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Abstract—Hypertension is a chronic condition characterized
by high pressure in the arteries of the human body. As a result,
the heart is forced to work more intensively for the normal
circulation of blood in the body. It is one of the most important
risk factors for future fatal and non-cardiovascular diseases,
stroke and kidney failure. In this article, Machine Learning (ML)
is used to design effective models for predicting the long-term
risk of older participants (over 50 years old) being diagnosed
with hypertension. Our purpose is to train models with high
sensitivity in identifying subjects at risk to avoid the future
development and occurrence of hypertension following the proper
interventions. In the context of the adopted methodology, two
different class balancing methods are considered, under which
features ranking is applied, and two ML models (namely, Decision
tree and Naive Bayes) are compared based on Precision, Recall,
F-Measure, Accuracy and Area Under Curve (AUC).

Index Terms—Hypertension, blood pressure, prediction, ma-
chine learning

I. INTRODUCTION

Blood pressure is the pressure exerted by the blood on the
walls of the arteries and depends on the pulse volume (i.e.
how much blood our heart expels in each contraction) and
vascular resistance blood flow. Blood pressure is measured
by two numerical indicators, one is the systolic pressure, and
the other is the diastolic pressure. Systolic pressure indicates
the pressure-tension exerted by the blood on the walls of
blood vessels when it leaves the heart, while diastolic pressure
expresses the pressure exerted by the blood on the walls of
blood vessels when the heart dilates to refill with blood. The
units of pressure are millimetres of mercury (mmHg) [1].

According to the World Health Organization, the normal
blood pressure value of an adult must be less than 140/90
mmHg. Specifically, the systolic pressure should not exceed
140mmHg, and the diastolic should not exceed 90mmHg.
These values are the limits for the definition of hypertension
[2].

Hypertension is a disease of the heart and blood vessels
and is without exaggeration a scourge of modern society. Its
exacerbation is due, on the one hand, to the ageing of the
population and, on the other hand, to the modern habits and
tendencies of people [3].

More specifically, according to studies, many factors con-
tribute to high blood pressure. A sedentary lifestyle and lack of

physical exercise lead to obesity. In addition, eating unhealthy
foods rich in salt and fat is a risk factor. Consumption of
caffeine and alcoholic beverages increases the risk of hyper-
tension. Finally, smoking and stress aggravate the condition
[4]–[6].

In 95% of patients, hypertension is characterized as idio-
pathic, as it can not be attributed to a known pathological
cause [7]. When there is a cause of hypertension (diseases of
the kidneys, blood vessels, heart, thyroid, adrenal glands), then
we refer to secondary hypertension [8].

Early diagnosis of hypertension is important to prevent heart
attack or stroke as well as damage to organs such as the
heart, brain, and kidneys [9]. In this direction, the science
of medicine collaborates with data science. The techniques of
artificial intelligence and machine learning have a significant
contribution to the development of optimal prediction models
[10] for various diseases, such as type 2 diabetes [11]–[14]),
cholesterol [15], [16], sleep disorders [17], CVDs [18], COPD
[19], stroke [20] and Covid-19 [21], etc. Besides previous
diseases, many studies have been conducted for hypertension,
which will be the issue of interest in this study.

In [22], the authors present a neural network model in order
to predict hypertension and achieve this with an accuracy
of 82%. Moreover, in [23], a series of Machine Learning
prediction models concerning AUC, Sensitivity and Speci-
ficity are applied, and the stacking ensemble is selected as
the best performer. Besides, the authors in [24] compare k-
nearest neighbors (k-NN), support vector machine (SVM) with
radial basis kernel function, linear and quadratic discriminant
analysis (LDA), decision trees (DT), and naive Bayes (NB)
classifiers for the arterial hypertension diagnosis. The LDA
achieves the highest classification accuracy. Finally, in [25].
the authors used four classification algorithms (SVM, DT
implemented by C4.5 algorithm, random forest (RF), and
extreme gradient boosting) to predict if a participant has
hypertension or not. The extreme gradient boosting has the
best prediction performance with accuracy, F1, and AUC equal
to 94.36%, 0.875, and 0.927, respectively.

The current work analyzes the risk factors of hypertension
and presents the main steps of the adopted methodology.
Specifically, data sampling techniques (random undersampling
and oversampling based on Synthetic Minority Oversampling
Technique (SMOTE)) are exploited in this study for balancing978-1-6654-9810-4/22/$31.00 ©2022 IEEE
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class distribution. Decision Trees and Naive Bayes are utilized
with different performance measures to evaluate their predic-
tive ability. A public dataset has been exploited to validate
the models’ performance. In parallel, the same models will be
assessed as part of the GATEKEEPER [26] project with pilot
data.

The rest of the paper is structured as follows. In Section
II, a brief description of the GATEKEEPER system is made.
Moreover, in Section III, we describe the dataset and its
features. The methodology we followed is reflected in section
IV. Besides, in Section V, we discuss the obtained research
outcomes. Finally, a summary of the results and future direc-
tions are mentioned in Section VI.

II. THE GATEKEEPER SYSTEM

The main objective of GATEKEEPER is to enable the
development of a smart digital platform that connects health-
care providers, businesses and elderly citizens in order to
promote healthier independent lives for the ageing population.
For this purpose, advanced Information and Communications
Technologies (ICTs) are combined and applied. An aspect of
the system is the evaluation and incorporation of algorithms
from the domain of AI and ML to be used as part of its
interventions. The development of predictive models aims to
early predict a personalised risk based on data from the pilots
of the project. Hypertension is among the conditions that will
be investigated in the GATEKEEPER.

III. DATASET DESCRIPTION

The present research work exploits a dataset derived from
the Kaggle website. More specifically, the number of partic-
ipants is 848. Each instance of the dataset is described by
13 attributes, which are fed into ML models, and 1 attribute
that represents the target class. The attributes are analyzed as
follows:

• Age (years): This variable captures the participant’s age
targeting those who are older than 50 years.

• Gender: This variable indicates the participant’s gender.
The percentage of males and females is 51.4% and
48.6%, respectively.

• BMI (Kg/m2) [27]: This variable denotes the participant’s
body mass index.

• Smoking [5]: This variable captures the smoking habits
of a participant (smoker, non-smoker). 52.7% of partici-
pants are smokers.

• Daily steps: This variable captures the number of average
daily steps taken by the participant.

• Daily alcohol (ml): This variable captures the partici-
pant’s average daily alcohol consumption.

• Daily salt (gr): This variable shows the participant’s
average daily salt consumption.

• Stress Level [4]: This variable shows the participant’s
stress level, which is captured into 3 categories (high
35.9%, medium 32.4% and low 31.7%).

TABLE I
CLASS DISTRIBUTION PER SAMPLING METHOD

No
Sampling Undersampling Oversampling

Hyp 394 424 457
Non-Hyp 454 424 454
Total 848 848 911

• CKD [28]: This variable shows if the participant suffers
from chronic kidney disease or not. The CKD prevalence
in the dataset is 47.2%.

• Hb (mg/dl) [29]: This variable captures the level of
hemoglobin (a protein in red blood cells).

• Adrenal and thyroid disorders (ATD) [30]: This vari-
able shows if the participator suffers from adrenal and
thyroid disorders. ATD’s prevalence in the dataset is 43%.

• SBP (mmHg) [31]: It is the variable that captures the
systolic blood pressure.

• DBP (mmHg) [31]: This variable captures the diastolic
blood pressure.

• Hypertension: This variable shows whether a participator
is hypertensive or not. In the following, the notation Hyp
will refer to the hypertension class. 46.4% of participants
have hypertension.

All variables are numeric apart from Gender, Smoking, Stress
Level, CKD, ATD and Hypertension, which are nominal.

IV. METHODOLOGY

The adopted methodology consists of the following steps:
• Class Balancing
• Features Ranking
• Design of Classification Framework
• Models Evaluation

These stages will be analytically presented in the forthcoming
sections.

A. Class Balancing

There are various methods to tackle the problem of non-
uniform class distribution. In this study, we will focus on two
well-known sampling approaches [32].

First, random undersampling is applied to target the majority
class by randomly eliminating instances until to achieve the
desired balance (or the instances are equal) in both classes.
Also, in this study, SMOTE [33] was executed to increase
the data of the minority class by 16%. It is an oversampling
method that increases the data by creating synthetic data [34]
on minority class using 5-NN classifier on the same features.
It is used to trade-off between precision and recall or increase
recall at the cost of precision. Class distribution is recorded in
Table I, assuming no, under and oversampling cases. Also, the
impact of sampling methods on the participants’ distribution
per age group and gender is depicted in Figures 1 and 2.

B. Features Importance

Features ranking will help us efficiently represent each
record, focusing on those that will give more information about
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Fig. 1. Participants distribution per class and age group (no sampling, undersampling, oversampling).

Fig. 2. Participants distribution per class and gender (no sampling, undersampling, oversampling).

the target class. For this purpose, Random Forest [35] was used
to apply feature ranking. This method measures a feature’s
rank based on Gini impurity [36]. Table II shows the feature’s
importance in three different sampling cases.

In the original data, the ranker assesses as important features
the SBP, DBP, CKD, ATD and Hb. Smoking and stress levels
are ranked with zero importance. The rest features are of
negative importance. These outcomes mean that these features
don’t contribute to the target class. However, salt and alcohol
consumption are important risk factors for the occurrence of
Hypertension. Actually, a diet with high salt and alcohol use
impacts blood pressure and, thus, they are essential in the
management of hypertension (treatment and control) [37]. The
features’ importance is differentiated between the sampling
methods and the no sampling case. More specifically, after
undersampling the initial dataset, daily salt consumption is
fourth in order, and none of the features has a negative ranking.
In oversampling case, the salt importance is positive but lower
than the one in the undersampling case. Also, only stress and
alcohol are of negative importance. At this point, we would
like to note that all features will be considered to train and
test the ML models.

C. Classification Framework

In healthcare, supervised learning has been extensively
utilized to assess the risk for a disease manifestation using
various features that capture the most important risk factors.
Here, we deal with the design of ML models of high recall and

TABLE II
FEATURES IMPORTANCE BASED ON RANDOM FOREST AS RANKING

METHOD

No Sampling Undersampling Oversampling
Features Rank Features Rank Features Rank
SBP 0.3148 SBP 0.3847 SBP 0.3532
DBP 0.2394 DBP 0.3106 DBP 0.2804
CKD 0.1804 Hb 0.2708 CKD 0.2206
ATD 0.1285 Daily salt 0.2528 ATD 0.1526
Hb 0.0771 Daily steps 0.2481 Hb 0.1115
Stress 0 CKD 0.1969 Gender 0.0483
Smoking 0 ATD 0.1580 Age 0.03535
Gender -0.0035 Alcohol 0.1392 Smoking 0.03293
Age -0.0071 Gender 0.0743 Daily steps 0.0206
Daily steps -0.0230 BMI 0.0666 Daily salt 0.0143
Daily salt -0.0307 Age 0.0271 BMI 0.0038
BMI -0.0443 Stress 0.0212 Stress -0.0018
Alcohol -0.0856 Smoking 0.0165 Alcohol -0.0555

AUC to ensure that new subjects can be correctly classified.
For this purpose, we evaluate the prediction performance of
Decisions Trees (DT) [38] and Naive Bayes classification
methods.

A binary classification problem is formulated, i.e., the target
class cl = ”Hyp” (hypertension condition occurrence) or cl =
”Non-Hyp” (non-occurrence of the hypertension condition).
The features vector of a subject i is captured by yi =[
yi1, yi2, yi3, . . . , yin

]T
, ensuring that the training data size

is much higher than features dimension n.
The long-term risk prediction framework will consist of
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TABLE III
PERFORMANCE METRICS DEFINITION

Metric Hyp Non-Hyp
Precision TP

TP+FP
TN

TN+FN

Recall TP
TP+FN

TN
TN+FP

F-Measure 2 Precision·Recall
Precision+Recall

Accuracy TN+TP
TN+TP+FN+FP

J48, which is an extension of the ID3 DT [39]. A DT has
a hierarchical tree structure, starting from a root node and,
through decision rules, branches and intermediate nodes are
derived until to reach the leaves of the tree. The tree-building
process initiates by selecting the attribute with the highest
gain ratio, the so-called splitting attribute. To overcome the
existence of bias in features, its operation is based on a
variation of information gains. A DT that is built upon a
gain ratio has superior performance (accuracy) than using
information gain in complex tasks. Following [39], the gain
ratio (GR) of split S on feature j is defined as follows [40]:

GR(S, j) =
Entropy (S)

∑l
s=1 (ps × Entropy(ps))

SplitingInfo
(1)

Naive Bayes [41] is the second model that will be con-
sidered in the current study. It is a probabilistic classifier
established on the Bayes theorem. The involved features in
the model should be highly independent to ensure probability
maximization. A new subject i is categorized to that class cl
which ensures the maximization of the conditional probability
P (cl| yi1, . . . , yin), defined as

P (cl| yi1, . . . , yin) =
P (yi1, . . . , yin|cl)P (cl)

P (yi1, . . . , yin)

=

∏n
j=1 P (yij |cl)

P (yi1, . . . , yin)
.

(2)

In (2), P (yij |cl) is the probability of the feature assuming
class, and P (yi1, . . . , yin) and P (cl) are the prior probabilities
of the features and the class, correspondingly. The class label
of an unknown instance is estimated by solving the following
maximization problem

ĉl = argmaxP (cl)

n∏
j=1

P (yij |cl) , cl ∈ {Hyp,Non−Hyp}.

(3)

D. Evaluation Metrics

In this sub-section, we will evaluate the aforementioned ML
models’ performance based on accuracy, precision, recall, F-
Measure, and AUC [20]. The definition of the desired metrics
is shown in Table III, where TP, TN,FP, FN stand for the
true positive, true negative, false positive and false-negative,
respectively.

Precision will show how many of the instances that are
classified as hypertensive (non-hypertensive) indeed stemmed
from this class. Recall indicates how many of the hypertensive
(non-hypertensive) instances are correctly estimated. Also,

TABLE IV
PRECISION OF J48 TREE

J48 Precision
No
Sampling Undersampling Oversampling

Non-Hyp 0.890 0.926 0.900
Hyp 0.873 0.942 0.894
Average 0.882 0.934 0.897

TABLE V
RECALL OF J48 TREE

J48 Recall
No
Sampling Undersampling Oversampling

Non-Hyp 0.890 0.943 0.892
Hyp 0.873 0.925 0.902
Average 0.882 0.934 0.897

AUC shows the probability of a model correctly distinguishing
the Hyp from Non-Hyp instances. Its values are between 0 and
1. F-Measure is the harmonic mean of precision and recall.
Finally, the accuracy shows the total classification performance
for both hypertensive and non-hypertensive instances.

V. RESULTS AND DISCUSSION

In this section, we will present the experiments’ results
which were derived in the WEKA [42] environment us-
ing 10-fold cross-validation. The models’ efficiency will be
assessed on the original dataset and its balanced versions.
J48, implemented by the C4.5 algorithm, has been used to
design the DT model. The J48 DT was configured as follows:
confidenceFactor = 0.25, unpruned = false, minNumObj = 2
and binarySplitS = false.

In Tables IV-VII and VIII-XI, we summarize the metrics
results of J48 and Naive Bayes, for both classes, under the
three sampling cases. In the original dataset, the precision and
recall of J48 have identical values in both classes. In the case
of Naive Bayes, the precision of the Hyp class is 92.6%, which
is 4.2% higher than the one of the Non-Hyp class. However,
the recall of Non-Hyp is 94.1% which is higher by 8.3%
than the Hyp class. Also, we observe that the undersampling
method has improved the performance of both classification
models in comparison with no sampling. Under this sampling
method, the performance of J48 has benefited more than the
Naive Bayes.

Moreover, in terms of oversampling, the recall and precision
improvements are lower than the ones in the undersampling
case. This behavior is observed in both models. At this point,

TABLE VI
F-MEASURE OF J48 TREE

J48 F-Measure
No
Sampling Undersampling Oversampling

Non-Hyp 0.890 0.935 0.896
Hyp 0.873 0.933 0.898
Average 0.882 0.934 0.897
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TABLE VII
AUC OF J48

J48 AUC
No
Sampling Undersampling Oversampling

Non-Hyp 0.908 0.928 0.912
Hyp 0.908 0.928 0.912
Average 0.908 0.928 0.912

TABLE VIII
PRECISION OF NAIVE BAYES

Naive Bayes Precision
No
Sampling Undersampling Oversampling

Non-Hyp 0.884 0.893 0.880
Hyp 0.926 0.940 0.934
Average 0.904 0.916 0.907

it should be noted that J48 and Naive Bayes have the same
recall of 90.2%, but the benefit in Naive Bayes is higher than
J48 when compared to no sampling. Also, the recall of J48
in the Hyp class has been favored by the oversampled data
without worsening the recall of Non-Hyp subjects and the
precision of both. In Naive Bayes, there is a 4.4% increase in
the recall of the Hyp class accompanied by a 0.8% increase in
the precision of the same class. Besides precision and recall,
a combinatory metric, F-Measure, has been recorded. This
metric shows that both models are more efficient if they are
trained with undersampled data.

Moving on to the ROC values, the AUC of J48 is the same
in both classes. A similar trend is observed in Naive Bayes,
which yields a higher AUC. Undersampling is the winner
method. In either case, both models achieve values very close
to 1. AUC reveals the models’ capability to discriminate the
hypertensive from non-hypertensive subjects. It is clear that, in
the undersampling case, Naive Bayes achieves this with a high
probability of 96.7%. Comparable performance is succeeded
by J48, with an AUC of 92.8%.

The accuracy of J48 and Naive Bayes is illustrated in Figure

TABLE IX
RECALL OF NAIVE BAYES

Naive Bayes Recall
No
Sampling Undersampling Oversampling

Non-Hyp 0.941 0.943 0.938
Hyp 0.858 0.887 0.902

0.902 0.915 0.934

TABLE X
F-MEASURE OF NAIVE BAYES

Naive Bayes F-Measure
No
Sampling Undersampling Oversampling

Non-Hyp 0.911 0.917 0.908
Hyp 0.891 0.913 0.903
Average 0.902 0.915 0.906

TABLE XI
AUC OF NAIVE BAYES

Naive Bayes AUC
No
Sampling Undersampling Oversampling

Non-Hyp 0.965 0.967 0.963
Hyp 0.965 0.967 0.961
Average 0.965 0.967 0.962

Fig. 3. J48 and Naive Bayes accuracy in terms of the sampling method

3. It is another metric that captures the total classification
performance in both classes. Finally, taking into account the
accuracy of the models with the above metrics, we conclude
that in the specific data, the undersampling is more suitable
for the design of the desired models.

VI. CONCLUSIONS

In conclusion, a publicly available dataset was employed
to analyse the importance of various risk factors for Hyper-
tension. Then, these factors were considered to quantify the
risk of hypertension occurrence, targeting people older than
50 years. We focus on this age group and especially those
living at home to upgrade their quality of life through AI tools
for personalized interventions. A framework with data-driven
methods is suggested, and the role of class balancing (namely,
random undersampling and oversampling) in feature ranking
and ML methods performance was investigated. The results of
both methods presented high recall and AUC, which prove that
the models have high discrimination ability in identifying new
subjects with Hypertension. Also, the accuracy and F-Measure
reveal the overall classification efficiency of the models. In
future work, we aim to experiment with more models as single
classifiers (like SVM, Random Forest, Logistic Regression,
Neural Networks) or apply ensemble learning techniques such
as Stacking. Finally, our purpose is to emphasize class balanc-
ing and apply hybrid sampling methods before the evaluation
of the ML models.
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