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Abstract—In this paper we study the problem of shape part
retrieval in the point cloud domain. Shape retrieval methods in
the literature rely on the presence of an existing query object, but
what if the part we are looking for is not available? We present
Part Retrieval Pipeline (PReP), a pipeline that creatively utilizes
metric learning techniques along with a trained classification
model to measure the suitability of potential replacement parts
from a database, as part of an application scenario targeting
circular economy. Through an innovative training procedure with
increasing difficulty, it is able to learn to recognize suitable parts
relying only on shape context. Thanks to its low parameter size
and computational requirements, it can be used to sort through a
warehouse of potentially tens of thousand of spare parts in just a
few seconds. We also establish an alternative baseline approach to
compare against, and extensively document the unique challenges
associated with this task, as well as identify the design choices
to solve them.

Index Terms—Shape Retrieval, Deep Learning, Point Clouds,
Part Retrieval, circular economy

I. INTRODUCTION

SHAPE retrieval is a fundamental problem in computer
vision, even more so in recent years, where advances in

scanning and ranging technology has lead to an abundance
of 3D shape data to become available. In various domains
such as industrial design, manufacturing [1], robotics [13] as
well as gaming, cultural heritage and archeology, being able to
retrieve suitable shapes from a repository based on application-
specific criteria is key. In this work we dive in to the much
less studied problem of part retrieval and propose the first (to
our knowledge) pipeline that can find a match for an object
with missing parts, without being explicitly fed the information
about which part is missing.

Without sacrificing generalizability and extensibility, for the
rest of this work, we assume the following scenario; A maker
hub is set up allowing users to bring their damaged objects
and find replacement parts from a large, spare part warehouse.
The goal is to facilitate circular economy chains, by giving a
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Fig. 1. An overview of the proposed methods. An query object is missing a
part and we need to find a replacement among a given database of parts. Using
our proposed method, PReP, the matching part can be found only based on
the context. By adding an additional completion step, standard shape retrieval
techniques can be applied to retrieved a similar part.

second chance to objects that are no longer of use due to the
damage they have sustained. The objects are first scanned and
converted to point cloud form, before being fed into a deep
learning pipeline that finds suitable matches among potentially
tens of thousands of spare parts in the warehouse, procured
by disassembling other unsalvagable objects.

Generally, deep learning-based works for shape retrieval
work by encoding the query shape, as well as every other
potential shape into latent space feature vectors. Then, a
similarity measure between the feature vectors is applied,
typically L2 distance or cosine similarity, and the matched
objects are sorted in ascending order based on the distance
value. The idea is that while it is difficult to match shapes
due to uneven point density, noise and other factors, a deep
neural network can generate a latent space in which similarity
is encoded in the distance between feature points. The works
then boil down to the architecture they use to tackle their
specific problem, be it image, mesh, point cloud, cross modal
etc, as well as the loss function they utilize to create the
aforementioned feature space. The key difference between this
problem and other related works in the shape retrieval domain
is that the missing part is not actually available, and therefore
it is not possible to scan it and find a similar one, having to
rely solely on the context instead.

Our contributions are as follows:
• We propose the first, to our knowledge, pipeline that0000–0000/00$00.00 © 2021 IEEE
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performs shape retrieval on unknown parts of the shape,
whilst maintaining good computational efficiency and
robust retrieval accuracy.

• We introduce several architectural novelties into this
pipeline and extensively explain the challenges and de-
sign choices at each step, providing valuable insights.

II. RELATED WORK

Shape retrieval is a long-standing problem in the field of
computer vision that has received more attention in recent
years due to the explosion of available data, easily accessible
to both researchers and practitioners. It refers to the process of
analyzing the characteristics of a specific object, represented
in any form, be it 2D or 3D, and retrieving other objects with
similar characteristics among a large database of objects.

Shape retrieval challenges can be categorized according to
the data they use as input and the data they try to retrieve.
As such, 1D-to-2D [11], [33], [34], 2D-to-2D [42]–[47], [52],
[53], 2D-to-3D [10], [17]–[24] and 3D-to-3D [14] are all
common areas of research. Recently, the focus of most works
has shifted towards 2D-to-3D multimodal architectures in
order to utilize the ever increasing data produced by various
sensors. Matching 3D shapes from multiple views is a very
popular approach, as it allows the models to acquire complete
knowledge of objects, by assembling partial representations.
Researchers utilize CNNs [23], [24], N-Grams, [22] as well
as attention [21] to extract and fuse features from multiple
views.

additonally, 3D shape retrieval from single image views is a
much harder problem that has not gone unnoticed. In [19], the
authors use modern contrastive learning techniques, instead of
the standard metric learning methodology, to create a shared
space. [20] further investigates the problems of occlusions
and unseen objects in single images. [17] presents a novel
framework for constructing a knowledge graph, which can be
used to query with any kind of data.

Another problem that has been receiving attention lately is
shape retrieval from abstract 2D sketches. In [7], the authors
propose various methods to retrieve 3D objects from 2D
sketches of different artistic skill levels, by leveraging the
QuickDraw [8] dataset. They approach the problem by creating
a shared representation space by jointly training models that
process sketches and 3D objects. [9] argues that a more
effective approach would be to align the shapes and sketches
in their common class label space instead, as a more effective
way to bridge the gap between domains. In [12] the authors
take a different approach; they train a model for 3D shape
classification and use it as a teacher while a second model
that learns 2D features from sketches becomes the student.
They argue that this is a more effective way of learning
a joint feature space, instead of training the two models
simultaneously through a shared loss. [6] focuses on amateur-
drawn sketches, in an attempt to democratize this process.
They employ pivoting to address the lack of proper datasets for
this task and fill the void between sketches and 3D shapes by
including an intermediate image-based step. In [5], the authors
focus on the uncertainty aspect of this task, by attempting

to remedy the effects of noisy or low-quality sketches in
the data. They decouple the uncertainty from the rest of the
retrieval task, and tackle it separately by injecting uncertainty
information into the training of a classification model.

Niche tasks have also been attracting some attention. [15]
uses signed distance functions and emphasizes the need to
perform retrieval for models that are not necessarily in the
same scale or orientation as the query model. In [14] they
tackle the interesting problem of shape retrieval based on the
surface pattern of the query model instead of the shape’s global
structure. Promising results are presented using both geometric
and learning-based methods.

Fewer works have tackled the problem of part retrieval. In
[1], the authors use a target object and assemble a lookalike
by finding replacements for each of the object’s components
from a user defined database. They extract the parts through
an optimization scheme before projecting them into a feature
space and refining them using other decompositions as tem-
plates. In [41], they perform 2D-to-3D retrieval but with an
emphasis on parts. After finding a good initial match for the
query image in the available 3D object repository, they deform
the parts individually to achieve a greater similarity with the
query object.

All of these works assume that the parts in question are
available. In our work we aim to specifically retrieve the piece
that is missing, based only on the context of the shape.

III. METHODOLOGY

All shape retrieval tasks require a way to quantify the
suitability of every possible sample available in the retrieval
database and then sort the samples according to the scores.
A typical approach is as follows; a deep encoder is trained
using metric learning principles, such as variants of triplet
loss [25]–[27], [29]–[31], in order to map similar samples into
close points in the feature space. Once this is accomplished,
the task of sorting samples based on suitability boils down
to calculating their distance from the query shape in feature
space, using some distance metric, often standard L2 distance.

This approach assumes that the query shape is available so
that other samples can be compared against it. Nevertheless,
in this case the part that is unavailable is precisely the one we
are attempting to replace, so we need an alternate formulation.
The proposed pipeline is summarized in figure 2. Let us
assume that we are given point cloud objects P comprised
of individual parts

P = {p1,p2, ...,pn|pi ∈ RNi×3}

Let vi = f(pi; θ),RNi×3 → Rd be an encoder parameter-
ized by a neural network with weights θ, which maps the part
point clouds to d-dimensional feature vectors. Additionally,
let s = h ◦ g(v1,v2, ..,vM;ψ),RM×d → R be a secondary
module, which takes as input M part feature vectors and
finally outputs a suitability score. Our objective is to replace
a missing part vi with a suitable spare part v̂i. The encoder
projects the parts into a high dimensional feature space, such
that similar part geometries correspond to close feature points
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Fig. 2. This figure presents an overview of our proposed pipeline. The input shape (in this case, a toy plane) is split into its individual parts manually or
through a segmentation network and each part is encoded into a feature vector. The feature vectors are then fed into the transformer to model the relationships
between them. At this stage the pre-encoded spare parts are also introduced to the transformer one at a time. For each spare part, the object is assessed as
a whole, and a suitability score is provided by the trained classifier. (Each module is labeled with the corresponding mathematical symbol which is used to
describe it in the text)

∥vi− v̂i∥ < ϵ. Provided that h◦g is smooth, then |s− ŝ| < δ,
where ϵ, δ are two arbitrarily small, positive numbers.

We realize the individual components described above as
follows:

• f is a deep pointnet-like encoder, which is pretrained to
map similar geometries into close points in the feature
space. The pointnet architecture guarantees that the parts
can be processed in a permutation and cardinality invari-
ant manner, which is an absolute necessity, as objects are
composed of varying numbers of parts, and each part’s
geometry is represented by an arbitrary amount of points.

• Since the object’s class is known even in the absence
of vi, h can be realized through a model trained for
classification, wherein instead of outputting a single
scalar the model outputs K scores one for each class.
During inference, we simply look at the output neuron
that corresponds to the query object’s class.

• Information-wise, h◦g is in charge of processing the part
features and pooling them into an object-level feature
vector, which is forwarded to the classification MLP.
We implement g using a shallow transformer to achieve
this, since the attention modules will help encode the
interactions between parts and provide a relationship-
aware global embedding. During this stage, a pre-encoded
potential replacement part v̂i is added in place of vi.

An example test run of the pipeline will provide a deeper
insight into its functionality:

A toy plane with a missing wing is given as input. The

individual parts (such as body, tail and turbines) are encoded
into the feature space and are processed further to output
a classification score. If the missing wing was present, the
’plane’ classification score would be high. The secondary
module (h◦ g) is run continually, each time adding a different
spare part to the mix. When a spare part with similar geometry
as the original wing is encountered, the ’plane’ classification
score will be high again, signifying that a good replacement
has been found. Consequently, this pipeline can be ran for
every potential part candidate and the classification score can
be used to compare each part suitability, given the current
shape context.

In practice, the parts of an object are not necessarily given,
but can be made available by using a trained segmenta-
tion network, or by having the maker separate them in a
3D processing software. The attention mechanism’s memory
and computational requirements scale quadratically with the
number of parts, which in practice are very few (typically
< 20). Therefore, the transformer is able to evaluate hundreds
of thousands of parts in just a few seconds. We make the
reasonable assumption that the spare parts that are stored in
a warehouse have been pre-encoded offline, so they do not
impact the execution time during inference and as a result,
the encoder can be made as big, parameter-wise, as needed.

A. Training
The pipeline is trained in two stages. First we want the

encoder to assign close feature points to similar parts. Standard
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Fig. 3. Visualization of g for varying levels of steepness. The steeper
the curve, the bigger the transition is from ”highly similar” to ”dissimilar”
between objects. By gradually increasing the difficulty of the task the model
becomes better at assigning feature points for parts based on their similarity.

metric learning approaches recommend using the triplet loss,
pioneered in [25] to perform clustering of different viewpoints
of face images. This technique has seen massive success, and
further improvements in terms of sampling strategy [26], [27],
[29]–[31] as well as similarity measure [28], [32] have been
proposed. Other variants [35]–[38] have also been success-
ful in similar tasks, reformulating the optimization objective
significantly in order to obtain better convergence, learn more
discriminative features or acquire tolerance to transformations.

While the overwhelming success in the image domain might
seem quite appealing, we argue that the harsh penalization of
negative pairs might hinder the ability of the model to perform
retrieval. This is because we would like to be able to retrieve
parts that are geometrically similar but are not necessarily from
the same class. Additionally, due to the continuous nature of
point clouds - as opposed to the discrete nature of images
- forming positive pairs through transformations increases the
difficulty of the task dramatically. Instead, we propose a softer
and computationally lighter training objective.

First, the encoder is trained to learn to assign close feature
points to parts that are from the same class e.g. chair legs.
More formally, given a batch that contains parts P = {pi|i =
0, . . . , N − 1} with corresponding part labels li we minimize
the following function:

L =
1

N2

N−1∑
i=0

N−1∑
j=0

(Sij −Gij)
2

where S = P ·PT and ||pi|| = 1

and G = {gij}, where gij =

{
1 if li = lj

0 otherwise

In the above expression, S is a dot product similarity matrix
between each pair of parts, where all parts are first normalized
to unit length. G is a ground truth similarity matrix that is
formed using the available part labels, forcing the parts of the
same class to have high similarity and vice versa.

It is important to note that imposing this constraint on a
model operating on whole objects may cause the model to
overfit instead of learning any useful information, due to the
significant differences in the objects’ geometries. Nevertheless,
our model operates on parts, which more often than not,
share similar geometries when they belong to the same class.
Consequently, the model learns to associate similar geometries
through their labels. However, we found that the penalization
of negative pairs resulted in a reduction in the number of
retrieved matching parts from other classes, which is a highly
desirable property. Due to this we need to relax the constraints
further and incorporate shape similarity into the mix. We
therefore replace the hard 0s in the ground truth similarity
matrix, with the following shape similarity metric:

g(dij) =
ekdh − ekdij

ekdh − ekdl

Where dij is the chamfer distance between two parts Pi

and Pj :

dij = d(Pi,Pj) =
∑
p∈Pi

min
q∈Pj

∥p− q∥22 +
∑
q∈Pj

min
p∈Pi

∥q − p∥22

and dl, dh are the chamfer distances of matched and
mismatched parts respectively, averaged across a random sub-
set of the dataset. All parts are normalized with respect to
translation and scale before computing the chamfer distance.
The function g produces values close to 1 for shapes with high
similarity (as measured by chamfer distance) and 0 otherwise.
k is a hyperparameter (see figure 3) which determines the
steepness of the curve. We opted to use a scheduler for
this hyperparameter, gradually increasing it during training to
slowly increase the difficulty of the task, whilst facilitating the
learning procedure.

The second stage involves training the entire model for
classification end-to-end. The idea is that the transformer must
learn to predict which parts comprise an object of a specific
class based solely on the relationships between them. We want
to keep the properties learned through the first stage of training
intact [40], so we freeze the weights of the encoder during the
second stage.

B. Data preparation

We evaluate our method on two popular benchmark datasets
for segmentation, namely Shapenet-part [2] and PartNet [3].
However, neither of those is designed for the task we are
tackling, so they require a fair amount of data preparation.
First, part groups such as chair legs are provided as a single
entity and need to be separated. It is not possible to predict
whether each sample will contain single parts or part groups,
unless the splitting is performed manually. To this end, we
leverage the DBSCAN clustering algorithm to separate the
parts based on the density of points.

This approach yields very good results on the high quality
annotated PartNet but leaves a lot of problematic samples on
ShapeNet, such as part groups that didn’t end up splitting as
well as parts with miniscule numbers of points that should
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Fig. 4. Retrieval results on the Partnet dataset. The same query table can be seen in two scenarios; one with a missing leg and one with a missing surface.
The shapes on the top and bottom rows (color coded with green and red) represent the top and worst 5 matches respectively. Despite the various imperfections
deriving from improper clustering the model is able to pick out fitting replacements. The colormap represents the normalized z-coordinate of each point and
assists in understanding the object’s geometry.

Fig. 5. Retrieval results on the ShapeNet-part dataset. The same query plane can be seen in two scenarios; with missing wings and with missing fuselage.
The parts on the top and bottom rows represent the best and worst matches respectively. The model is able to achieve good retrieval quality, despite the data
being undersampled and the parts often being mislabeled.

not have been split but did. We discard parts that have a very
low number of points, whilst being cautious about setting the
threshold so as to avoid culling parts with small surface areas,
which are bound to have fewer points than the rest. We view
this as an opportunity to test the algorithm against imperfect
data to evaluate the robustness of the proposed techniques.

After preprocessing and cleaning we create 2 datasets, one
containing whole objects as well as part IDs for splitting, and
one containing the processed parts. We will refer to these as
the Items and Warehouse datasets respectively for the rest of
this paper, for the shake of clarity. We feed the split parts
to the model directly, omitting the segmentation network in
favour of clarity and ease.

IV. EXPERIMENTS

A. Retrieval Results

To evaluate our model we perform the training exactly as
described in the previous section, and select several classes
from Shapenet according to their popularity among research
papers for demonstration purposes. For PartNet, we select
classes with a reasonable amount of parts, making sure that
these particular classes contain enough training samples so that
the model can be trained properly. After training, we perform
the retrieval process as follows: we randomly select a query
shape from the Items dataset, split it and encode its parts,
before running the transformer module repeatedly for all parts

in the warehouse dataset. For each part used, we check the
Nth output of the classification head, where N corresponds to
the class of the query shape. We save these, as they are the
scores that will determine the suitability of the spare parts.
Finally, the parts are sorted according to their score, and the
top-K are to be presented to the user of the application.

As can be seen in Figure 5, despite the rather extreme
variation in the number of points, as well as the presence
of unwanted parts due to mistaken clustering, the pipeline
is able to select meaningful replacements. The same can be
said in the case of PartNet 4 with its significantly more dense
shapes and better annotation. We added four more layers to
our pointnet and quadrupled the feature dimension to allow the
encoder to process the PartNet shapes effectively. No changes
were made to the relationship module, allowing the model to
process the entire warehouse of spare parts in ≈ 13 seconds
on both datasets. It should be noted that the actual scale of
the parts is not taken into consideration, on account of the
normalization step that happens before feeding the parts to
the model. The matching and retrieval depends solely on the
geometry. A characteristic example of this can be seen in 5b,
where the plane’s fuselage is matched with not only other parts
of its kind, but also with plane turbines, due to their similar
geometry.
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Fig. 6. Visualization of the results produced by the baseline approach. The query model on the left is completed using 3 different models (from top to
bottom): a) GrNet [51], b) FoldingNet as presented in [49] and utilized for completion in [50], c) PoinTr [48]. In cyan and red we visualize the generated
points that are within the bounding box and are used for retrieval. On the right the top-5 matches are presented for each retrieval attempt. The retrieval was
performed in point space, using chamfer distance.

B. Baseline

Because the problem we tackle in this paper is novel, there
are currently no other works -to the best of our knowledge-
that could be used for fair comparative evaluation. As such, we
establish a baseline method for this task, based on the simplest
idea that might occur when studying this particular problem.
Since the part that we are trying to replace is unavailable, we
can use a trained completion model to fill the gap. Standard
retrieval approaches can then be applied using the generated
part as a query.

To this end, we test 3 well-known completion networks,
which we specifically select to have varying degrees of
performance. This way, we can assess how the completion
quality affects the retrieval end result. For evaluation we use
the items dataset for both approaches, discarding a single
random part each time. For the completion approach, since
it is common for models to output points even in areas where
nothing is missing, we assume that the end user can specify
an area of interest, where only points inside it are taken
into account. To accomplish this automatically, we simply
consider the bounding box of the missing part (which naturally
will not be available in practice), but scale it up by a small
factor to account for user error. We then isolate the points
inside it and perform retrieval in 2 ways; by comparing the
euclidean distance in feature space and by comparing the
chamfer distance directly. We measure the chamfer distance
between the retrieved and the original part and summarize the
results in table I. While chamfer distance does indeed provide
a baseline estimate of how the methods perform, the numbers
themselves should be taken with a grain of salt, as it is not a
suitable metric for this task, albeit the best one available.

Completion and retrieval results are also visualized in

TABLE I
COMPARATIVE EVALUATION

Pipeline
Chamfer Distance

(·102)
Time / sample

(·104 s)
PoinTr (CD) 0.09 3.6
GrNet (CD) 0.14 3.6
FoldingNet (CD) 0.10 3.6
PRep 2.13 2.8
FoldingNet (Enc) 4.11 2.3
GrNet (Enc) 4.36 2.3
PoinTr (Enc) 3.81 2.3

CD and ENC denote the way in which the samples are re-
trieved from the database; by comparing the chamfer distance
or encoding the part and using comparing the euclidean distance
respectively. Naturally, in the cases where the parts are retrieved
using chamfer distance the average distance is lower than PRep.
(The experiments are ran on a single RTX 3090 gpu)

Figure 6. The results are generally satisfactory, however as
the completion quality worsens, the matched parts have no-
ticeable issues, such as shape irregularities, protrusions as
well as negligible thickness. Particularly, the almost non-
existent thickness is a trait that helps achieve very low chamfer
distance, as verified by the total score of each method.

This approach, despite being simplistic, does not come
without its merits. Specifically, the ”split” stage in PReP
becomes obsolete, potentially saving compute power or the
user’s time that would otherwise be spent in highlighting the
different parts. A strong downside, however, is that the quality
of retrieval results depends heavily on the completion quality
and any mishaps during this process, such as misplaced points
or inaccurate geometry representations, will propagate through
the pipeline and affect the retrieval quality. Despite evident
advances in point cloud completion, the task remains relatively
challenging. Oversampled and undersampled objects, as well
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Fig. 7. Multipart retrieval example. The query chair is missing two parts; a seat and a leg. We visualize the process of matching replacement parts, selecting
an appropriate replacement and repeating this process until the object is fixed. PReP provides a list of viable replacement part candidates, from which the
user will select the one that better suits his situation and/or tastes. More results can be found in the appendix.

as point clouds that have been affected by specific patterns of
noise or artifacts have a sizable impact on the geometry being
represented.

In addition, completion networks rely heavily on class
information to perform the task, some even requiring to be
trained on a single class at a time. Consequently, encoding
the underlying structure of objects of multiple classes requires
an enormous amount of data, and an adequately sized model.
On the contrary, while the classification task requires scaling
up to deal with an increased number of classes, the task
is significantly easier than completion and does not demand
exorbitant amounts of data.

C. Multiple missing parts

We extend the pipeline to tackle objects that have multiple
missing parts by introducing recurrency in the retrieval
process. After feeding the query object to the model and
scoring the spare parts we add the selected replacement to
the query object and repeat this process until it is complete.
The parts are centered and normalized with respect to scale
during the retrieval process, to make it easier for the model
to find an appropriate match. Each time a replacement is
found, it is translated to where the missing part is supposed
to be and aligned using the principal axes, before beginning
the next iteration to find the next replacement part. During
this stage, we wish to observe whether the highest scoring
parts belong to a singular class or from multiple, depending
on which parts are missing. As can be seen in Figure 7,
when two different parts are missing, replacements from both
classes appear in the top matches. Respectively, when the
replacement is found, the top matches mostly include parts
from the remaining missing class, as intended. Note that as
the replacement leg is added to the object, the suggestions for
the seat do not necessarily remain the same, but the geometry
requirements are satisfied.

Let us also provide some interpretability and deeper insights
into the model’s functionality as well as its limitations. First
and foremost, this approach is limited by the capacity of the
classifier. Once the shape has been stripped to the point where
its class is not predicted correctly, the suitability scores will
be unpredictable and the matched parts will not necessarily

Fig. 8. Additional results on multi-part retrieval on the shapenet dataset. On
the left column we can see the objects provided as input that are missing two
parts each. During every retrieval step, the added part shown in the figure has
been selected among the top matches provided by PReP. The first and second
retrieved part is displayed in cyan and red respectively.

fit the context. In fact, this goes both ways; in Figure 8
the toy plane on the second row originally had two sets of
wings. Upon retrieving a plane body during the first retrieval
step, the classifier recognizes the shape as a full plane and
produces a confident guess. The spare parts provided in the
second retrieval step simply add noise to the already high
classifier output, resulting in unsuitable matches. This is in
contrast to the toy plane in the first row, where the object
is indeed recognized as a plane, but the classifier’s guess
becomes more and more confident during each retrieval step
as the replacements for the missing parts are found.

A tertiary, rather minor problem is that matches will tend
to worsen as more parts are removed. This is because the
part combinations that the model receives as input become
increasingly ”odd” compared to its training data. Nevertheless,
this problem is solely attributed to the capacity of available
point cloud processing models and their ability to understand
geometric shapes regardless of sampling.

V. DISCUSSION

We have proposed PReP, a pipeline that can perform part
retrieval based on shape context, a significantly more difficult
problem than traditional shape retrieval. PReP is lightweight
enough to sort through a repository of tens of thousands of
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spare parts in merely a few seconds. It owes its quality and
speed to the creative usage of classification and the simplic-
ity thereof. Additionally, we established a baseline approach
based on completion and then retrieval of the missing part.
While the latter will often yield better results in the ”chamfer
distance sense”, it should be noted that chamfer distance is
not really a suitable metric for this task, albeit the best one
available. In actuality, suitable replacements do not necessarily
adhere to this lowest NN distance rule, but require a broader
level of geometry understanding which can only be provided
by PReP. The strict nature of chamfer distance not only
limits the pool of potential replacements, but also increases
sensitivity to errors (as in the example of Figure 6). Things
are complicated even further when geometries become more
complex. Nevertheless, the baseline still remains a feasible
way to tackle this problem, so long as the diversity in the
data allows for a proper completion network to be trained and
deployed.

VI. FUTURE WORK

Arguably, the most difficult aspect of this task is training the
encoder so that it can bring similar samples close in feature
space. Due to the complicated nature of the data, with arbitrary
number of parts in each object and arbitrary number of points
per part, the encoding process involves a lot of masking and
padding operations. This is not necessarily compatible with all
point cloud processing models available and the selection of
the best model requires a lot of attention and care. For the sake
of simplicity we used a PointNet, which is hardly one of the
best encoders available in the literature. In future work we plan
to investigate the appropriate choice of the encoder further,
potentially even taking the scale of the part into consideration.

APPENDIX

DATA

Care has been taken to keep the data used as close to
other publications that utilize the same datasets, but making
it relevant and fitting for this specific task. On ShapeNet-
Part we simply iterate through the dataset and save its part
individually, retaining information about the object class it
originated from and the part class it belongs to. The same
is done for PartNet, but each part cluster is split into subparts.
The number of clusters is determined automatically by the
DBSCAN algorithm, which works perfectly for the majority of
the samples, but creates noisy, non-existent parts in degenerate
cases, which unfortunately pollutes the dataset with unwanted
samples.

While the objects in both datasets are canonically oriented
(e.g. all chairs face the same direction), the individual parts
they comprise are not. Naturally, this would affect the Chamfer
distance calculation so we remedy this problem by aligning
the parts using principal component analysis. For elongated
parts (such as chair legs, cylinders etc) this amounts to the
direction of the sample itself which is the principal component
with the largest eigenvalue. For planar surface parts we take
the principal component with the smallest eigenvalue instead,
which corresponds to the orientation of the surface. Each of

these vectors is saved as metadata along with the part in
question. During runtime, when comparing two parts together,
we align these vectors and apply the same rotation matrix to
one of the point clouds.

MODEL AND TRAINING

As mentioned in the main paper the model is trained in
two stages; first the encoder with the proposed metric learning
objective, and afterwards the entire model for classification.
We perform the first stage of training for 100 epochs, requiring
approximately 8 hours on an RTX 3090 gpu. The classification
stage is much lighter, trained for only 20 epochs, over a span of
approximately 40 minutes. Regarding our training parameters,
we used the Adam optimizer for both tasks along with cosine
annealing with warmup for learning rate scheduling.

Further details are required in order to understand the
relationship module’s functionality. The transformer takes as
input encoded parts and outputs feature vectors of the same
dimensionality by injecting information about the relationships
between parts. Afterwards, a pooling operation is applied to
convert the part feature vectors into a global shape feature
vector, which is then provided as input in the classification
MLP. Two problems arose in the early stages of this design:

First, the pipeline would output a very high score for a
specific class, despite the input missing a part or two. This was
primarily caused by the presence of max pooling. Distinctive
features of a particular class would make their way into
the classification MLP due to the max pooling operation,
ignoring the fact that vital parts were missing. We remedied
this problem by employing a classification token instead of
max pooling.

The second issue, closely related to the first, is that the
presence of extra parts or the absence thereof would not
be appropriately reflected in the score. This is precisely the
reason we decided to perform the training in two stages, first
equalizing similar parts and then training for classification
without adjusting the encoder. This separation of the encoder
from the rest of the model allows the classification to be based
only on the parts present, and not on changing the feature
representation to make classification easier. In the ideal case,
where for the same type of part the same exact feature vector
is assigned, there needs to be a way for the transformer to
differentiate between them. In [4] they encounter this problem
in shape assembly, which they tackle by assigning a unique
instance embedding to each part. We opt to use a similar
approach, but we simplify and generate a unique embedding
from the centroid of the part. By concatenating this embedding
to each part feature vector we manage to kill to birds with one
stone, as not only does it allow the transformer to distinguish
between parts with similar geometries, but also helps the
transformer understand the location of said parts.

ADDITIONAL RESULTS

In figures 9 and 10 we present additional results for multi-
part retrieval. We would like to draw the reader’s attention to
the chair and table examples of figure 9, wherein the retrieved
parts do not necessarily fit the query object’s aesthetic, but do
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Fig. 9. Additional results on multi-part retrieval on the shapenet dataset. On
the left column we can see the objects provided as input that are missing two
parts each. During every retrieval step, the added part shown in the figure has
been selected among the top matches provided by PReP. The first and second
retrieved part is displayed in cyan and red respectively.

provide the required functionality, same as the object’s original
parts. This is a useful property in the scenario that we have
assumed, because there is the option of physically processing
the parts further, according to the user’s needs, providing even
greater variety of potential replacements.

Fig. 10. Additional results on multi-part retrieval on the partnet dataset.
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