains only a subset of the shape rep-
resented by the high resolution model, point matching is per-
formed starting with a set of control points in Q and identifying
the corresponding points in T as described in the previous sec-
tion. Generally, in weighted ICP approaches [58], [59] the error
function is composed of a feature vector distance term and a
weighting term used to downgrade the contribution of pairs that
have high likelihood to be outliers or wrong correspondences.
The optimal transformation is obtained by solving a weighted
least squares minimization problem. For rigid transformations
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expressed by a rotation matrix R and a translation vector t, it
can be written as:

argmin
R,t

∑
i

φ(D(Rvti + t,vqi)) (16)

where D is the Euclidean distance and φ(.) is an even, C1-
continuous on R and monotonically increasing function on
[0,∞). The function φ(r) that we use is the Tukey’s bi-weight
function formulated as:

φ(r) =

{
γ2

6 {1− (1− r2

γ2 )
3} if |r| ≤ γ

γ2

6 if |r| > γ
(17)

and we use as weights w(r), the first order derivative of φ(r)
function, denoted w(r) = φ′(r):

w(r) =

{
r(1− r2

γ2 )
2 if |r| ≤ γ

0 if |r| > γ
(18)

D. Robustification by Outliers Removal

Outliers and other surface abnormalities of the scanning pro-
cedure might be interpreted as salient points, leading to wrong
matching and registration results. So, we have to ignore both the
outliers and the open edges, which form the boundary of the seg-
mented point cloud, because they do not represent characteristic
discriminative features to guide the registration process.

1) Small-Scale Outliers Removal: Scanned objects or scenes
usually include noisy parts represented by vertices that do not
belong to the geometry of the real object. Two different types of
outliers occur in scanned point clouds; (a) the large-scale outliers
that lie away from the point cloud and (b) the small-scale out-
liers which are tangled with the useful information and could be
mistakenly recognized as points [60]. As we mentioned earlier,
the large-scale outliers could be removed through the applica-
tion of the clustering method presented in Section III-B1. For the
small-scale outliers removal process, we use a Robust Principal
Component Analysis (RPCA) approach, which decomposes the
observed measurement matrix E into a low-rank matrix L, rep-
resenting the real data, and a sparse matrix S, representing the
outliers [61], [62], by solving:

arg minL,S‖L‖∗ + λ‖S‖1, subject to L+ S = E, (19)

where ‖L‖∗ is the nuclear norm of a matrix L (i.e,
∑

i σi(L) is
the sum of the singular values of L). This problem can be solved
using a splitting method, such as the Augmented Lagrange Mul-
tiplier (ALM) algorithm [63], [64]:

arg minL,S,Y‖L‖∗ + λ‖S‖1 + 〈Y,E− L− S〉

+
μ

2
‖E− L− S‖2F (20)

where 〈a,b〉 represents the inner product of a and b. The ob-
served matrix E ∈ R3n×(k+1) is constructed as follows:

E =

⎡
⎢⎢⎢⎣
v1 v11 v12 . . . v1˜k

v2 v21 v22 . . . v2˜k
...

...
...

. . .
...

vnq
vnq1 vnq2 . . . vnqk

⎤
⎥⎥⎥⎦ (21)

wherevi = [xi, yi, zi]
T and k represents the number of the near-

est neighbors used (k = 50). The estimation of the low-rank and

the sparse matrix is performed according to:

minS L(L,S,Y) = Qλμ−1(E− L+ μ−1Y)
minL L(L,S,Y) = Dμ−1(E− S+ μ−1Y)

(22)

where Qτ [.] = sgn(.)max(|.| − τ, 0) denotes the shrinkage op-
erator and Dτ (.) = UQτ (

∑
)V T denotes the singular value

thresholding operator. More details about the RPCA can be
found in [63], [64]. The resulting sparse matrixS ∈ R3nq×(k+1)

has the form:

S =

⎡
⎢⎢⎢⎣
ṽ1 ṽ11 ṽ12 . . . ṽ1˜k

ṽ2 ṽ21 ṽ22 . . . ṽ2˜k
...

...
...

. . .
...

ṽnq
ṽnq1 ṽnq2 . . . ṽnqk

⎤
⎥⎥⎥⎦ (23)

where ṽi = [x̃i, ỹi, z̃i]
T represents the corresponding sparse val-

ues. We use only the values ṽi of the first column in order to
estimate the metric mi, according to the following equation.

mi =
√
x̃2
i + ỹ2i + z̃2i (24)

The value mi quantifies the probability of vertex i to be an
outlier. The sparse matrix is usually full of zeros (representing
vertices on flat areas), and only some high non-zero values exist
that correspond to outliers.

2) Boundary Edges Identification and Removal: Similarly
to the outliers, the boundary edges of a partially-scanned ob-
ject may mistakenly be recognized as edge features, so they
must be identified and removed as well. It is necessary to dif-
ferentiate salient points on edges and corners, useful for guid-
ing the registration process, from misleading boundary edges
around holes and missing parts, caused by imperfect scanning.
To identify such boundary edges, we estimate the mean distance

dΨi
=

∑

v∈ΨKD
i

‖v−vi‖
KD

between each i vertex and itsKD nearest
neighbors, and characterize each point as internal or boundary
point according to:

vi =

{
is an internal vertex, if dΨi

≤ 2d̄
is a boundary vertex, if dΨi

≥ 2d̄
(25)

where the d̄ represents the mean distance of all mean distances
dΨj

in the query object Q,

d̄ =

nq∑
i=1

dΨj

nq
(26)

IV. EXPERIMENTAL ANALYSIS

A. Experimental Setup, Datasets and Metrics

The experiments were carried out on an Intel Core i7-4790HQ
CPU @ 3.60 GHz PC with 16 GB of RAM. The core algorithms
are written in Matlab and C++.

For the experiments, we used two different datasets. The
first one consists of a variety of partially scanned point clouds
representing cluttered scenes of different objects, denoted as
UWAOR [65], [66]. The dataset contains 50 cluttered scenes
with up to 5 objects acquired with the Minolta Vivid 910 scan-
ner in various configurations from a single viewpoint. All objects
are heavily occluded (60% to 90%), as illustrated in Fig. 4. The
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Fig. 4. UWAOR dataset consisting of 50 partially scanned scenes from a single
viewpoint.

Fig. 5. UWA3M dataset consisting of incomplete scans of 3D models in arbi-
trary angles.

second dataset, Fig. 5, consists of a variety of incomplete mod-
els under different viewpoints (angles), denoted as UWA3M [67]
and with various percentages of occlusion. There are 22 incom-
plete instances of “Chef,” 16 of “Chicken” and “Parasaurolo-
phus,” and 21 of “T-rex”. The third dataset [68] is composed of
150 synthetic scenes, captured with a (perspective) virtual cam-
era, and each scene contains 3 to 5 objects. The model set is
composed of 20 different target objects.

An index of performance of the registration task is the degree
of deviation for rotation R and translation t from the ground
truth rotation matrix Rg and translation vector tg . The rotation
error εr and the translation error εt are defined as:

εr = arccos

(S(RR−1
g )− 1

2

)
180

π
(27)

εt = ||t− tg|| (28)

where S(A) determines the sum of the diagonal elements of
the matrix A [1]. It is obvious that the smaller these errors, the
better the matching results.

B. Parameter Adjustment

In this paragraph, we will present and justify the selection of
parameter values that are fixed through the steps of the proposed
methodology in order to provide reproducible results. The cho-
sen number of neighboring vertices in Eq. (6) is equal toKa = 5,
but in any case, we have observed that the algorithm is not sen-
sitive to this value. In fact, the results are very similar for the
range of Ka ∈ [5, 8]. The only important fact is that those ver-
tices should be retrieved from the geometric area, which is very
close to the reference vertex, such as the first ring area.

In Eq. (24), we estimate the quantity mi for each i vertex
that is used to identify if a vertex is an outlier or not. However,
we first need to specify a threshold for this identification. We
interpret as outliers those vertices that have a value of mi bigger
than 0.6, and then we remove them. Obviously, this threshold
can be adjusted; The experimental analysis demonstrates that the
lower the threshold, the more vertices are considered as outliers
and are therefore removed. The user can adjust the value of this
parameter; however, we suggest the threshold to be equal to 0.6.

Eq. (25) is used to determine if a vertex is considered as a
boundary point or not. The used number of neighboring vertices
in this case is KD = 10. The selection of this value is not criti-
cal and it is advised to be selected in the range of KD ∈ [8, 12].
These values provide enough, but not too many, instances. In
subsection III-B4, we described the use of feature vectors f for
finding unique pairs. However, to make the process more com-
putationally efficient, we do not compare the two full-sized point
clouds, vertex by vertex, but we keep only the highest saliency
vertices (as presented in Fig. 3-(b)), corresponding to saliency
values higher than a threshold set to τ = 0.4.

Eq. (15) expresses the dissimilarity factor c. If the value of
c is lower than a threshold then we assume that the two exam-
ined point clouds are related, representing the same 3D object.
The experimental analysis (please refer to subsection IV-D1)
has shown that a threshold ξ = 0.4 allows to differentiate intra-
from inter-class object pairs. We also define the number of the
compared vertices to be equal to Kp = 200.

We would like to mention here that the selected values
are invariant to affine transformations and sampling density.
Table III summarizes the default values that we used and a short
description.

C. Computational Efficiency

In this paragraph, we present a time complexity analysis show-
ing how our contribution can speed up the clustering process. Ta-
ble I assesses the execution time of the narrow-phase registration
phase and Table II assesses the modified clustering algorithm.

More specifically, in Table I, we present the speed up of our
approach in comparison with the one-shot registration (i.e, O.
Registration in Table I) (without scene segmentation) applied
for different target to scene registration examples. In this case,
the effectiveness of our approach depends mainly on the size
of the query point cloud, however for all tested examples the
speed up is more than 5x. We would like to note here that the
pre-processing step consists of the outliers’ removal process and
feature extraction.

In Table II, we present the execution times of the original DB-
SCAN algorithm and our approach for some random scenes of
the used dataset (UWAOR). As we can see, our approach is up
to 97.7 times faster. Also, we can observe that the effectiveness
of our approach is more apparent with increasing number of
points. The main reason why our implementation is faster than
the original DBSCAN is that our approach does not exhaus-
tively estimate distances between each vertex and all the other
vertices of the point cloud, but searches only within a small
spatial area consisting of a specific and predefined number of
neighbors equal to Ka. In this case the time complexity of the
algorithm is not O(n2) but O(K2

a), where Ka � n.

D. Performance Evaluation

In the following subsection, we present and evaluate the per-
formance and accuracy of the proposed matching and registra-
tion process.

1) Evaluation of Matching in Partial Scenes: For this exper-
iment, we used the 50 partially scanned scenes of the UWAOR
dataset (Fig. 4) and the five target models (i.e., Chef, Chicken,
Parasaurodophus, T-rex, Rhino). Fig. 7 presents the boxplots of
the dissimilarity factor between the query and the target models.



2238 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 24, 2022

TABLE I
SPEED UP OF OUR APPROACH (NARROW-PHASE REGISTRATION)

TABLE II
SPEED UP OF OUR APPROACH (CLUSTERING)

TABLE III
DEFAULT VALUES FOR PARAMETERS

Fig. 6. Rodolà’s dataset consisting of 150 synthetic partially-observed scenes.

The first five boxplots present the value of the dissimilarity fac-
tor when the target model is registered through the broad phase
in a scene where a partial representation of the same object also
exists (intra-class). On the opposite, the last boxplot presents
the values of the dissimilarity factor when the target model is

Fig. 7. Range of the dissimilarity factor calculated between each target and
query (partial) model when they represent the same object (intra-class) or differ-
ent objects (inter-class). The first 5 boxplots show intra-class comparisons for
every individual object, whereas the last boxplot summarizes the values of all
inter-class comparisons.

globally registered in a scene which does not include a partial
representation of the same object (inter-class), like in the case
of the rhino model as shown in Fig. 2. As we can see, the dis-
similarity factor of the first five cases is smaller than 0.5. This
means that the global registration provides a correct initial es-
timate, regardless of the noise, amount of cluttering, and type
of object. On the other hand, as we expected, the dissimilarity
factor between query and target models is very high, when they
represent different objects.

Fig. 8-[Right] depicts how the occlusion of a model (in per-
centage %) affects the dissimilarity factor (in case of intra-class
matching). In other words, this figure shows that the value of the
dissimilarity factor depends on the percentage of the occlusion
of the query object. The bigger the occlusion, the higher the
possible values of the dissimilarity factor, as observed from the
slight shift of the distribution towards higher values. The colors
of the heatmap represent the number of the instances per occlu-
sion and dissimilarity factor as presented in the corresponding
axes. Fig. 8-[Left] presents a histogram showing the number of
instances that in certain range of the dissimilarity factor. The
distribution shows that most of the cases have a dissimilarity
factor between [0.1− 0.3]. Each bar of the histogram is the total
sum of each row of the right figure.

Moreover, we calculated the Precision-Recall (PR) curve
which is one of the most common indicators used in the
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Fig. 8. Effect of occlusion on dissimilarity factor. [Left] Marginal distribu-
tion of dissimilarity factor. [Right] Joint distribution of dissimilarity factor and
amount of occlusion in the case of intra-class object matching.

Fig. 9. PR curve under different threshold of the dissimilarity factor.

TABLE IV
RESULTS OF MATCHING THE FIVE TARGET MODELS TO THE 50 PARTIAL SCAN

SCENES [UWAOR]

literature for the evaluation of a descriptor or algorithm in
retrieval tasks [18]. Precision denotes the number of correct
matches to the total number of matches. Recall denotes the num-
ber of correct matches to the total number of possible correct
matches. In Fig. 9, the PR curve has been created by changing the
threshold of the dissimilarity factor (which defines the similarity
between two models) in a range of [0.05− 1]with a step of 0.05.
Our method provides a binary decision (if the query and target
models represent the same object or not), based on the value
of the predefined threshold. The broad-phase registration only
identifies the area of the point cloud scene in which the query
model may lie, but the value of the dissimilarity factor is what
ultimately defines if there is an actual match. Table IV presents
the results of our matching process. The numbers in parenthesis
present the correct (existing or non-existing) matches which we
aim to identify. For example, the “Chicken” model appears in 48
of the 50 scenes and the method has found 47 true positives (TP)
and 2 true negatives (TN) cases. As can be seen, the “Chef” and

TABLE V
STATISTICAL MEASURES FOR THE EVALUATION OF OUR METHOD

Fig. 10. Recognition rates per different percentage of occlusion, in comparison
with other methods, namely tensor [65], spin image [3], keypoint [66], VD-LSD
[8], EM based [10], RoPS [11] and MS_LF [2].

the “T-rex” models are correctly matched in all of the 50 and
45 scenes, in which they correspondingly appear. Also, all mod-
els except the Parasaurolophus (having one false positive (FP)
were correctly identified as missing in all scenes in which they
do not appear. Statistical measures of performance are shown in
Table V for each model separately as well as averaged across
all models. Finally, in Fig. 10, we present the recognition rate,
i.e. the fraction of TP over the total number of correct matches,
of our method in comparison with other well-known methods
of the literature for different occlusion rates. The recognition
rate of our method is less than 100% only when the occlusion is
higher than > 85%.

2) Evaluation of Matching With Noisy Query Models: In this
experimental case, we compare the target models with query
objects that represent a partial scan of the target model, under
different levels of noise. For the creation of the noisy models,
we added, to each query model, different levels of Gaussian
noise with intensity σE = {0.1, 0.3, 0.5} to each of the original
representations [69]. An example of a noisy scene with different
levels of Gaussian noise is presented in Fig. 19.

In Table VI, we present the TP and the false negative (FN)
matches for each of the different models of the dataset. The
TP matches are 100% for the original dataset and under the
presence of noise with σE = 0.1. When the level of noise starts
to increase (> 0.1), the first false negatives start to appear.
Similar conclusions can be observed in Fig. 13. The recognition
rate decreases as the level of noise increases, but nevertheless
does not drop a lot, as even for a high amount of noise (i.e.,
σE = 0.5), the mean recognition rate remains high (75%).
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Fig. 11. Effect of noise (σE ) on dissimilarity factor. (a) original dataset, (b) σE = 0.1, (c) σE = 0.3, (d) σE = 0.5.

Fig. 12. Distribution of dissimilarity factor between target and query models for different occlusion rate of the query model and noise levels (σE ) affecting the
dataset. (a) original dataset, (b) σE = 0.1, (c) σE = 0.3, and (d) σE = 0.5.

TABLE VI
TRUE POSITIVE AND FALSE NEGATIVE MATCHES USING THE ORIGINAL AND

THE NOISY DATASETS [UWA3M]

Fig. 11 shows the histograms representing the number of
intra-classes comparisons that have a certain value of dissim-
ilarity (x-axis). As we can observe, in the original dataset and in
the dataset that has been affected byσE = 0.1 noise, the dissimi-
larity factors are less than 0.4. As the amount of noise increases,
the dissimilarity factor also increases, affecting the accuracy
of object identification. Additionally, in Fig. 12, we present the
dissimilarity factor for different percentages of occlusion for the
different noisy datasets. As expected, the dissimilarity factor de-
pends on the percentage of the occlusion of the query object, as
well as on the level of noise.

3) Evaluation of Segmentation and Registration in Noisy and
Low Quality Scenes: Besides the fact that the UWAOR dataset
consists of models that have been affected by real noise due to
the limitations of the scanner device, we further investigate more
challenging situations of noisy and low quality scenes. In Fig. 16,
we present how the clustering method works under different lev-
els of Gaussian noise (0.1 - 0.5) and different levels of visual

Fig. 13. Recognition rates per different levels of noise for the each model
separately and in total.

quality (10% - 50% simplification). InFigs. 19, 20, we present
some experimental results that show how the performance of
the broad-to-narrow registration is affected by different levels
of noise and different resolution. More specifically, we applied
different levels of Gaussian noise [σE = 0.1, 0.3, 0.5] to the
models, and then we followed the same steps as in the origi-
nal implementation of our approach. Additionally, in Figs. 19,
20, we present how the low resolution quality of a scene could
also affect the performance of the alignment. In this experi-
ment, we downsampled the scene about 10%, 30%, and 50% of
the original points (i.e., sim. 10%, sim. 30%, sim. 50%). The
experiments show that the alignment of noisy or low-resolution
models is deteriorated, as was anticipated. However, the figures
and the results show that the performance of the whole proposed
pipeline is not significantly affected (in a way to hinder correct
matching and registration).
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Fig. 14. Rotation error εr for the broad-phase and the narrow-phase registration for each of the 50 scenes. The scenes are sorted by increasing value of broad-phase
registration error.

Fig. 15. Translation error εt for the broad-phase and the narrow-phase registration for each of the 50 scenes. The scenes are sorted by increasing value of
broad-phase registration error.

Fig. 16. (a) Original scene clustering and clustering under (b) σE = 0.1, (c) σE = 0.3, (d) σE = 0.5 Gaussian noise, and (e) 10%, (f) 30%, and (g) 50% of
total points simplification.

Fig. 17. (a) Partially scanned segments of a scene (b) broad-phase registration
and heatmap visualization of mean squared error, (c) narrow-phase registration
and heatmap visualization of mean squared error, (d) enlarge details of broad-
phase registration, and (e) enlarge details of narrow-phase registration.

4) Evaluation of the Narrow-Phase Registration: Besides
the evaluation of the matching process, which results to object
identification, we also evaluated the robustness of the registra-
tion process that allows the high-quality 3D model to accurately
replace the partially scanned model. Even if object identifica-
tion is always correct, accurate model-to-object registration is
not granted.

Figs. 14-15 present the rotation (εr) and translation (εt) er-
rors after the broad-phase and the narrow-phase registration
of the models in each scene. In the majority of the cases,
the narrow-phase registration reduces significantly the error of
broad-phase registration. Additionally, the broad-phase regis-
tration, used as an initialization step, affects the results of the
narrow-phase registration, however the upper bound of the latter
remains limited even for inaccurate initializations.

In Fig. 17 we present the results of the broad-phase and the
narrow-phase registration for the “Chef” model of the 7th scene
and the “Chicken” model of the 49th scene. We also provide en-
larged details for an easier comparison between the approaches
and heatmaps that visualize the mean squared error between the
position of the registered and the original models.

Many methods obtain high registration accuracy when applied
to full objects, however, they achieve a much lower accuracy
when used with partial objects [70]. Many approaches provide
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Fig. 18. Visualization of registration results of different methods for 4 random partial scenes. (a) partial scenes consisting of different models in arbitrary positions,
registration results using: (b) Robust low-overlap 3-D point cloud registration approach [71], (c) Discriminative Optimization approach [72], (d) Density Adaptive
Point Set Registration [73], (e) the Super 4PCS approach [74], and (f) the proposed method.

Fig. 19. (a) broad-phase registration and (b) narrow-phase registration, under different conditions.

Fig. 20. Rotation εr and translation εt error for each
method applied to the two datasets (i.e, UWAOR and
Rodolà’s dataset).
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Fig. 21. Rotation εr and translation εt error for each method applied to the two datasets (i.e, UWAOR and Rodolà’s dataset).

good results only if there is a big overlap between the input
models. Other approaches have some constraints, like equally
sized models with respect to their number of vertices. In Fig. 18,
we present the registration results of different state-of-the-art
methods as applied in some partially-scanned scenes of the
dataset. More specifically, the used methods for the registra-
tion comparisons are: (i) Robust low-overlap 3-D point cloud
registration for outlier rejection (RLO) [71], (ii) Discriminative
Optimization: Theory and Applications to Point Cloud Reg-
istration (DO) [72], (iii) Density Adaptive Point Set Regis-
tration (DARE) [73] and (iv) Super 4PCS Fast Global Point
cloud Registration via Smart Indexing [74]. To note here that
for a fair comparison with all aforementioned approaches, we
firstly applied the model-to-object matching results obtained by
our method, and then used them for the narrow-phase registra-
tion step. The experimental process shows that our robustified
weighted ICP-based method provides the most accurate regis-
tration for all the models of the partial scenes.

Finally, in Fig. 21, we present the rotation εr and translation εt
error for each model presented in the 50 scenes of the UWAOR
dataset and in the 150 scenes of the Rodolà et al. dataset [68],
for different competing methods.

V. CONCLUSION

In this paper, we presented a methodology for the identifi-
cation and registration of 3D objects in partially scanned and
cluttered point clouds. The point clouds might include 3D ob-
jects lying in arbitrary positions in multi-object scenes and in-
clude noise and outliers. The whole multi-step methodology has
been designed to address many challenging subproblems with
the aim to reduce uncertainty in matching through dedicated

salient point detection and robustification techniques and to opti-
mize the mapping following a broad to narrow registration strat-
egy. The comparison of our method with other state-of-the-art
approaches has shown its superiority.

Our future plans include the semantic retrieval of objects in
order to complete all partial or low-quality objects of the iden-
tified category (e.g., replacement of all partially-observed cars
in a cluttered point cloud scene acquired by Lidar sensors, with
high-quality car models from a database, regardless of the pos-
sible different shapes and forms of the cars). We furthermore
aim to investigate the combination of our methodology with
non-rigid transformation that will allow to map and replace par-
tially observed deformable objects which appear in different
poses (e.g. the moving human body) with the corresponding
models of a database.
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