
High–Fidelity Haptic Rendering through Implicit

Neural Force Representation

Christoforos Vlachos1[0000−0003−2863−7823] and Konstantinos
Moustakas1[0000−0001−7617−227X]

Department of Electrical and Computer Engineering, University of Patras, Rion-Patras,
Greece

{chris.vlachos,moustakas}@ece.upatras.gr

Abstract. Recent research has demonstrated that neural networks us-
ing periodic nonlinearities may be used for implicit representation and
reconstruction of continuous-time signals. Starting with a previously
published network for representing the Signed Distance Function (SDF)
of a mesh surface, we extend the concept and lay the foundation for
introducing the additional representation of the Unit Normal Function
(UNF). With the representation of these two functions at hand, we con-
struct a penalty-based haptic rendering method. Our experiments suggest
that this proposed method is able to handle very large meshes better
than other competing alternatives, producing high-fidelity forces, free of
discontinuities, by sampling a continuous implicit force function at the
desired spatial accuracy.

Keywords: Haptic Rendering · Force Rendering · Implicit Representa-
tion · Neural Networks · Human–Computer Interaction.

1 Introduction

Human sensory organs receive many different forms of input. Strengthening
Human–Computer Interaction (HCI) can be definitely attained by mimicking
these inputs to a sufficient degree. Although visual and auditory input to a
person is nowadays considered mostly trivial, haptic input remains challenging.
Consequently, the development of haptic devices, able to output haptic signals
which are then sensed by a person, has attracted much attention. However,
the haptic rendering methods that drive these devices feature computationally
expensive operations [16]. Therefore, it raises no eyebrows how the importance
of haptic rendering has been highlighted in many publications.

1.1 Related Work

There have been many attempts to categorize haptic rendering algorithms. One
such categorization, which is presented in [27] is surface-based and volume-based
techniques. This distinction, which is based on graphical rendering categorization,
separates algorithms between those using polygonal representations (explicit)

2 C. Vlachos and K. Moustakas

or parametric representations (implicit) and those opting to represent meshes
using voxels. Another way of classifying haptic algorithms, mentioned in the
same article, is point-based vs. ray-based algorithms. This classification serves to
differentiate between algorithms that take into account only the contact point
of the haptic device, ignoring the rest of the probe, and those that model the
entire probe as a ray before proceeding to calculate the response force. Finally,
another grouping of haptic rendering techniques that may be encountered in
recent publications [12] is the 3-degree-of-freedom (3DOF) vs. the 6-degree-of-
freedom (6DOF) algorithms. 3DOF algorithms only account for the probe’s
position in 3D space, whereas 6DOF algorithms also consider the probe’s rotation
in determining the response force of the collision.

Similar ways of categorization can be carried out for haptic interfaces, but
that falls beyond the scope of this paper. We refer the reader to [27] as well
as [12] for obtaining further information regarding haptic devices.

In the last few years, a substantial assortment of haptic algorithms have
surfaced. Since the god-object method was proposed in 1995 [30] and the voxel
method in 1999 [14], numerous innovations have been made. A highly detailed
account of the advancements in haptic rendering techniques in the last few
years can be found in [11]. More recent methods have tackled the problem of
continuous collision detection with deformable meshes [4], pseudo-rendering of
constraints [13], haptic rendering of point clouds [29], leading to new and exciting
fields of research.

Another domain that has been of much interest to the haptic rendering
community has been data-driven haptic rendering. Introduced by Hover et al.
in 2008 [6] and expanded by the same group in the following years [5, 7,24,25].
Additional research on the area was performed by Choi’s group [2, 18, 23] has
elevated the subject and can nowadays be considered a mature field of research.

Despite those innovations, there is a weakness common to most haptic algo-
rithms: their inability to handle very detailed meshes, with lots of vertices and
triangles, without giving up either quality or speed of calculations. Moreover,
interpolation-based methods commonly handle discontinuities badly, undesirably
eliminating them where present or introducing them where absent. To resolve
those issues, it was early on that the researchers’ focus shifted to implicitly
represented surfaces for haptic rendering [10, 16, 17, 22]. Furthermore, recent
work has focused on the use of neural networks to represent an object in 3D
space [1,8,15,20]. Fusing these concepts has been the inspiration for our proposed
method.

1.2 Motivation and Contribution

In their recent work [26], Sitzmann et al. have introduced the SInusoidal REp-
resentation Network (SIREN), a type of neural network which uses periodic
activation functions in order to implicitly represent various types of signals. One
such signal, demonstrated on that paper, is the Signed Distance Function (SDF)
of a mesh surface.

High–Fidelity Haptic Rendering through Implicit Representation 3

In this paper, we show that it is possible to extend their proposed network
to include computation of the Unit Normal Function (UNF) as well. This way,
we arrive at an elegant solution for quickly and accurately approximating the
response force generated by collision with the mesh, to be used in a haptic
rendering context where high-fidelity discontinuity-free forces are necessary.

Specifically, our contribution is creating a haptic rendering method, which we
call PANDIS (Periodic Activations for Normals and DIStances), that:

– is able to estimate the collision response force that should be generated and
fed back to the user, in a predictable time.

– can be easily implemented and adapted to be used with any mesh. The haptic
rendering method is mesh and resolution agnostic during run-time.

– does not contain unwanted discontinuities. Both the SDF and the UNF are
implicitly represented continuous functions that can be sampled at the desired
spatial accuracy. This implicitly generates smooth force fields and haptic
interaction that leads to force feedback without discontinuities or the need for
post-processing in the haptic rendering pipeline as is the case, for example,
in the force shading method.

2 Methods

2.1 Formulation

Penalty-based algorithms model the response force between objects as a spring
force whose magnitude increases as the objects penetrate deeper into one an-
other [12]. Thus, to determine the collision response force, we will need to have
knowledge of both the magnitude and the direction of the spring force. To acquire
these, we will use two implicit functions, the Signed Distance Function (SDF)
and the Unit Normal Function (UNF).

Given a space Ω and a boundary ∂Ω within that space, we can divide the
space into an exterior region Ω+ and an interior region Ω−. A distance function
d(x) is an implicit function equal to the distance between x and the closest point
on the boundary [19]. From this definition, it is apparent that on the boundary
itself d(x) = 0, therefore ∂Ω represents the zero-level set of d(x) and we can refer
to it simply as Ω0.

It should also be mentioned that, since d represents Euclidean distance, the
following equation should hold:

|∇d| = 1 (1)

This is intuitive, since moving twice as far away from the boundary, we would
expect the distance function’s value to double.

We can now adapt the definition of the (unsigned) distance function in order
to define its signed counterpart. Whereas the unsigned distance function d(x) is
always non-negative, the Signed Distance Function (commonly abbreviated as
SDF) φ(x) is positive in Ω+ and negative in Ω−, while maintaining its magnitude.
In other words:

4 C. Vlachos and K. Moustakas

φ(x) =











d(x) = 0 x ∈ ∂Ω

d(x) x ∈ Ω+

−d(x) x ∈ Ω−

Similarly to the unsigned distance function, for the SDF it holds that:

|∇φ| = 1 (2)

Regarding Equations 1 and 2, it should be mentioned that distance functions
are differentiable almost everywhere, but not completely. In the case of the
unsigned distance function one quickly realizes that the boundary constitutes
a local minimum of d and the gradient cannot be defined there [28]. Despite
this being a problem only for the unsigned distance function (since SDFs are
monotonic), there exist other points where both kinds of distance functions
are not differentiable, specifically those where the closest boundary point is
ambiguous (it is a “tie” between at least two points).

We also define the Unit Normal Function (UNF) ψ(x) as the vector function
that always points towards or away from the closest point of the boundary. For
all points in Ω that the SDF is differentiable, ψ = ∇φ.

We are interested in determining an implicit approximation of the SDF of a
mesh surface. We call this approximation Φ(x). An appropriate loss function for
the training of a SIREN that is used to predict the SDF at a specific point in 3D
space would then be [26]:

Lsdf =

∫

Ω

∥|∇xΦ(x)| − 1∥dx

+

∫

Ω0

(1− ⟨∇xΦ(x), n(x)⟩)dx

+

∫

Ω0

∥Φ(x)∥dx

+

∫

Ω\Ω0

exp(−a · |Φ(x)|)dx

(3)

This loss function treats determining the SDF as a Boundary Value Problem
(BVP). Ω represents the entire 3D space whereas Ω0 represents only those points
where the SDF is zero (the zero-level set). In the final integral, a≫ 1.

Since Ω ⊆ R3, the SDF is differentiable almost everywhere and its gradient
satisfies the following Eikonal equation:

|∇xΦ(x)| = 1

Looking back at the loss function defined in Equation 3, the first integral
simply enforces the Eikonal equation on Ω.
The second integral ensures that, on the surface, the gradient of the SDF, ∇xΦ(x),
and the surface normals, n(x), point in the same direction. After all, on Ω0 these

High–Fidelity Haptic Rendering through Implicit Representation 5

two should be identical.
The third integral penalizes on-surface points that have an SDF that is not equal
to zero, while the fourth penalizes off-surface points having an SDF close to zero.

While the SDF is crucial to calculating the magnitude of the response force
used for haptic rendering, the direction is also needed. For that, we could use the
same SIREN to implicitly represent the UNF of the mesh. Let’s call this implicit
representation Ψ(x). It is important to note that, while Φ(x) ∈ R, this is not the
case for Ψ(x), as Ψ(x) ∈ R3.

Inspired by Lsdf , we can begin to formulate our own loss function, to aid with
the UNF prediction:

Lunf =

∫

Ω

(∥Ψ(x)∥ − 1)dx

+

∫

Ω0

(1− ⟨Ψ(x), n(x)⟩)dx

+

∫

Ω\Ω0

(1− ⟨Ψ(x),∇xΦ(x)⟩)dx

(4)

The first integral forces the UNF to have unit values, while the other two
integrals have it pointing in the same direction as the mesh normals, where
available, or the gradient of the SDF, in places where the normals are not defined.
By carefully inspecting the two loss functions, it can be understood that, ideally,
Ψ(x) ≡ ∇xΦ(x).

It should be noted that, instead of using some numerical method to differen-
tiate the SDF, we opted to encode it as part of the same neural network. In this
way, we arrive at an elegant solution where, adding barely any complexity, we
are able to obtain both the SDF and the UNF with a single inference pass.

.

.

.

.

.

.

.

.

.

SDF

UNF

in
p

u
t

co
o

rd
in

a
te

s

3 hidden layers | 256 units/layer

Fig. 1. The architecture of our proposed SIREN. The probe coordinates are entered in
the Cartesian form. The first output is the SDF and the remaining 3 are the UNF.

6 C. Vlachos and K. Moustakas

A SIREN is now constructed, following the architecture shown in Fig. 1. That
is, a Multi-Layer Perceptron (MLP) made up of one input layer, one output
layer, as well as 3 hidden layers, each consisting of 256 sinusoidally-activated
units. All layers are Fully Connected (FC). The 3D space coordinates of each
mesh’s vertices are input to the network and after passing through the three
hidden layers, both Φ(x) and Ψ(x) are output. For the training, we use the Adam
optimizer and as a loss function a combination of the ones we defined previously:

Ltotal = Lsdf + Lunf (5)

One advantage of using a SIREN instead of an ordinary ReLU-based neural
network for implicitly representing the SDF and the UNF is that the SIREN is able
to represent these functions in such a way that their respective derivatives are also
retained. Thus, we expect response forces that do not suffer from discontinuities
as much as other haptic rendering algorithms.

It is moreover worth mentioning that each component (i.e., each integral) of
the final loss function was given a weight, each discovered by trial and error and
was validated experimentally. These are 50, 100, 3000, 100, 50, 100, and 100,
respectively.

2.2 Training

All training took place on a system with an AMD Ryzen 5 3600X CPU and
an NVIDIA GeForce RTX 2060 SUPER GPU with 8GB GDDR6 VRAM. The
installed memory was 32GB DDR4 SDRAM. The operating system used was
Windows 10, version 22H2.

Using PyTorch, we implemented the network we described and trained it on
three different, quite large meshes, creating three models. These meshes were
taken off the Stanford 3D Scanning Repository and are the Stanford Bunny, the
Stanford Armadillo, and the Stanford Dragon. Each model was trained on its
respective mesh for 10,000 epochs. The number of vertices and faces of each mesh,
along with the training time (for 10,000 epochs), is displayed in Table 1.

Table 1. Number of vertices, faces, and training time of the meshes that were used for
training.

Model Vertices Faces Training Time

Bunny 35,947 69,451 09:29

Armadillo 172,947 345,944 47:11

Dragon 437,645 1,132,830 2:11:47

High–Fidelity Haptic Rendering through Implicit Representation 7

3 Results

To confirm the quality of our results, our testing was focused on the models of
the Stanford Bunny, the Stanford Armadillo, and the Stanford Dragon. Firstly,
we created a vector plot (also called a “quiver plot”), plotting the response force
according to Hooke’s Law as:

F = −kx (6)

where x is the SDF. The direction of the response force is indicated by the UNF.
The generated vector plots along a planar section of each of the three meshes are
shown in Fig. 2.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

z=0.10

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

z=-0.16

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

z=-0.10

Fig. 2. Vector plot of the response force generated along a planar section of the
(Left) Stanford Bunny, (Center) Stanford Armadillo, and (Right) Stanford Dragon.

After verifying that the model generates seemingly correct forces (2), we
serialized the model, for use outside of PyTorch. We proceeded to write a C/C++
program using OpenHaptics® and LibTorch to enable utilizing a haptic rendering
device to render the Stanford Armadillo using the forces produced and calculated
by the neural network. Two such devices were used in our tests, the first being 3D
SYSTEMS’s flagship haptic device, the Touch™ (formerly the Phantom Omni),
the other being the oldest and less accurate Touch™ 3D stylus. Both devices as
part of our experimental setup are visible in Fig. 3.

Although some steps have been taken towards standardizing the benchmarking
of haptic rendering, they have either largely focused on the benchmarking of
the haptic hardware itself, suffer from limitations, or ultimately failed to see
widespread use [21]. It is because of this that we decided to focus our benchmarking
on comparison with widespread, easily–implemented algorithms and objective
statistical analyses.

We needed some comparison targets. To this extent, we implemented a few
other algorithms for calculating the SDF and the UNF of a triangle mesh. First,
we implemented a method for analytically calculating the above functions in

8 C. Vlachos and K. Moustakas

order to obtain ground-truth results (GT). Then, we ran that method on a
3D grid, effectively splitting the mesh’s AABB into voxels. In this way, we can
report additional interpolated results. We implemented Nearest Neighbor(NN-i)
as well as Trilinear interpolation(Tri-i) options. It should be noted that trilinear
interpolation from a 3D grid could be considered State-of-the-Art, as featured in
recent publications [3, 9]. We used two grid sizes: 323 and 643.

Table 2. Setup time (Top) and space (Bottom) required per method, per model. GT
stands for Ground Truth, NN-i for Nearest Neighbor Interpolation, Tri-i for Trilinear
Interpolation and PANDIS is the method we are proposing.

Preprocessing/Training time

Model
GT

NN-i Tri-i
PANDIS

32
3

64
3

32
3

64
3

Bunny 0 07:38 58:52 07:38 58:52 09:29

Armadillo 0 40:21 5:25:00 40:21 5:25:00 47:11

Dragon 0 1:41:11 12:54:56 1:41:11 12:54:56 2:11:47

Storage space

Model
GT

NN-i Tri-i
PANDIS

32
3

64
3

32
3

64
3

Bunny 0 384 KB 3 MB 384 KB 3 MB 800 KB

Armadillo 0 384 KB 3 MB 384 KB 3 MB 800 KB

Dragon 0 384 KB 3 MB 384 KB 3 MB 800 KB

3.1 Setup

The Analytical algorithm does not require any preparatory computations, since
it computes everything in real time. Thus it requires no time or space in advance
(Table 2). The story changes when it comes to the next algorithms. Both the
Nearest Neighbor and the Trilinear Interpolation methods need a precomputed
grid. Both the computation time and space change cubically as the grid size
increases, as long as we are talking about the same model. We observe that, for
a grid size of 323, the interpolation–based methods need preprocessing time that
is similar to the training time of PANDIS, while PANDIS falls behind when it
comes to storage requirements. That being said, increasing the grid size to 646

leaves the interpolation-based methods well outperformed by the SIREN–based
method on both regards. It should be noted that PANDIS, just as the others
chosen, is mesh-agnostic when it comes to the required storage space.

High–Fidelity Haptic Rendering through Implicit Representation 9

Table 3. Average computation time (in milliseconds) of response force. Times on top
are from the Touch™, times below (inside parentheses) are from the Touch™ 3D stylus.

Model GT
NN-i Tri-i

PANDIS
32

3
64

3
32

3
64

3

Bunny
13.851 <0.001 <0.001 <0.001 <0.001 0.745

(14.053) (<0.001) (<0.001) (<0.001) (<0.001) (0.741)

Armadillo
73.125 <0.001 <0.001 <0.001 <0.001 0.769

(78.443) (<0.001) (<0.001) (<0.001) (<0.001) (0.743)

Dragon
182.085 <0.001 <0.001 <0.001 <0.001 0.756

(181.604) (<0.001) (<0.001) (<0.001) (<0.001) (0.750)

3.2 Update Rate

Having finished preparing all the methods for testing, we measured the update rate
capability of each one and report the average computation time, in milliseconds,
for each method in Table 3. We reiterate that, for haptic rendering, the target
rate is 1 kHz, which corresponds to a computation time of at most 1 ms.

From our testing, it is abundantly clear that the analytical method is too slow
in dealing with large meshes. In contrast, the interpolation methods both respond
very quickly. While PANDIS’s speed is nowhere near that of the interpolation
methods, it should be noted that it is still within target, 1 ms being the 97th

percentile rank (i.e., less than 3% of the updates fall outside the target rate).
Besides, we expect PANDIS to make up any lost ground when we look at the
quality of the predicted forces.

Fig. 3. (Leftmost) Our experimental setup, featuring the haptic devices used. (Left
center – Rightmost) The synthetic trajectories used for testing the quality of the
responses generated by each algorithm: (Left center) Bunny. (Right center) Armadillo.
(Rightmost) Dragon.

10 C. Vlachos and K. Moustakas

3.3 Quality

To measure the quality and accuracy of the forces produced, we traced and
recorded a trajectory on the surface of each mesh (actually, penetrating the
surface slightly, since we are testing penalty-based algorithms), making sure that
the trajectory contained a variety of areas of the mesh’s surface with vastly
different gradients. The specific traces were generated using the state-of-the-art
trilinear interpolation-based method and can be viewed in Fig. 3.

Table 4. Average error, as defined by Equation 7, per method, per model.

Model GT
NN-i Tri-i

PANDIS
32

3
64

3
32

3
64

3

Bunny 0 0.086 0.031 0.057 0.026 0.006

Armadillo 0 0.139 0.081 0.099 0.046 0.022

Dragon 0 0.176 0.054 0.171 0.041 0.068

We then applied all methods to the synthetic trajectories we had collected.
Defining an Average Error as

Average Errori =
∑

j

1

j
(∥forcei,j − forceGT,j∥) , (7)

where i = {GT, NN-i, Tri-i, PANDIS}, enables us to determine how each method
performed, with respect to the accuracy of the predicted collision response force.
These results can be seen in Table 4.

Fig. 4. Response force returned per method for a subset of the Armadillo’s traced path,
converted to spherical coordinates. (Left) r. (Top right) θ. (Bottom right) φ.

High–Fidelity Haptic Rendering through Implicit Representation 11

One can immediately notice that on both the Bunny and the Armadillo our
method produces more accurate results, even on the increased grid resolution of
643. In the case of the Dragon, PANDIS loses—only barely—to the interpolation-
based methods on a resolution of 643, albeit at the cost of significantly more
preprocessing time and storage space.

Aiming to provide the reader with a better visual representation, we plot
a subset of the response force produced by each algorithm in the case of the
Armadillo model, in Fig. 4. It is evident that our proposed method tracks the
Ground Truth results well, eliminating discontinuities present in other methods
(such as nearest neighbor interpolation) and should be a serious consideration
where a haptic representation of large meshes is required.

3.4 Theoretical Validation

In order to have a more complete picture of the quality and accuracy of the
generated forces, we extended our testing to a sphere, whose SDF as well as the
UNF can be defined in closed-form. Regarding a sphere located on the origin
with radius r, it is well-known that its SDF is given by:

φ(x, y, z) =
√

x2 + y2 + z2 − r

Consequently, the UNF comes to:

ψ(x, y, z) = ∇φ(x, y, z) =

(

x
√

x2 + y2 + z2
,

y
√

x2 + y2 + z2
,

z
√

x2 + y2 + z2

)

Since an implicit representation of the sphere was readily available, we were
able to also extend our arsenal of methods to include the original implicit haptic
rendering method of Salisbury and Tarr [22] as well as two other state-of-the-art
methods of the same family [10,16]. We synthesized a trajectory on the sphere
and the Ground Truth which we could trivially calculate from the closed-form
SDF and UNF. We calculated the forces in the trajectory using all methods we
had implemented, for more rigorous testing, and assessed the quality using the
error defined in Equation 7. This led to the results of Table 5.

Table 5. Average error, as defined by Equation 7, per method, on a sphere. For the
interpolation-based methods (as well as [10]) a resolution of 1003 was used, for [16] 642
support planes were created, and for PANDIS the underlying SIREN was trained on
2737 uniformly sampled points on the surface of the sphere.

Method GT NN-i Tri-i [22] [10] [16] PANDIS

Error 0 0.097 0.082 0.083 0.367 0.296 0.162

One can see that PANDIS outperforms the other state-of-the-art methods
([10,16]) and produces results that are comparable to the remaining methods. It

12 C. Vlachos and K. Moustakas

is obvious that interpolation-based methods play well with simple shapes, such
as a sphere but, as previously proven, fail to keep that lead in complex meshes.
On the other hand, the original implicit haptic rendering method of Salisbury
and Tarr [22] does very well, but it should be noted that it only works on shapes
whose implicit representation can be defined implicitly.

Therefore, we conclude that even playing from a losing position, on a scenario
than is far from ideal for PANDIS (which shines brightest in the case of very
complex meshes), our proposed method is able to keep up and even surpass other
state-of-the-art methods.

4 Conclusion and Discussion

We have used a sinusoidally-activated neural network (SIREN) to create an
implicit representation of both the Signed Distance Function (SDF) and the Unit
Normal Function (UNF) with great accuracy. We have then proposed a new
haptic rendering algorithm that makes use of this representation and succeeds
in estimating the collision response force quickly, with high fidelity, and free of
discontinuities. Furthermore, this method is easily scalable to very large meshes
with no decrease in the update rate.

Although the aforementioned advances tackle critical and basic issues in haptic
rendering, further advances have to take place in order to make machine learning
based haptic rendering a game changer in haptic interaction. The basic current
limitation is the fact that a deformation of the object would require a retraining
of the SDF and UNF, making real-time deformation not feasible at the present
stage. Moreover, both the SDF and UNF can be strictly theoretically defined
only on closed manifold surfaces. Extension of the proposed approach solving
these limitations through modern adaptive neural networks and utilization of
pseudo-manifold surfaces are challenging directions of future work.

Acknowledgments. The research project is implemented in the framework of H.F.R.I
call “Basic research Financing (Horizontal support of all Sciences)” under the Na-
tional Recovery and Resilience Plan “Greece 2.0” funded by the European Union –
NextGenerationEU (H.F.R.I. Project Number: 16469.).

Disclosure of Interests. The authors have no competing interests to declare that are

relevant to the content of this article.

References

1. Atzmon, M., Lipman, Y.: Sal: Sign agnostic learning of shapes from raw data.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 2565–2574 (2020). https://doi.org/10.1109/cvpr42600.2020.00264

2. Cha, H., Bhardwaj, A., Choi, S.: Data-driven haptic modeling and rendering of
viscoelastic behavior using fractional derivatives. IEEE Access 10, 130894–130907
(2022). https://doi.org/10.1109/ACCESS.2022.3230065

https://doi.org/10.1109/cvpr42600.2020.00264
https://doi.org/10.1109/cvpr42600.2020.00264
https://doi.org/10.1109/ACCESS.2022.3230065
https://doi.org/10.1109/ACCESS.2022.3230065

High–Fidelity Haptic Rendering through Implicit Representation 13

3. Corenthy, L., Otaduy, M.A., Pastor, L., Garcia, M.: Volume haptics with topology-
consistent isosurfaces. IEEE Transactions on Haptics 8(4), 480–491 (2015). https:
//doi.org/10.1109/TOH.2015.2466239

4. Ding, H., Mitake, H., Hasegawa, S.: Continuous collision detection for virtual proxy
haptic rendering of deformable triangular mesh models. IEEE Transactions on
Haptics 12(4), 624–634 (2019). https://doi.org/10.1109/TOH.2019.2934104

5. Höver, R., Harders, M.: Measuring and incorporating slip in data-driven haptic
rendering. In: 2010 IEEE Haptics Symposium. pp. 175–182. IEEE (2010). https:
//doi.org/10.1109/HAPTIC.2010.5444658

6. Hover, R., Harders, M., Székely, G.: Data-driven haptic rendering of visco-elastic
effects. In: 2008 Symposium on Haptic Interfaces for Virtual Environment and Tele-
operator Systems. pp. 201–208. IEEE (2008). https://doi.org/10.1109/HAPTICS.
2008.4479943

7. Hover, R., Kosa, G., Szekely, G., Harders, M.: Data-driven haptic rendering—from
viscous fluids to visco-elastic solids. IEEE Transactions on Haptics 2(1), 15–27
(2009). https://doi.org/10.1109/TOH.2009.2

8. Jiang, C., Sud, A., Makadia, A., Huang, J., Nießner, M., Funkhouser, T., et al.:
Local implicit grid representations for 3d scenes. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 6001–6010 (2020).
https://doi.org/10.1109/cvpr42600.2020.00604

9. Kaluschke, M., Yin, M.S., Haddawy, P., Srimaneekarn, N., Saikaew, P., Zachmann,
G.: A shared haptic virtual environment for dental surgical skill training. In:
2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and
Workshops (VRW). pp. 347–352 (2021). https://doi.org/10.1109/VRW52623.2021.
00069

10. Kim, L., Sukhatme, G., Desbrun, M.: A haptic-rendering technique based on hybrid
surface representation. IEEE Computer Graphics and Applications 24(2), 66–75
(2004). https://doi.org/10.1109/MCG.2004.1274064

11. Laycock, S.D., Day, A.: A survey of haptic rendering techniques. In: Computer
graphics forum. vol. 26, pp. 50–65. Wiley Online Library (2007). https://doi.org/
10.1111/j.1467-8659.2007.00945.x

12. Lin, M.C., Otaduy, M.: Haptic rendering: foundations, algorithms, and applications.
CRC Press (2008). https://doi.org/10.1201/b10636

13. Lobo, D., Otaduy, M.A.: Rendering of constraints with underactuated haptic devices.
IEEE Transactions on Haptics 13(4), 699–708 (2020). https://doi.org/10.1109/
TOH.2020.2981932

14. McNeely, W.A., Puterbaugh, K.D., Troy, J.J.: Six degree-of-freedom haptic ren-
dering using voxel sampling. In: Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques. pp. 401––408. SIGGRAPH ’99,
ACM Press/Addison-Wesley Publishing Co. (1999). https://doi.org/10.1145/311535.
311600

15. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 4460–4470
(2019). https://doi.org/10.1109/CVPR.2019.00459

16. Moustakas, K.: 6dof haptic rendering using distance maps over implicit repre-
sentations. Multimedia Tools and Applications 75(8), 4543–4557 (2016). https:
//doi.org/10.1007/s11042-015-2490-z

17. Moustakas, K., Tzovaras, D., Strintzis, M.G.: Sq-map: Efficient layered collision
detection and haptic rendering. IEEE Transactions on Visualization and Computer
Graphics 13(1), 80–93 (2006). https://doi.org/10.1109/TVCG.2007.20

https://doi.org/10.1109/TOH.2015.2466239
https://doi.org/10.1109/TOH.2015.2466239
https://doi.org/10.1109/TOH.2015.2466239
https://doi.org/10.1109/TOH.2015.2466239
https://doi.org/10.1109/TOH.2019.2934104
https://doi.org/10.1109/TOH.2019.2934104
https://doi.org/10.1109/HAPTIC.2010.5444658
https://doi.org/10.1109/HAPTIC.2010.5444658
https://doi.org/10.1109/HAPTIC.2010.5444658
https://doi.org/10.1109/HAPTIC.2010.5444658
https://doi.org/10.1109/HAPTICS.2008.4479943
https://doi.org/10.1109/HAPTICS.2008.4479943
https://doi.org/10.1109/HAPTICS.2008.4479943
https://doi.org/10.1109/HAPTICS.2008.4479943
https://doi.org/10.1109/TOH.2009.2
https://doi.org/10.1109/TOH.2009.2
https://doi.org/10.1109/cvpr42600.2020.00604
https://doi.org/10.1109/cvpr42600.2020.00604
https://doi.org/10.1109/VRW52623.2021.00069
https://doi.org/10.1109/VRW52623.2021.00069
https://doi.org/10.1109/VRW52623.2021.00069
https://doi.org/10.1109/VRW52623.2021.00069
https://doi.org/10.1109/MCG.2004.1274064
https://doi.org/10.1109/MCG.2004.1274064
https://doi.org/10.1111/j.1467-8659.2007.00945.x
https://doi.org/10.1111/j.1467-8659.2007.00945.x
https://doi.org/10.1111/j.1467-8659.2007.00945.x
https://doi.org/10.1111/j.1467-8659.2007.00945.x
https://doi.org/10.1201/b10636
https://doi.org/10.1201/b10636
https://doi.org/10.1109/TOH.2020.2981932
https://doi.org/10.1109/TOH.2020.2981932
https://doi.org/10.1109/TOH.2020.2981932
https://doi.org/10.1109/TOH.2020.2981932
https://doi.org/10.1145/311535.311600
https://doi.org/10.1145/311535.311600
https://doi.org/10.1145/311535.311600
https://doi.org/10.1145/311535.311600
https://doi.org/10.1109/CVPR.2019.00459
https://doi.org/10.1109/CVPR.2019.00459
https://doi.org/10.1007/s11042-015-2490-z
https://doi.org/10.1007/s11042-015-2490-z
https://doi.org/10.1007/s11042-015-2490-z
https://doi.org/10.1007/s11042-015-2490-z
https://doi.org/10.1109/TVCG.2007.20
https://doi.org/10.1109/TVCG.2007.20

14 C. Vlachos and K. Moustakas

18. Osgouei, R.H., Kim, J.R., Choi, S.: Data-driven texture modeling and rendering
on electrovibration display. IEEE Transactions on Haptics 13(2), 298–311 (2019).
https://doi.org/10.1109/TOH.2019.2932990

19. Osher, S., Fedkiw, R.: Signed distance functions. In: Level Set Methods and Dynamic
Implicit Surfaces, pp. 17–22. Springer New York (2003). https://doi.org/10.1007/
0-387-22746-6_2

20. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. pp. 165–174
(2019). https://doi.org/10.1109/cvpr.2019.00025

21. Ruffaldi, E., Morris, D., Edmunds, T., Barbagli, F., Pai, D.K.: Standardized evalu-
ation of haptic rendering systems. In: 2006 14th Symposium on Haptic Interfaces
for Virtual Environment and Teleoperator Systems. pp. 225–232. IEEE (2006).
https://doi.org/10.1109/haptic.2006.1627081

22. Salisbury, K., Tarr, C.: Haptic rendering of surfaces defined by implicit functions. In:
ASME International Mechanical Engineering Congress and Exposition. vol. 18244,
pp. 61–67. American Society of Mechanical Engineers (1997). https://doi.org/10.
1115/IMECE1997-0378

23. Shin, S., Osgouei, R.H., Kim, K.D., Choi, S.: Data-driven modeling of isotropic
haptic textures using frequency-decomposed neural networks. In: 2015 IEEE World
Haptics Conference (WHC). pp. 131–138. IEEE (2015). https://doi.org/0.1109/
WHC.2015.7177703

24. Sianov, A., Harders, M.: Data-driven haptics: Addressing inhomogeneities and
computational formulation. In: 2013 World Haptics Conference (WHC). pp. 301–
306. IEEE (2013). https://doi.org/10.1109/WHC.2013.6548425

25. Sianov, A., Harders, M.: Exploring feature-based learning for data-driven haptic
rendering. IEEE Transactions on Haptics 11(3), 388–399 (2018). https://doi.org/
10.1109/TOH.2018.2817483

26. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural
representations with periodic activation functions. Advances in Neural Information
Processing Systems 33, 7462–7473 (2020), https://proceedings.neurips.cc/paper_
files/paper/2020/hash/53c04118df112c13a8c34b38343b9c10-Abstract.html

27. Srinivasan, M.A., Basdogan, C.: Haptics in virtual environments: Taxonomy, re-
search status, and challenges. Computers & Graphics 21(4), 393–404 (1997).
https://doi.org/10.1016/s0097-8493(97)00030-7

28. Venkatesh, R., Sharma, S., Ghosh, A., Jeni, L., Singh, M.: Dude: Deep unsigned
distance embeddings for hi-fidelity representation of complex 3d surfaces. arXiv
preprint arXiv:2011.02570 (2020). https://doi.org/10.48550/arXiv.2011.02570

29. Zhu, L., Xiang, Y., Song, A.: Visible patches for haptic rendering of point clouds.
IEEE Transactions on Haptics 15(3), 497–507 (2022). https://doi.org/10.1109/
TOH.2022.3165119

30. Zilles, C., Salisbury, J.: A constraint-based god-object method for haptic display. In:
Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and
Systems. Human Robot Interaction and Cooperative Robots. vol. 3, pp. 146–151.
IEEE (1995). https://doi.org/10.1109/IROS.1995.525876

https://doi.org/10.1109/TOH.2019.2932990
https://doi.org/10.1109/TOH.2019.2932990
https://doi.org/10.1007/0-387-22746-6_2
https://doi.org/10.1007/0-387-22746-6_2
https://doi.org/10.1007/0-387-22746-6_2
https://doi.org/10.1007/0-387-22746-6_2
https://doi.org/10.1109/cvpr.2019.00025
https://doi.org/10.1109/cvpr.2019.00025
https://doi.org/10.1109/haptic.2006.1627081
https://doi.org/10.1109/haptic.2006.1627081
https://doi.org/10.1115/IMECE1997-0378
https://doi.org/10.1115/IMECE1997-0378
https://doi.org/10.1115/IMECE1997-0378
https://doi.org/10.1115/IMECE1997-0378
https://doi.org/0.1109/WHC.2015.7177703
https://doi.org/0.1109/WHC.2015.7177703
https://doi.org/0.1109/WHC.2015.7177703
https://doi.org/0.1109/WHC.2015.7177703
https://doi.org/10.1109/WHC.2013.6548425
https://doi.org/10.1109/WHC.2013.6548425
https://doi.org/10.1109/TOH.2018.2817483
https://doi.org/10.1109/TOH.2018.2817483
https://doi.org/10.1109/TOH.2018.2817483
https://doi.org/10.1109/TOH.2018.2817483
https://proceedings.neurips.cc/paper_files/paper/2020/hash/53c04118df112c13a8c34b38343b9c10-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/53c04118df112c13a8c34b38343b9c10-Abstract.html
https://doi.org/10.1016/s0097-8493(97)00030-7
https://doi.org/10.1016/s0097-8493(97)00030-7
https://doi.org/10.48550/arXiv.2011.02570
https://doi.org/10.48550/arXiv.2011.02570
https://doi.org/10.1109/TOH.2022.3165119
https://doi.org/10.1109/TOH.2022.3165119
https://doi.org/10.1109/TOH.2022.3165119
https://doi.org/10.1109/TOH.2022.3165119
https://doi.org/10.1109/IROS.1995.525876
https://doi.org/10.1109/IROS.1995.525876

	High–Fidelity Haptic Rendering through Implicit Neural Force Representation

