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Abstract—We propose a novel point cloud U-Net diffusion
architecture for 3D generative modeling capable of generat-
ing high-quality and diverse 3D shapes while maintaining fast
generation times. Our network employs a dual-branch archi-
tecture, combining the high-resolution representations of points
with the computational efficiency of sparse voxels. Our fastest
variant outperforms all non-diffusion generative approaches on
unconditional shape generation, the most popular benchmark
for evaluating point cloud generative models, while our largest
model achieves state-of-the-art results among diffusion methods,
with a runtime approximately 70% of the previously state-
of-the-art PVD. Beyond unconditional generation, we perform
extensive evaluations, including conditional generation on all
categories of ShapeNet, demonstrating the scalability of our
model to larger datasets, and implicit generation which allows
our network to produce high quality point clouds on fewer
timesteps, further decreasing the generation time. Finally, we
evaluate the architecture’s performance in point cloud com-
pletion and super-resolution. Our model excels in all tasks,
establishing it as a state-of-the-art diffusion U-Net for point
cloud generative modeling. The code is publicly available at
https://github.com/JohnRomanelis/SPVD.git.

Index Terms—Generative Modeling, Deep Learning, Point
Clouds, Generation, Completion, Super-Resolution, Diffusion.

I. INTRODUCTION

Generative models have emerged as powerful tools in the
realm of artificial intelligence, offering significant advances
in the automated generation of digital content across various
modalities, such as text [1], music [2]–[4], image [5]–[7] and
video [8]. Recently, the focus has extended to 3D generative
models which hold promise for a wide array of applica-
tions like computer vision, computer graphics, and robotics.
Among 3D data representations, point clouds are becoming
increasingly common. This is primarily because they are the
direct output of 3D sensors, increasing the availability of data,
and can express a higher level of detail compared to other
representations such as voxel grids. Additionally, a plethora
of algorithms have been developed to transform point clouds
into more sophisticated representations, such as 3D meshes
[9]–[14].

Several methods have been proposed for point cloud gen-
eration, employing various architectures and pipelines, such
as VAEs [15], [16], GANs [17]–[19], Gradient Fields [20],
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Fig. 1. The proposed Sparse Point-Voxel Diffusion (SPVD) is a novel dif-
fusion architecture designed for efficient and scalable point cloud generation
tasks. The generation process visualizes the gradual transformation of a noisy
sample into a clean 3D shape. The completion and super-resolution tasks
further demonstrate the capabilities of the proposed architecture.

Normalizing Flows [21]–[23], and Diffusion models [24]–
[26]. Diffusion models [5], recognized as the State-of-the-
Art generative approach in visual computing (including image,
video), are gaining increasing popularity in the Point Cloud
domain due to their ability to produce high-fidelity and diverse
shapes. These models operate by progressively denoising a
noise sample from a Gaussian distribution to generate a clean
novel shape. However, thousands of steps are required for
this generation process [27], equaling to thousands of network
activations.

Moreover, current state-of-the-art point-based Point Cloud
models are inherently slow, with up to 90% of their run-
time dedicated to structuring irregular data rather than actual
feature extraction [28]. This structuring includes sampling
and neighbor searching operations necessary for tasks like
downsampling the point cloud, forming point neighborhoods,
and interpolating point features. Unlike image pixels, which
are organized in a fixed grid making these operations straight-
forward, point clouds require more complex algorithms such
as furthest point sampling and k-nearest neighbor searches in
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continuous space. While voxel-based methods could poten-
tially overcome these speed limitations, they suffer from sig-
nificant information loss due to the aggressive downsampling
needed to manage the cubical memory demands of voxel grids
[29]. Additionally, voxel-based methods have been shown to
produce poor generation results [24].

We propose SPVD, a novel UNet diffusion architecture that
achieves state-of-the-art generation results while significantly
reducing generation runtime compared to other diffusion
methods. Our model, inspired by [29], combines a sparse
voxel backbone designed to efficiently extract neighboring
information with a high-fidelity point branch that preserves the
fine details of the points. To minimize hard-to-interpret design
choices, our sparse voxel backbone follows the DDPM [5]
UNet architecture, incorporating only domain-specific adap-
tations. Additionally, to further decrease the generation time,
we modify the voxelization pipeline from [29] to run entirely
on the GPU. To put the numbers into perspective, PVD
[24], the current state-of-the-art, requires more than 1 hour
to generate 662 samples, which is the size of the ShapeNet
- Chair category test set. In contrast, our model’s fastest
variant completes this task in less than 15 minutes, while
the largest variant does not exceed 45 minutes1. Moreover,
all versions of our network have been trained on a 24GB
VRAM GPU, making it accessible for retraining and use by
the academic community without the need for expensive and
often unavailable equipment.

We quantitatively evaluate our model, following the
paradigm of previous works [17], [20]–[25], [27], by measur-
ing the 1-NN metric for the unconditional generation results
in the Car, Airplane and Chair categories of ShapeNet. To test
the model’s scalability with increasing amounts of data, we
train a variant for conditional generation on all categories of
ShapeNet. To further decrease the generation time we study
the DDIM generation rule [6], which allows generation with
fewer iteration, and its effect on the generation quality. Finally,
we qualitatively test our model in other candidate tasks, such
as completion and super-resolution.

To summarize our contributions are the following:

• We propose SPVD, a novel diffusion U-Net architecture
that combines the point representations with sparse voxels
for efficient point cloud processing.

• We achieve state-of-the-art results in the most common
generative benchmark - unconditional generation on Air-
plane, Chair, Car categories of ShapeNet - while reducing
generation time compared to the previous state-of-the-art
diffusion model.

• We present extensive quantitative and qualitative results
to demonstrate our model’s ability to scale to larger
datasets, generate shapes faster through implicit gener-
ation, and perform additional generative tasks such as
shape completion and super-resolution.

1All time measurements were performed on the same machine using a
NVIDIA RTX 3090 GPU.

II. RELATED WORK

A. Deep Learning for Point Clouds

Designing an effective 3D generative model requires select-
ing a backbone architecture that balances execution speed with
accuracy. PointNet [30] utilizes shared-MLPs across points to
project them into higher dimensions and extract global features
through pooling; however, it lacks on descriptive power due
to the absence of neighbor feature aggregation. PointNet++
[31] addresses this by applying PointNets withing small point
neighborhoods to extract local features. Subsequent studies
[32]–[37] explore different kernels for neighborhood feature
aggregation. While these methods achieve state-of-the-art re-
sults in classification and segmentation tasks, their execution
time is constrained by the time required for point sampling
and grouping operations.

Transformer-based models [38]–[43] create point patches
and process them using transformer blocks [44]. Although
these models reduce the number of point operations, comput-
ing the attention matrices remains a time-intensive process.

Point-Voxel CNNs [28] introduce a hybrid convolution
approach, combining a high-resolution point branch with a
low-resolution voxel branch to aggregate neighborhood infor-
mation. In [28] the authors propose two network architectures.
The first, PVCNN, employs a series of Point-Voxel layers
to extract point features. The second variant, PVCNN++,
inspired by PointNet++, also utilizes point operations. After
each voxel convolution, points are sampled and grouped into
neighborhoods, and collective features are extracted for the
neighborhood centroids, creating a point encoder with a de-
creasing number of points. While this approach enhances the
network’s ability to understand 3D geometry, it introduces the
aforementioned runtime bottlenecks due to the point opera-
tions.

Sparse Voxel Convolution models [45]–[47] address the
cubic memory requirements of dense voxel grids, thereby
enabling higher voxel densities while preserving fast execution
times. In SPVNAS [29] the authors propose the use of Sparse
Point-Voxel Convolutions, creating an effective module that
combines the efficiency of the sparse voxel convolution and
the high fidelity features that are propagated through the point
branch.

B. 3D Shape Generation

3D shape generation involves creating synthetic models,
most commonly represented as Point Clouds or Meshes.
Early works primarly utilized Autoencoder architectures [15],
[16], Generative Adversarial Networks (GANs) [17]–[19] and
Gradient Fields [48]. PointFlow [21] proposed a probabilistic
framework, utilizing continuous normalizing flows, to learn a
two-level hierarchy of distributions: a distribution of shapes
and of points given a shape. Subsequent flow-based research
includes [22], [23].

[25] introduces a diffusion-based pipeline where points are
projected into a latent space representation using a PointNet-
like network, followed by a neural network that gradually
denoises the latent space representations, resulting in novel
shapes. In PVD [24] the authors study a diffusion network
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that operates directly on the point space. The diffusion U-Net
is based on the architecture of PVCNN++ [28]. PVD is a
pivotal work, as it has enabled the creation of more complex
generative pipelines. In [26] the authors design a latent space
diffusion pipeline, where the original point cloud is projected
to a latent space and a PVD U-Net is responsible for point
cloud denoising. In [27] the authors retrain a PVD U-Net
by optimizing the curvy trajectory of the diffusion denoising
process into a straight path. Furthermore, they propose a
distillation process to shorten this straigh path into one step,
enabling a fast generation pipeline.

However, the point operations in the PVD U-Net limit both
the runtime of the network and its scalability. Network hyper-
parameters, such as the size of the point neighborhoods, are
highly affected by the total number of points. Consequently,
a network architecture cannot be applied to higher density
point clouds without significant architectural changes. The
same issue applies to attention operations in the point space,
as the size of the attention matrix is influenced by the number
of points.

Recent advancements in 3D shape generation also include
the generation of 3D meshes, rather than point clouds, utilizing
mesh diffusion techniques [49], [50] or improving the quality
of generated shapes through refining modules [51].

III. SPARSE POINT-VOXEL DIFFUSION

A. Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPM) are a
class of generative models inspired by thermodynamics [52],
where novel shapes are generated by progressively denoising
samples originating from a Gaussian distribution. The process
is illustrated in Figure 2.

During the forward diffusion process, a sample from the
original data distribution, denoted as x0, is progressively
corrupted by adding Gaussian noise according to a predefined
variance schedule β1, . . . , βT . This results in a series of
progressively noisier samples x1, ...,xT , of the same dimen-
sionality as x0. This process can be formulated by stating
that the approximate posterior q(x0:T ) is defined as a Markov
chain.

q(x0:T ) = q(x0)

T∏
t=1

q(xt|xt−1)

q(xt|xt−1) := N (
√

1− βt xt−1, βt I)

(1)

Furthermore, by setting αt = 1 − βt, αt =
∏t

s=0 αs and
applying reparameterization [53] on equation 1, a closed-form
equation is derived, allowing for direct computation of the
sample at timestep t:

xt ∼ N (
√
αt x0, (1− αt) I)

xt =
√
αt x0 +

√
1− αt ϵ, ϵ ∼ N (0, 1)

(2)

The reverse diffusion, which is the actual generation phase,
involves a neural network predicting the inverse noise dis-
tribution, enabling a gradual transition to a clean sample

Fig. 2. Illustration of the forward and reverse diffusion processes in DDPM.
Initially, a clean shape is progressively noisified through the forward diffusion
process, resulting in increasingly noisy samples up to xT . These samples,
generated via a predefined noise schedule, are utilized during the training
phase. The reverse process, indicated by the arrows, involves a neural network
tasked with estimating the inverse noise distribution to progressively denoise
the samples, eventually reconstructing a clean shape x0.

that belongs to the original data distribution. This process
is also formulated as a Markov chain with learned Gaussian
transitions.

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt)

pθ(xt−1|xt) := N (µθ(xt, t), σt
2 I)

(3)

where, µθ(xt, t) denotes the shape predicted by the genera-
tive model at timestep t− 1, σt

2 is the variance at timestep t;
the specifics of how this variance is determined are discussed
later in this section.

Training Objective: The training objective is to optimize
the variational lower bound on the negative log likelihood of
the data. This can be expressed as:

E [− log pθ(x0)] ≤ Eq

[
− log

(
pθ(x0:T )

q(x1:T |x0)

)]
(4)

where q(x1:T |x0) is the true posterior, for each timestep
1, ..., T and pθ(x0:T ) is the model’s approximation.

Since the noise at timestep t can be computed in closed
form by equation 2, the network can be trained effectively
by optimizing random terms of variational lower bound 4.
By following the analysis in [5] the training objective can
be simplified to:

L = ||ϵ− ϵθ(xt, t)||2, ϵ ∼ N (0, 1) (5)

where ϵθ(xt, t) is expressed by a neural network and ϵ is
the added noise according to equation 2.

Generation Process: For the generation process, we follow
the DDPM generation rule [5], using equation 6 for timesteps
T, ..., 1.

xt−1 =
1

√
αt

(
xt −

1− αt√
1− αt

ϵθ(xt, t)

)
+ σtz (6)

where z ∼ N (0, 1) and σt can be either
√
βt or

√
1−αt−1

1−αt
βt.

Our experiments indicate that using the latter value for σt

yields slightly better results without a significant difference.
During the last iteration, we do not add random noise; σ1 is
set to 0.
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Fig. 3. Example architecture of the Sparse Point-Voxel U-Net. The initial point clouds are voxelized and sparse convolutions extract features incorporating
neighborhood information. These features are propagated back to the point representation and are merged with the point features, extracted through shared-
MLPs. This dual branch architecture is called Sparse Point-Voxel Block (SPVBlock). Note that, as shown, the voxel computations at each SPVBlock may
vary, and the point branches in the encoder and decoder do not need to be symmetric. Additionally, we illustrate how sparse voxels and time embeddings can
be linked as graph nodes to efficiently handle the varying number of sparse voxels in each point cloud in a batch.

Additionally, we explore the implicit generation rule intro-
duced in DDIM [6], described by equation 7. This method
introduces a non-Markovian generation process, that leverages
the same training procedure as DDPM. The generation process
in DDIM follows a deterministic trajectory, allowing for the
sampling of fewer timesteps, which results in faster generation
times.

xt =
√
αt−1

(
xt −

√
1− αt ϵθ(xt, t)√

αt

)
+
√
1− αt−1 ϵθ(xt, t)

(7)

B. Sparse Point-Voxel Models

Based on [29], we propose a novel dual-branch architecture
that combines the high fidelity of point representations with
the effectiveness of voxel convolutions to extract features,
leveraging neighborhood information. Given the complexity
and space required to illustrate the entire model, we find it
beneficial to present an example architecture that highlights
all the key components of the network, as shown in figure 3.

Our model is structured around a series of Sparse Point-
Voxel Blocks (SPVBlocks), where both the input and the
output are point representations of shape B x N x F , with
B representing the batch dimension, N the number of points
per point cloud, and F the feature dimension. Initially, the
input point cloud is voxelized into a sparse grid which under-
goes processing through a combination of Residual Blocks,
attention blocks, and either downsampling or upsampling
convolution layers. Once processed, the final voxel features are
projected back to the original points via trilinear interpolation
and then added to the point features, which have been refined
through an MLP.

In addition to the SPVBlocks, the combined blocks of the
voxel branch form a U-Net network [54]. The architecture of
this model follows the design of the DDPM U-Net [5], with

Fig. 4. Illustration of a Sparse Residual Convolutional Block. Time embed-
ding information is integrated into the voxel features between two successive
convolutional blocks. An optional attention block can further process the voxel
features to incorporate global shape information.

appropriate adaptations for the sparse voxel domain. Further
details are provided in the appendix.

A key challenge in this sparse voxel approach is incor-
porating the time embedding information into the network
architecture. The time embedding represents the current step in
the denoising process. To integrate the time embedding with
the voxel features F , we project it to a scale and a shift
through the use of a multi-layer perceptron (MLP).

F ′ = scale ∗ F + shift (8)

However, the sparse voxels are stored sequentially for the
entire batch, with their numbers varying among the individual
point clouds. Furthermore, not all point clouds share the same
time embedding, especially during training. This raises the
need for an algorithm that would link each sparse voxel with
the correct scale and shift.

To avoid an iterative process, we implement a novel ap-
proach where each sparse voxel and each time embedding are
represented as graph nodes and are connected accordingly as
illustrated in Figure 3. For our implementation, we utilize Py-
torchGeometric [55], a framework designed for efficient graph



5

Fig. 5. Results of unconditional generation using our three model variants compared to PVD [24]. While all models produce high-quality point clouds, our
largest models can generate more unique shapes with coarser features, whereas PVD has lower shape diversity. For each model we report the generation time
of a batch with 32 samples.

processing. Additionally, the tensor storing the sparse voxels
and graph nodes follows the same structure, allowing this tran-
sition without any computational overhead. This graph-based
approach significantly boosts network execution and enables
efficient batch processing. In figure 4 we illustrate the design
of a sparse convolutional block. Time embedding information
is incorporated between two successive convolutional blocks.
The attention block is an optional component.

Finally, it is important to mention that the proposed ar-
chitecture can process various point densities without any
architectural changes, since the point operations are limited
to the Shared-MLPs.

IV. EXPERIMENTS

A. Unconditional Shape Generation

For comparative evaluations, we demonstrate our network’s
results on the ShapeNet [56] Airplane, Chair, and Car cate-
gories, following the paradigm of previous works [17], [20]–
[25], [27]. To ensure fair comparisons, we use the same dataset
and preprocessing methods proposed in PointFlow [21].

Unlike other methods, where the model is trained for 10k
epochs and interval checkpoints are separately evaluated, we
adopt a more efficient approach due to time and energy
required for such extensive training and evaluation. We train
our model using a one-cycle learning rate scheduler [57]
for a smaller number of epochs and evaluate only the final
checkpoint. For each checkpoint, we conduct three evaluation
tests and report the best results. This approach acknowledges
the stochasticity in the evaluation process, recognizing that
running multiple evaluations can increase the chances of
producing better results. However, rather than testing hundreds
of interval checkpoints, we limit our evaluations to three,
which strikes a balance between thoroughness and efficiency.

TABLE I
COMPARATIVE EVALUATIONS ON SHAPE GENERATION USING THE 1-NN

METRICS FOR SHAPENET AIRPLANE, CHAIR, AND CAR CATEGORIES,
EMPLOYING CHAMFER DISTANCE (CD) AND EARTH MOVER DISTANCE
(EMD) AS DISTANCE METRICS. LOWER (↓) SCORES INDICATE BETTER

GENERATION QUALITY AND SHAPE DIVERSITY.

Airplane Chair Car

CD EMD CD EMD CD EMD

r-GAN [17] 98.40 96.79 83.69 99.70 94.46 99.01
l-GAN (CD) [17] 87.30 93.95 68.58 83.84 66.49 88.78
l-GAN (EMD) [17] 89.49 76.91 71.90 64.65 71.16 66.19
Shape-GF [20] 80.00 76.17 68.96 65.48 63.20 56.53
PointFlow [21] 75.68 70.74 62.84 60.57 58.10 56.25
SoftFlow [22] 76.05 65.80 59.21 60.05 64.77 60.09
DPF-Net [23] 75.18 65.55 62.00 58.53 62.35 54.48

SPVD-S (ours) 73.82 64.56 57.10 55.97 56.39 53.83

DPM [25] 76.42 86.91 60.05 74.77 68.89 79.79
PVD [24] 73.82 64.81 56.26 53.32 54.55 53.83

SPVD-M (ours) 73.95 63.08 56.11 57.10 70.88 52.98
SPVD-L (ours) 73.21 61.97 55.36 52.56 70.74 52.41

Evaluation results are presented in Table I. The 1-NN
metric [21] is used to evaluate the performance of different
methods, while Chamfer Distance (CD) and Earth Mover
Distance (EMD) are employed as distance metrics. Lower
scores indicate better generation quality and shape diversity.
We observe that the smallest variant of SPVD outperforms non
diffusion methods while producing results equivalent to PVD.
Furthermore, SPVD-L variant achieves state-of-the-art results
across all methods while still maintaining a faster runtime
that PVD. Qualitative results of our networks and PVD are
presented in Figure 5, along with the generation time for
a batch of 32 samples. Details of the network variants and
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Fig. 6. Point clouds generated using the conditional SPVD-L model trained on all categories of ShapeNet. The use of the conditional embedding allows us
to specify the class of the generated objects. Our model demonstrates its scalability by generating clean shapes across various categories.

Fig. 7. Comparison of probabilistic (DDPM) and implicit (DDIM) generation.
Each row displays shapes generated from the same initial random noise.
For each shape, the number of sampling steps and the generation time for
a batch of 32 point clouds are reported. The implicit model consistently
converges to the same shape, demonstrating that DDIMs follow a deterministic
trajectory during the denoising process. Additionally, the generative model
can produce high-quality samples even with 100 sampling steps, reducing the
initial sampling time to one-tenth.

additional evaluation metrics are provided in the Appendix.

B. Conditional Generation

It is important for a general-purpose generative model, akin
to the novel generative models in image synthesis, to be
capable of generating various objects from a wide range of
categories. To test our model’s ability to generalize across mul-
tiple categories, we train it on all categories of ShapeNet. To
select the object category for generation, we use a conditional
class embedding, which is incorporated into the pipeline by
adding it to the time embedding.

In figure 6, we present generation results of objects from dif-
ferent categories. The results indicate that the model succeeds
in generating shapes from diverse categories, demonstrating
that the proposed backbone can scale to accommodate more
data.

C. Implicit Generation

In this section, we evaluate the results of our network when
using the DDIM rule for shape generation. Implicit generation,
as proposed by [6], suggests that the generation process
follows a deterministic trajectory and allows for generation
with fewer sampling steps. The aim of this experiment is to

TABLE II
1-NN METRIC AND GENERATION TIMES FOR THE SPVD VARIANTS USING
THE DDIM GENERATION RULE WITH 100 AND 1000 STEPS. THE DDPM

METRICS ARE ALSO INCLUDED FOR COMPARISON.

DDIM
steps

Gen
(sec)

Airplane Chair Car

CD EMD CD EMD CD EMD

SPVD-S - 23M parameters

100 4.5 85.80 65.92 64.73 60.50 66.19 57.81
1000 43.3 75.18 65.18 61.63 59.74 60.36 60.22

DDPM 47.3 73.82 64.56 57.10 55.97 56.39 53.83

SPVD-M - 33M parameters

100 6.7 84.19 75.80 75.37 77.26 79.97 77.41
1000 68.4 84.56 79.75 78.32 79.07 87.21 83.38

DDPM 68.7 73.95 63.08 56.11 57.10 70.88 52.98

SPVD-L - 88M parameters

100 12.8 84.07 71.85 69.48 71.48 78.12 75.00
1000 127.6 80.00 78.02 70.77 71.97 80.25 76.42

DDPM 128.7 73.21 61.97 55.36 52.56 70.74 52.41

decrease the point cloud generation time while observing the
effect on generation quality.

In Figure 7, we illustrate the generation results for various
sampling steps, all starting from the same random noise. We
present results for the chair and airplane categories, chosen
for their distinguishable features. The model used in this
experiment is the SPVD-S variant, trained for unconditional
generation. It is evident that our model can generate high-
quality shapes with just 100 steps, equivalent to one-tenth
of the initial generation time. This speed-up could enable a
range of applications where execution speed is prioritized over
absolute accuracy.

In Table II we present the 1-NN metric for the DDIM gener-
ation rule using 100 and 1000 generation steps along with the
corresponding runtime.The qualitative results of Figure 7 are
quantitatively verified for the SPVD-S variant, demonstrating
high generation quality even with just 100 steps. Interestingly,
the largest models experience a significant performance drop.
This may be due to the larger number of parameters and
the lack of random noise during generation, which favors
variability.

D. Shape Completion

We further test our model’s ability to complete incomplete
shapes by proposing a new task called Part Completion. The
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Fig. 8. Results of (a) completion and (b) super-resolution networks. (a) The completion network successfully fills in missing parts of the objects without
any guidance, predicting only the missing points for input point clouds with varying point counts. (b) The super-resolution network not only increases point
density but also adds details to shapes (such as the back of the chair) and fills gaps, like missing points in the chair handles or uneven chair or table legs.

input to the model consists of shapes from the PartNet [58]
dataset, where random parts of the objects have been removed.
More details are provided in the appendix. The task for the
model is to reconstruct the missing areas. The key challenges
of this task include the variable number of input points, as the
selection and number of discarded parts are random, leading
to varying input shapes. Additionally, there is no information
about the location of the missing points, requiring the model
to infer the underlying geometry.

During training, the input points remain constant while only
the selected parts for removal are noisified. The model is
tasked with estimating the added noise, similar to the genera-
tion pipeline. At inference, random noise is concatenated with
the input, and the model gradually denoises this new noise to
reconstruct the missing parts.

Completion results are presented in Figure 8 (a). We show-
case results for the chair and table categories, chosen for their
distinctive features. The network successfully completes the
missing parts of the shapes.

E. Point Cloud Super Resolution
Super-Resolution is a well-known task in the image do-

main, but it has received limited attention in Point Clouds.
Structurally, for diffusion models, super-resolution is similar
to completion, with the primary difference being that in super-
resolution, random points are noisified, while in completion,
specific parts. For our experiment, we use a point cloud with
512 points as input and generate an output with 2048 points.

The results of the super-resolution task are shown in Figure
8 (b). We notice that the low sampling rate of the input results
in many missing details, which can alter the shape, such as
uneven chair legs or missing parts in the handles and back.
The model not only increases the resolution of the shapes but
also fills in the missing information.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced SPVD, a novel diffusion U-Net
architecture that enables efficient and scalable point cloud gen-
eration. Our approach achieves state-of-the-art results in point
cloud generation with significantly shorter generation times
compared to other high-fidelity diffusion models. Our exper-
iments demonstrate that SPVD can scale to larger datasets
and achieve even faster generation times through implicit
generation. Additionally, it proves to be a strong candidate
for tasks such as point cloud completion and super-resolution.

Fast generative models for 3D shapes are crucial for
applications where user experience is just as important as
generation quality. SPVD represents a significant step forward
in addressing this need.

Future research will focus on developing a latent diffusion
pipeline, similar to [59] in the image domain, where the
SPVD model operates within the latent space to denoise
latent representations. This pipeline will also facilitate the use
of guidance, allowing images or text prompts to influence
the generative results. Given the computational efficiency of
our model, this latent variant could be extended beyond the
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ShapeNet to more practical datasets such as Objaverse [60]
and Objaverse-XL [61]. However, these extensive datasets
require filtering and selection of suitable models for training
a diffusion model, as well as preprocessing — a separate area
for future work.

Another area of future research involves developing novel
evaluation metrics that can better distinguish between genera-
tion quality and shape diversity. It may also involve identifying
distance metrics more suitable than Chamfer and Earth Mover
distances. An example from the image domain is the Fréchet
Inception Distance (FID) [62], which compares feature maps
from specific layers of InceptionNet [63] rather than the
images themselves.
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APPENDIX A
NETWORK DESING DETAILS

In this section, we provide the implementation details of the
three network variants.

The SPVD-S variant uses only a single SPVD block, mean-
ing that there is a point representation only at the start and end
of the voxel U-Net. The SPVD-M and SPVD-L variants share
the same architecture but differ in latent space dimensions. An
overview of the architectures is presented in Table III.

A minor difference between the architectures concerns how
the latent space is increased. In the SPVD-S variant, the latent
space is increased during the first convolution of each down
block. In contrast, for the SPVD-M and SPVD-L variants, the
increase occurs during the downsampling convolution, that is
the last layer of the block. This approach reduces the parameter
count, allowing for larger feature dimensions.

Our experiments show that training larger models with the
architecture of the SPVD-S variant did not yield better results.
We believe that the point skip connections in the larger variants
facilitate the propagation of gradients, enabling the successful
training of larger architectures.

APPENDIX B
ADDITIONAL GENERATION EVALUATION METRICS

In this section of the appendix, we provide a comparative
evaluation against other methods following [24]. The metrics
used are Coverage (Cov) and Minimum Matching Distance
(MMD). These metrics are complementary: Cov evaluates the
diversity of the generated shapes compared to the test set,
while MMD measures the quality of the generated shapes.

Although these methods are considered less reliable than
the 1-NN metric [21], our models still achieve state-of-the-art
results, as shown in Table IV.

APPENDIX C
PART COMPLETION

In the context of circular economy and recycling initiatives,
the repair and reuse of older objects are highly encouraged.
Generative models can contribute to this effort by reconstruct-
ing missing parts, facilitating the retrieval of replacement parts
in databases, or enabling 3D printing solutions. Additionally,
3D model designers could benefit from automated algorithms
that either complete their shapes or suggest alternatives for
specific parts.

To this aim, we propose a new task called Part Completion.
We use PartNet [58], a 3D model dataset with hierarchical
part annotations. We preprocess the models by following the
hierarchical structure of their parts and representing it as a
tree. Since some parts may be too small, resulting in minimal
scan information, we merge all leaves with a low point count
into their parent nodes. We then save the resulting point cloud
along with their per-point part labels.

During training and evaluation, we set m as the minimum
number of parts that a partial object should have. We then
randomly select a number between 1 and m to determine the
parts of the object to discard.
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